首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Itoh S  Ito K  Fujii S  Kaneko K  Kato K  Mikoshiba K  Kato H 《Brain research》2001,901(1-2):237-246
In the present study, we used inositol-1,4,5-trisphosphate (IP3) type 1 receptor (IP3R1) knockout mice to examine the role of this receptor in the induction of LTP, LTD, and DP at mossy fiber-CA3 synapses. No difference in synaptically induced field-EPSPs was seen between the wild-type (IP3R1(+/+)) and IP3R1 knockout mice (IP3R1(-/-)), showing that basic synaptic transmission does not involve IP3R1 activation. Tetanus induced LTP in both wild-type and IP(3)R1(-/-) mice, but the magnitude of LTP was significantly greater in IP3R1(-/-) mice (149.8+/-3.5%, mean+/-S.E.M., n=15) than in wild-type mice (132.4+/-1.5%, n=17), suggesting that the IP3R1 has a suppressive effect on LTP induction. To determine whether this effect involved N-methyl-D-aspartate receptor (NMDAR)-dependent LTP, the effect of tetanus was tested in the present of the NMDAR antagonist, D,L-AP5 (50 microM); under these conditions, the LTP in both IP3R1(-/-) and IP3R1(+/+) mice was not significantly reduced. In addition, group I mGluR activation was shown to be necessary for LTP induction, as the LTP was almost blocked by the group I mGluR antagonist, RS-4CPG (500 microM) in both IP3R1(-/-) (117.6+/-1.7%, n=8) and IP3R1(+/+) (116.9+/-1.8%, n=5) mice. The IP3R1 also plays an essential role in LTD induction, as low-frequency stimulation (LFS) failed to induce LTD in the mutant mice (104.5+/-2.1%, n=10). DP was induced in both IP3R1(-/-) and wild-type mice.  相似文献   

2.
Inositol 1,4,5-trisphosphate receptors (IP3R) are mediators of second messenger-induced intracellular calcium release. Three isoforms are known to be expressed in brain, but their regional distributions and cellular localizations are little known. In order to better understand the roles of IP3 receptor isoforms in brain function, a first step is to define their distributions. We have used affinity-purified antibodies directed against peptides unique to each isoform to determine their sites of expression in rat brain. Type 1 IP3R (IP3R1) is dramatically enriched in Purkinje neurons in cerebellum and neurons in other regions, consistent with previous studies. By contrast, IP3R2 is only detected in glia, whereas IP3R3 is predominantly neuronal, with little detected in glia. IP3R3 is enriched in neuropil, especially in neuronal terminals (which often contain large dense core vesicles) in limbic and basal forebrain regions including olfactory tubercle, central nucleus of the amygdala, and bed nucleus of the stria terminalis. In addition, IP3R1 and IP3R3 have clearly distinct time courses of expression in developing brains. These data suggest separate roles for inositol 1,4,5-trisphosphate receptor isoforms in development, and for glial and neuronal function. The IP3R3 may be involved in regulation of neurotransmitter or neuropeptide release in terminals within specific nuclei of the basal forebrain and limbic system.  相似文献   

3.
Astrocytes respond to neuronal activity by propagating Ca(2+) waves elicited through the inositol 1,4,5-trisphosphate pathway. We have previously shown that wave propagation is supported by specialized Ca(2+) release sites, where a number of proteins, including inositol 1,4,5-trisphosphate receptors (IP(3)R), occur together in patches. The specific IP(3)R isoform expressed by astrocytes in situ in rat brain is unknown. In the present report, we use isoform-specific antibodies to localize immunohistochemically the IP(3)R subtype expressed in astrocytes in rat brain sections. Astrocytes were identified using antibodies against the astrocyte-specific markers, S-100 beta, or GFAP. Dual indirect immunohistochemistry showed that astrocytes in all regions of adult rat brain express only IP(3)R2. High-resolution analysis showed that hippocampal astrocytes are endowed with a highly branched network of processes that bear fine hair-like extensions containing punctate patches of IP(3)R2 staining in intimate contact with synapses. Such an organization is reminiscent of signaling microdomains found in cultured glial cells. Similarly, Bergmann glial cell processes in the cerebellum also contained fine hair-like processes containing IP(3)R2 staining. The IP(3)R2-containing fine terminal branches of astrocyte processes in both brain regions were found juxtaposed to presynaptic terminals containing synaptophysin as well as PSD 95-containing postsynaptic densities. Corpus callosum astrocytes had an elongated morphology with IP(3)R2 studded processes extending along fiber tracts. Our data suggest that PLC-mediated Ca(2+) signaling in astrocytes in rat brain occurs predominantly through IP(3)R2 ion channels. Furthermore, the anatomical arrangement of the terminal astrocytic branches containing IP(3)R2 ensheathing synapses is ideal for supporting glial monitoring of neuronal activity.  相似文献   

4.
Hao L  Zhang Q  Yu T  Yu L  Cheng Y 《Brain research bulletin》2011,86(5-6):355-359
Heparin is an effective competitive antagonist of inositol 1,4,5-trisphosphate receptors (IP(3)Rs). It binds to IP(3)Rs and affects calcium homeostasis. Ultra-low-molecular-weight heparin (ULMWH) is heparin's derivative, the present study was designed to test the effects of ULMWH on intracellular calcium concentration ([Ca(2+)]i) in primary cultured neurons. [Ca(2+)]i was measured by Multilabel Counter Victor-1420 using Fura-2/AM as the calcium fluorescent probe. The results indicated that ULMWH decreased the resting [Ca(2+)]i with or without extracellular Ca(2+). They had no effects on high K(+)-induced elevation of intracellular Ca(2+) level indicating that ULMWH had no effect on external Ca(2+) influx mediated by voltage-dependent calcium channels. However, they partially reduced the increase in [Ca(2+)]i induced by glutamate. Furthermore, ULMWH significantly inhibited the inositol 1,4,5-trisphosphate (IP(3))-induced increase in [Ca(2+)]i both in cellular and subcellular level. These results suggest that ULMWH may reduce [Ca(2+)]i in neurons through suppressing Ca(2+) release from IP(3)-sensitive stores.  相似文献   

5.
The distribution of inositol 1,4,5-trisphosphate (IP(3)) receptor type 1 (IP(3)R1) protein was studied in the adult cerebella of six different vertebrate species, zebrafish, skate, claw frog, rat, hamster, and mouse. The receptor was found at high expression levels in Purkinje cells in all species examined using a subtype-specific polyclonal antiserum against IP(3)R1 and fluorescence immunocytochemistry. The immunoreactivity for IP(3)R1 was found intracellularly at high concentrations in dendrites and somata and at lower levels in axons of these cells. Despite the morphological and functional differences of the cerebella the staining patterns of IP(3)R1 labeling in Purkinje cells was preserved. This is notable because the cerebella were taken from organisms representing a large segment of vertebrate phylogenetic development. The high expression levels of IP(3)R1 in Purkinje cells were found independent of the degree of the formation of fissures and folia and of the degree of branching of Purkinje cell dendrites. The conservation of cerebellar structures not only at the cellular level but more importantly at the molecular level suggests that identical intracellular calcium signaling mechanisms are used in a number of species that represent different areas of phylogenetic development and specialization.  相似文献   

6.
The secretory granules of neuroendocrine cells, which function as an inositol (1,4,5)-trisphosphate-sensitive intracellular Ca2+ store, contain both the inositol (1,4,5)-trisphosphate receptor/Ca2+ channel and the high-capacity low-affinity Ca2+ storage proteins, chromogranins A and B. Chromogranins A and B, which exist in approximately 2 mm range in the secretory granules, can bind 50-100 mol of Ca2+/mol with dissociation constants of 2-4 mm. These proteins interact directly with the inositol (1,4,5)-trisphosphate receptor/ Ca2+ channel at the intragranular pH 5.5, not only changing the conformation of the inositol (1,4,5)-trisphosphate receptor/Ca2+ channel but also modulating the channel activity. Given the homo- and heterotetrameric existence of both the inositol (1,4,5)-trisphosphate receptor/Ca2+ channel and chromogranins A and B, these tetrameric proteins appear to interact, thus controlling the intracellular Ca2+ concentration.  相似文献   

7.
Calcium-mediated signaling is crucial for the synaptic plasticity and long-term memory storage, which requires de novo protein synthesis. Inositol 1,4,5-trisphosphate 3-kinase A (IP(3)K-A) is an enzyme, which is involved in the maintenance of intracellular calcium homeostasis by converting inositol 1,4,5-trisphosphate (IP(3)) to inositol 1,3,4,5-tetrakisphosphate (IP(4)). Because IP(3)K-A is enriched in the dendritic spines of hippocampal neurons, it has been speculated that this enzyme is involved in the memory formation. In the present study, we demonstrated that the expression of IP(3)K-A is increased in the hippocampal formation of the rats during the Morris water maze training. Immunohistochemical analysis indicated the specific induction of IP(3)K-A protein in the hippocampal formation following 5-day water maze training. Furthermore, in situ hybridization histochemistry showed that the induction of IP(3)K-A mRNA in the hippocampal formation was observed on the first day of training, and the induced level of IP(3)K-A mRNA was maintained until the fifth day of training. These results suggest that IP(3)K-A plays a role in the processing of spatial memory, most likely by regulating the calcium signaling in the dendritic spines of hippocampal formation.  相似文献   

8.
Using single cell Ca(2+) imaging and whole cell current clamp recordings, this study aimed to identify the signal transduction mechanisms involved in mACh receptor-mediated, enhanced synaptic signaling in primary cultures of hippocampal neurons. Activation of M(1) mACh receptors produced a 2.48 +/- 0.26-fold enhancement of Ca(2+) transients arising from spontaneous synaptic activity in hippocampal neurons. Combined imaging of spontaneous Ca(2+) signals with inositol 1,4,5-trisphosphate (IP(3)) production in single neurons demonstrated that the methacholine (MCh)-mediated enhancement required activated G(q/11)alpha subunits and phospholipase C activity but did not require measurable increases in IP(3). Electrophysiological studies demonstrated that MCh treatment depolarized neurons from -64 +/- 3 to -45 +/- 3 mV and increased action potential generation. Depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) enhanced neuronal excitability and prolonged the action of MCh. These studies suggest that, in addition to producing the second messengers IP(3) and diacylglycerol, mACh receptor activation may directly utilize PIP(2) hydrolysis to regulate neuronal excitability.  相似文献   

9.
Reduced IP3 sensitivity of IP3 receptor in Purkinje neurons   总被引:3,自引:0,他引:3  
Fujiwara A  Hirose K  Yamazawa T  Iino M 《Neuroreport》2001,12(12):2647-2651
The inositol 1,4,5-trisphosphate receptor (IP3R) is highly expressed in Purkinje neurons (PNs) and is thought to be essential for the induction of long-term depression at parallel-fiber-PN synapses. Here, by imaging the fluorescence intensity of the low-affinity Ca2+ indicator inside the Ca2+ stores in the permeabilized single PNs, we analyzed the kinetics of Ca2+ release via the IP3R in controlled cytoplasmic environments. The rate of Ca2+ release is dependent on the IP3 concentration with an EC50 of 25.8 microM, which is > 20-fold greater than that of the IP3R in the isolated preparations or in peripheral cells. This property would be advantageous in inducing the release of Ca2+ in a localized space adjacent to the site of synaptic inputs.  相似文献   

10.
Ca(2+)-dependent mechanisms are important in regulating synaptic transmission. The results herein indicate that whole-cell perfusion of inositol 1,4,5-trisphosphate receptor (IP(3)R) agonists greatly enhanced excitatory postsynaptic current (EPSC) amplitudes in postsynaptic hippocampal CA1 neurons. IP(3)R agonist-mediated increases in synaptic transmission changed during development and paralleled age-dependent increases in hippocampal type-1 IP(3)Rs. IP(3)R agonist-mediated increases in EPSC amplitudes were inhibited by postsynaptic perfusion of inhibitors of Ca(2+)/calmodulin, PKC and Ca(2+)/calmodulin-dependent protein kinase II. Postsynaptic perfusion of inhibitors of smooth endoplasmic reticulum (SER) Ca(2+)-ATPases, which deplete intracellular Ca(2+) stores, also enhanced EPSC amplitudes. Postsynaptic perfusion of the IP(3)R agonist adenophostin (AdA) during subthreshold stimulation appeared to convert silent to active synapses; synaptic transmission at these active synapses was completely blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Postsynaptic IP(3)R-mediated Ca(2+) release also produced a significant increase in spontaneous EPSC frequency. These results indicate that Ca(2+) release from intracellular stores play a key role in regulating the function of postsynaptic AMPARs.  相似文献   

11.
The transduction mechanism of the conductance activated by saccharin was analysed in isolated bullfrog taste cells under whole-cell voltage-clamp. Bath application of 30 mM saccharin induced an inward current of -34 +/- 12 pA (mean +/- SEM, n = 10) at a membrane potential of -50 mV in 10 (23%) of 44 rod cells. The concentration-response relationship for the saccharin-gated current was consistent with that of the gustatory neural response. The saccharin-induced current was accompanied with a conductance increase under internal low Cl- condition (E(Cl) = -56 mV), suggesting that saccharin activated a cation conductance. The reversal potential of the saccharin-induced current was -17 +/- 2 mV (n = 10). Intracellular dialysis of 0.5 mM guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S) completely blocked the saccharin-induced response, suggesting the involvement of a G protein in the transduction. The dialysis of heparin (1 mg/mL) also inhibited the response almost completely, but the dialysis of 1 mM 8-Br-cAMP did not affect the response significantly. Intracellular 50 microM inositol 1,4,5-trisphosphate (1,4,5 InsP(3)) also induced the inward current in five (38%) of 13 rod cells, but intracellular Pasteurella multocida toxin (5 microg/mL, G alpha q-coupled PLC activator) did not elicit any response in the cells. The results suggest that saccharin mainly activates a cation conductance in frog taste cells through the mediation of IP3 production.  相似文献   

12.
Glutamate receptor (GluR) delta2 selectively expressed in cerebellar Purkinje cells plays a central role in cerebellar long-term depression (LTD), motor learning, and formation of parallel fiber synapses. By yeast two-hybrid screening, we identified members of the Shank family of scaffold proteins as major GluRdelta2-interacting molecules. GluRdelta2 bound directly to the PDZ domain of Shank proteins through an internal motif in the carboxyl-terminal putative cytoplasmic domain. Shank1 and Shank2 proteins as well as GluRdelta2 proteins were localized in the dendritic spines of cultured Purkinje cells. Anti-GluRdelta2 antibodies immunoprecipitated Shank1, Shank2, Homer, and metabotropic GluR1alpha proteins from the synaptosomal membrane fractions of cerebella. Furthermore, Shank2 interacted with GRIP1 in the cerebellum. These results suggest that through Shank1 and Shank2, GluRdelta2 interacts with the metabotropic GluR1alpha, the AMPA-type GluR, and the inositol 1,4,5-trisphosphate receptor (IP3R) that are essential for cerebellar LTD.  相似文献   

13.
PMCA2, a major calcium pump, is expressed at particularly high levels in Purkinje neurons. Accordingly, PMCA2-null mice exhibit ataxia suggesting cerebellar pathology. It is not yet known how changes in PMCA2 expression or activity affect molecular pathways in Purkinje neurons. We now report that the levels of metabotropic glutamate receptor 1 (mGluR1), which plays essential roles in motor coordination, synaptic plasticity, and associative learning, are reduced in the cerebellum of PMCA2-null mice as compared to wild type littermates. The levels of inositol 1,4,5-triphosphate receptor type 1 (IP3R1), an effector downstream to mGluR1, which mediates intracellular calcium signaling, and the expression of Homer 1b/c and Homer 3, scaffold proteins that couple mGluR1 to IP3R1, are also reduced in somata and dendrites of some Purkinje cell subpopulations. In contrast, no alterations occur in the levels of mGluR1 and its downstream effectors in the hippocampus, indicating that the changes are region specific. The reduction in cerebellar mGluR1, IP3R1 and Homer 3 levels are neither due to a generic decrease in Purkinje proteins nor extensive dendritic loss as immunoreactivity to total and non-phosphorylated neurofilament H (NFH) is increased in Purkinje dendrites and microtubule associated protein 2 (MAP2) staining reveals a dense dendritic network in the molecular layer of the PMCA2-null mouse cerebellum. PMCA2 coimmunoprecipitates with mGluR1, Homer 3 and IP3R1, suggesting that the calcium pump is a constituent of the mGluR1 signaling complex. Our results suggest that the decrease in the expression of mGluR1 and its downstream effectors and perturbations in the mGluR1 signaling complex in the absence of PMCA2 may cumulatively result in aberrant metabotropic glutamate receptor signaling in Purkinje neurons leading to cerebellar deficits in the PMCA2-null mouse.  相似文献   

14.
Our previous studies using an in vitro model of traumatic injury have shown that stretch injury of astrocytes causes a rapid elevation in intracellular free calcium ([Ca2+]i), which returns to near normal by 15 min postinjury. We have also shown that after injury astrocyte intracellular calcium stores are no longer able to release Ca2+ in response to signal transduction events mediated by the second messenger inositol (1,4,5)-trisphosphate (IP3, Rzigalinski et al., 1998). Therefore, we tested the hypothesis that in vitro injury perturbs astrocyte IP3 levels. Astrocytes grown on Silastic membranes were labeled with [3H]-myo-inositol and stretch-injured. Cells and media were acid-extracted and inositol phosphates isolated using anion-exchange columns. After injury, inositol polyphosphate (IPx) levels increased up to 10-fold over uninjured controls. Significant injury-induced increases were seen at 5, 15, and 30 min and at 24 and 48 h postinjury. Injury-induced increases in IPx were equivalent to the maximal glutamate and trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid-stimulated IPx production, however injury-induced increases in IPx were sustained through 24 and 48 h postinjury. Injury-induced increases in IPx were attenuated by pretreatment with the phospholipase C inhibitors neomycin (100 microM) or U73122 (1.0 microM). Since we have previously shown that astrocyte [Ca2+]i returns to near basal levels by 15 min postinjury, the current results suggest that IP3-mediated signaling is uncoupled from its target, the intracellular Ca2+ store. Uncoupling of IP3-mediated signaling may contribute to the pathological alterations seen after traumatic brain injury.  相似文献   

15.
Spinocerebellar ataxia 2 (SCA2) is a neurodegenerative disorder characterized by progressive ataxia. SCA2 results from a poly(Q) (polyglutamine) expansion in the cytosolic protein ataxin-2 (Atx2). Cerebellar Purkinje cells (PCs) are primarily affected in SCA2, but the cause of PC dysfunction and death in SCA2 is poorly understood. In previous studies, we reported that mutant but not wild-type Atx2 specifically binds the inositol 1,4,5-trisphosphate receptor (InsP(3)R) and increases its sensitivity to activation by InsP(3). We further proposed that the resulting supranormal calcium (Ca(2+)) release from the PC endoplasmic reticulum plays a key role in the development of SCA2 pathology. To test this hypothesis, we achieved a chronic suppression of InsP(3)R-mediated Ca(2+) signaling by adenoassociated virus-mediated expression of the inositol 1,4,5-phosphatase (Inpp5a) enzyme (5PP) in PCs of a SCA2 transgenic mouse model. We determined that recombinant 5PP overexpression alleviated age-dependent dysfunction in the firing pattern of SCA2 PCs. We further discovered that chronic 5PP overexpression also rescued age-dependent motor incoordination and PC death in SCA2 mice. Our findings further support the important role of supranormal Ca(2+) signaling in SCA2 pathogenesis and suggest that partial inhibition of InsP(3)-mediated Ca(2+) signaling could provide therapeutic benefit for the patients afflicted with SCA2 and possibly other SCAs.  相似文献   

16.
Toews JC  Schram V  Weerth SH  Mignery GA  Russell JT 《Glia》2007,55(2):202-213
During action potential conduction, the axonal specializations at the node, together with the adjacent paranodal terminations of the myelin sheath, interact with glial processes that invest the nodal gap. The nature of the mutual signals between axons and myelinating glia, however, are not well understood. Here we have characterized the distribution of inositol 1,4,5-trisphosphate receptors (IP(3)Rs) in the axoglial apparatus by immunohistochemistry, using known myelin domain-specific markers. While IP(3)R1 is not expressed in the Schwann cells or the axon, IP(3)R2 and IP(3)R3 are expressed in distinct cellular domains, suggesting distinct signaling roles for the two receptors. IP(3)R3 is the most predominant isoform in Schwann cells, and is expressed in particularly dense patches in the paranodal region. In addition to IP(3)Rs, two other members of the metabotropic Ca(2+) signaling pathway, G(alpha)q, and P(2)Y1 type of purinoceptors were also found in Schwann cells. Their pattern of expression matches the expression of their signaling partners, the IP(3)Rs. One interesting finding to emerge from this study is the expression of connexin 32 (Cx32) in close proximity with IP(3)R3. Although IP(3)R3 and Cx32 are not colocalized, their expression in the same membrane areas raises the question whether Schwann cell Ca(2+) signals either control the function of the gap junctions, or whether the gap junctional channels serve as conduits for rapid radial spread of Ca(2+) signals initiated during action potential propagation.  相似文献   

17.
Ultrastructural localization of inositol 1,4,5-trisphosphate 3-kinase (IP3K) in the rat cerebral cortex and hippocampus was studied immunohistochemically. In both regions, the major structure expressing a high level of IP3K was the dendritic spines of pyramidal neurons, where immunoreactivity was associated with the spine apparatuses and plasmalemma. The postsynaptic densities showed the most intense labelling. Taking into account the results of our previous observations, which demonstrated the restricted localization of the enzyme in the dendritic spines of Purkinje and basket cells in cerebellum, IP3K may be localized specifically in dendritic spines in various regions of the central nervous system, and involved in synaptic signal transduction at the spines.  相似文献   

18.
Development profiles in vivo and in vitro of inositol 1,4,5-trisphosphate 3-kinase (IP3K) were investigated immunohistochemically in the cerebellar Purkinje cells. In in vivo preparations of rat cerebellum, IP3K immunoreactivity appeared in Purkinje cell bodies and dendrites shortly after birth, increased rapidly by postnatal day 5, and was subsequently confined to their dendritic processes by day 20. The appearance and shift of IP3K immunoreactivity in Purkinje cells showed an identical time course even when Purkinje cells were placed under culture conditions commencing on day 0, suggesting that Purkinje cells have their own biological clock on the expression of IP3K in the absence of external influences.  相似文献   

19.
Pridopidine is a selective Sigma-1 receptor (S1R) agonist in clinical development for Huntington disease (HD) and amyotrophic lateral sclerosis. S1R is a chaperone protein localized in mitochondria-associated endoplasmic reticulum (ER) membranes, a signaling platform that regulates Ca2+ signaling, reactive oxygen species (ROS) and mitochondrial fission. Here, we investigate the protective effects of pridopidine on various mitochondrial functions in human and mouse HD models. Pridopidine effects on mitochondrial dynamics were assessed in primary neurons from YAC128 HD mice expressing the mutant human HTT gene. We observe that pridopidine prevents the disruption of mitochondria-ER contact sites and improves the co-localization of inositol 1,4,5-trisphosphate receptor (IP3R) and its chaperone S1R with mitochondria in YAC128 neurons, leading to increased mitochondrial activity, elongation, and motility. Increased mitochondrial respiration is also observed in YAC128 neurons and in pridopidine-treated HD human neural stem cells (hNSCs). ROS levels were assessed after oxidative insult or S1R knockdown in pridopidine-treated YAC128 neurons, HD hNSCs, and human HD lymphoblasts. All HD models show increased ROS levels and deficient antioxidant response, which are efficiently rescued with pridopidine. Importantly, pridopidine treatment before H2O2-induced mitochondrial dysfunction and S1R presence are required for HD cytoprotection. YAC128 mice treated at early/pre-symptomatic age with pridopidine show significant improvement in motor coordination, indicating a delay in symptom onset. Additionally, in vivo pridopidine treatment reduces mitochondrial ROS levels by normalizing mitochondrial complex activity. In conclusion, S1R-mediated enhancement of mitochondrial function contributes to the neuroprotective effects of pridopidine, providing insight into its mechanism of action and therapeutic potential.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13311-021-01022-9.  相似文献   

20.
Inositol 1,4,5-trisphosphate receptors (IP3R) are modulated by the second messenger IP3, which induces intracellular calcium release. Using immunohistochemical techniques, we show that the three isoforms are expressed in sciatic nerve. IP3R1 and IP3R2 are mainly present in the nucleus of Schwann cells. IP3R1 is also expressed in Schmidt-Lanterman incisures. IP3R3 is primarily localized at very high levels in nonmyelinating Schwann cells. Interestingly, the three isoforms are expressed at the nodes of Ranvier. IP3R1 is clustered at the node of Ranvier, in a distribution that is similar to the Nav1.6 sodium channels in the sciatic nerve. IP3R3 is present in the paranodal regions of the nodes. IP3R2 is concentrated in the vicinity of the node, and the outer Schwann cell cytoplasm similar to the Kv1.5 potassium channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号