首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reducing hippocampal neurogenesis sometimes, but not always, disrupts hippocampus‐dependent learning and memory. Here, we tested whether animal age, which regulates rate of hippocampal neurogenesis, is a factor that influences whether deficits in spatial learning are observed after reduction of neurogenesis. We found that suppressing the generation of new hippocampal neurons via treatment with temozolomide, an antiproliferation agent, impaired learning the location of a hidden platform in the water maze in juvenile mice (1–2 months old) but not in adult mice (2–3 months old) or middle‐aged mice (11–12 months old). These findings suggest that during juvenility, suppression of neurogenesis may alter hippocampal development, whereas during adulthood and aging, pre‐existing neurons may compensate for the lack of new hippocampal neurons. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The dentate gyrus of the hippocampus plays a pivotal role in pattern separation, a process required for the behavioral task of contextual discrimination. One unique feature of the dentate gyrus that contributes to pattern separation is adult neurogenesis, where newly born neurons play a distinct role in neuronal circuitry. Moreover, the function of neurogenesis in this brain region differs in adolescent and adult mice. The signaling mechanisms that differentially regulate the distinct steps of adult neurogenesis in adolescence and adulthood remain poorly understood. We used mice lacking RAS‐GRF1 (GRF1), a calcium‐dependent exchange factor that regulates synaptic plasticity and participates in contextual discrimination performed by mice, to test whether GRF1 plays a role in adult neurogenesis. We show Grf1 knockout mice begin to display a defect in neurogenesis at the onset of adulthood (~2 months of age), when wild‐type mice first acquire the ability to distinguish between closely related contexts. At this age, young hippocampal neurons in Grf1 knockout mice display severely reduced dendritic arborization. By 3 months of age, new neuron survival is also impaired. BrdU labeling of new neurons in 2‐month‐old Grf1 knockout mice shows they begin to display reduced survival between 2 and 3 weeks after birth, just as new neurons begin to develop complex dendritic morphology and transition into using glutamatergic excitatory input. Interestingly, GRF1 expression appears in new neurons at the developmental stage when GRF1 loss begins to effect neuronal function. In addition, we induced a similar loss of new hippocampal neurons by knocking down expression of GRF1 solely in new neurons by injecting retrovirus that express shRNA against GRF1 into the dentate gyrus. Together, these findings show that GRF1 expressed in new neurons promotes late stages of adult neurogenesis. Overall our findings show GRF1 to be an age‐dependent regulator of adult hippocampal neurogenesis, which contributes to ability of mice to distinguish closely related contexts. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Chronic stress and depression are associated with decreased levels of hippocampal neurogenesis. On the other hand, antidepressants as well as environmental enrichment may rely in part on their pro‐neurogenic effects to improve cognition and mood. Because a functional heterogeneity has been consistently reported along the septo‐temporal axis of the hippocampus, regional changes in neurogenesis could differentially contribute to these effects and affect distinct hippocampal functions. Mapping these regional changes could therefore provide a better understanding of the function of newborn neurons. While some studies report region‐specific effects of stress and antidepressants on neurogenesis, it is unclear whether these changes affect distinct populations of newborn neurons according to their developmental stage in a region‐specific manner. By using endogenous markers and BrdU labeling we quantified the regional changes in cell proliferation and survival as well as in the number of neuronal progenitors and immature neurons following unpredictable chronic mild stress (UCMS), environmental enrichment (EE) and chronic fluoxetine (20 mg/kg/day) treatment along the septo‐temporal axis of the hippocampus. EE promoted cell proliferation and survival of 4‐week‐old newborn cells as well as increased the number and proportion of post‐mitotic immature neurons specifically within the septal hippocampus. By contrast, UCMS uniformly decreased cell proliferation, survival and immature newborn neurons but differentially affected progenitor cells with a decrease restricted to the temporal regions of the hippocampus. Whereas fluoxetine treatment in control mice affected proliferation and survival specifically in the temporal hippocampus, it reversed most of the UCMS‐induced alterations all along the septo‐temporal axis. These results highlight that different factors known for exerting a mood improving effect differentially regulate neurogenesis along the septo‐temporal axis of the hippocampus. Such region and stage specific effects may correlate to distinct functional properties of newborn neurons along the septo‐temporal axis of the hippocampus which may contribute differently to the pathophysiology of affective disorders. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The cognitive role of melanin‐concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero‐lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long‐term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal‐dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long‐term potentiation and depression in the CA1 area of the hippocampus. Post‐tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre‐synaptic forms of short‐term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short‐term memory T‐maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short‐term memory by impairing short‐term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short‐term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
In the hippocampus, the production of dentate granule cells (DGCs) persists into adulthood. As adult‐generated neurons are thought to contribute to hippocampal memory processing, promoting adult neurogenesis therefore offers the potential for restoring mnemonic function in the aged or diseased brain. Within this regenerative context, one key issue is whether developmentally generated and adult‐generated DGCs represent functionally equivalent or distinct neuronal populations. To address this, we labeled separate cohorts of developmentally generated and adult‐generated DGCs and used immunohistochemical approaches to compare their integration into circuits supporting hippocampus‐dependent memory in intact mice. First, in the water maze task, rates of integration of adult‐generated DGCs were regulated by maturation, with maximal integration not occurring until DGCs were five or more weeks in age. Second, these rates of integration were equivalent for embryonically, postnatally, and adult‐generated DGCs. Third, these findings generalized to another hippocampus‐dependent task, contextual fear conditioning. Together, these experiments indicate that developmentally generated and adult‐generated DGCs are integrated into hippocampal memory networks at similar rates, and suggest a functional equivalence between DGCs generated at different developmental stages. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
The hippocampus is involved in declarative memory and produces new neurons throughout adulthood. Numerous experiments have been aimed at testing the possibility that adult neurogenesis is required for learning and memory. However, progress has been encumbered by the fact that abating adult neurogenesis usually affects other biological processes, confounding the interpretation of such experiments. In an effort to circumvent this problem, we used a reverse approach to test the role of neurogenesis in hippocampus‐dependent learning, exploiting the low levels of adult neurogenesis in the MRL/MpJ strain of mice compared with other mouse strains. We observed that adult MRL/MpJ mice produce 75% fewer new neurons in the dentate gyrus than age‐matched C57BL/6 mice. Learning‐induced synaptic remodeling, spatial learning, and visual recognition learning were reduced in MRL/MpJ mice compared with C57BL/6 mice. When MRL/MpJ mice were allowed unlimited access to running wheels, neurogenesis along with spatial learning and visual recognition learning were increased to levels comparable to those in running C57BL/6 mice. Together, these results suggest that adult neurogenesis is correlated with spatial learning and visual recognition learning, possibly by modulating morphological plasticity in the dentate gyrus. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Cognitive deficits, including spatial memory impairment, are very common after ischemic stroke. Neurogenesis in the dentate gyrus (DG) contributes to forming spatial memory in the ischemic brain. Fluoxetine, a selective serotonin reuptake inhibitor, can enhance neurogenesis in the hippocampus in physiological situations and some neurological diseases. However, whether it has effects on ischemia-induced spatial cognitive impairment and hippocampal neurogenesis has not been determined. Here we report that fluoxetine treatment (10 mg kg(-1), i.p.) for 4 weeks promoted the survival of newborn cells in the ischemic hippocampus and, consequently, attenuated spatial memory impairment of mice after focal cerebral ischemia. Disrupting hippocampal neurogenesis blocked the beneficial effect of fluoxetine on ischemia-induced spatial cognitive impairment. These results suggest that chronic fluoxetine treatment benefits spatial cognitive function recovery following ischemic insult, and the improved cognitive function is associated with enhanced newborn cell survival in the hippocampus. Our results raise the possibility that fluoxetine can be used as a drug to treat poststroke spatial cognitive deficits.  相似文献   

8.
Dentate gyrus adult neurogenesis is implicated in the formation of hippocampal‐dependent contextual associations. However, the role of adult neurogenesis during reward‐based context‐dependent paradigms—such as conditioned place preference (CPP)—is understudied. Therefore, we used image‐guided, hippocampal‐targeted X‐ray irradiation (IG‐IR) and morphine CPP to explore whether dentate gyrus adult neurogenesis plays a role in reward memories created in adult C57BL/6J male mice. In addition, as adult neurogenesis appears to participate to a greater extent in retrieval and extinction of recent (<48 hr posttraining) versus remote (>1 week posttraining) memories, we specifically examined the role of adult neurogenesis in reward‐associated contextual memories probed at recent and remote timepoints. Six weeks post‐IG‐IR or Sham treatment, mice underwent morphine CPP. Using separate groups, retrieval of recent and remote reward memories was found to be similar between IG‐IR and Sham treatments. Interestingly, IG‐IR mice showed impaired extinction—or increased persistence—of the morphine‐associated reward memory when it was probed 24‐hr (recent) but not 3‐weeks (remote) postconditioning relative to Sham mice. Taken together, these data show that hippocampal‐directed irradiation and the associated decrease in dentate gyrus adult neurogenesis affect the persistence of recently—but not remotely—probed reward memory. These data indicate a novel role for adult neurogenesis in reward‐based memories and particularly the extinction rate of these memories. Consideration of this work may lead to better understanding of extinction‐based behavioral interventions for psychiatric conditions characterized by dysregulated reward processing.  相似文献   

9.
Cholinergic and GABAergic neurons in the medial septum/vertical limb of the diagonal band of Broca (MS/vDB) projecting to the hippocampus, constitute the septohippocampal projection, which is important for hippocampal‐dependent learning and memory. There is also evidence for an extrinsic as well as an intrinsic glutamatergic network within the MS/vDB. GABAergic and cholinergic septohippocampal neurons express the serotonergic 5‐HT1A receptor and most likely also glutamatergic NMDA receptors. The aim of the present study was to examine whether septal 5‐HT1A receptors are important for hippocampal‐dependent long‐term memory and whether these receptors interact with glutamatergic NMDA receptor transmission in a manner important for hippocampal‐dependent spatial memory. Intraseptal infusion of the 5‐HT1A receptor agonist (R)‐8‐OH‐DPAT (1 or 4 μg/rat) did not affect spatial learning in the water maze task but impaired emotional memory in the passive avoidance task at the higher dose tested (4 μg/rat). While intraseptal administration of (R)‐8‐OH‐DPAT (4 μg) combined with a subthreshold dose of the NMDA receptor antagonist D‐AP5 (1 μg) only marginally affected spatial acquisition, it produced a profound impairment in spatial memory. In conclusion, septal 5‐HT1A receptors appears to play a more prominent role in emotional than in spatial memory. Importantly, septal 5‐HT1A and NMDA receptors appear to interact in a manner, which is particularly critical for the expression or retrieval of hippocampal‐dependent long‐term spatial memory. It is proposed that NMDA receptor hypofunction in the septal area may unmask a negative effect of 5‐HT1A receptor activation on memory, which may be clinically relevant. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Fluoxetine, a selective serotonin‐reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic, and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septotemporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septotemporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18 mg/kg/day) on input‐specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity, and glutamic acid decarboxylase‐67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle‐aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle‐aged hippocampus shows greater sensitivity to fluoxetine‐induced input‐specific synaptic remodeling than the hippocampus in adulthood with the stratum‐oriens of CA1 exhibiting heightened structural plasticity. The input‐specific changes and circuit‐level modifications in middle‐age were associated with modest enhancement in contextual fear memory precision, anxiety‐like behavior and antidepressant‐like behavioral responses. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Adolescence is a sensitive period of neurodevelopment during which life experiences can have profound effects on the brain. Hippocampal neurogenesis, the neurodevelopmental process of generating functional new neurons from neural stem cells, occurs throughout the lifespan and has been shown to play a role in learning, memory and in mood regulation. In adulthood it is influenced by extrinsic environmental factors such as exercise and stress. Intrinsic factors that regulate hippocampal neurogenesis include the orphan nuclear receptor TLX (Nr2e1) which is primarily expressed in the neurogenic niches of the brain. While mechanisms regulating adult hippocampal neurogenesis have been widely studied, less is known on how hippocampal neurogenesis is affected during adolescence. The aim of this study was to investigate the influence of both TLX and isolation stress on exercise‐induced increases in neurogenesis in running and sedentary conditions during adolescence. Single‐ (isolation stress) wild type and Nr2e1‐/‐ mice or pair‐housed wild type mice were housed in sedentary conditions or allowed free access to running wheels for 3 weeks during adolescence. A reduction of neuronal survival was evident in mice lacking TLX, and exercise did not increase hippocampal neurogenesis in these Nr2e1‐/‐ mice. This suggests that TLX is necessary for the pro‐neurogenic effects of exercise during adolescence. Interestingly, although social isolation during adolescence did not affect hippocampal neurogenesis, it prevented an exercise‐induced increase in neurogenesis in the ventral hippocampus. Together these data demonstrate the importance of intrinsic and extrinsic factors in promoting an exercise‐induced increase in neurogenesis at this key point in life.  相似文献   

12.
Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with senile β‐amyloid (Aβ) plaques and cognitive decline. Neurogenesis in the adult hippocampus is implicated in regulating learning and memory, and is increased in human postmortem brain of AD patients. However, little is currently known about the changes of hippocampal neurogenesis in the progression of AD. As brain tissues from patients during the progression of AD are generally not available, an amyloid precursor protein (APP)/presenilin1 (PS1) double transgenic mouse model of AD was studied. Bromodeoxyuridine (BrdU) labeling supported by doublecortin staining was used to detect proliferating hippocampal cells in the mice. Compared with age‐matched wild‐type controls, 9‐month‐old transgenic mice with memory impairment and numerous brain Aβ deposits showed increased numbers of proliferating hippocampal cells. However, 3‐month‐old transgenic mice with normal memory and subtle brain Aβ deposits showed normal hippocampal proliferation. Double immunofluorescent labeling with BrdU and either NeuN or glial fibrillary acidic protein was conducted in mice at 10 months (28 days after the last BrdU injection) to determine the differentiation of proliferating cells. The number of hippocampal BrdU‐positive cells and BrdU‐positive cells differentiating into neurons (neurogenesis) in 10‐month‐old mice was greater in transgenic mice compared with age‐matched controls, but the ratio of hippocampal BrdU‐positive cells differentiating into neurons and astroglia was comparable. These results suggest hippocampal neurogenesis may increase during the progression of AD. Targeting this change in neurogenesis and understanding the underlying mechanism could lead to the development of a new treatment to control the progression of AD. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Laboratory rodents provided chronic unlimited access to running wheels display increased neurogenesis in the hippocampal dentate gyrus. In addition, recent studies indicate that such an access to wheels stimulates dendritic arborization in newly formed neurons. However, (i) the presence of the running wheel in the housing environment might also bear intrinsic influences on the number and shape of new neurons and (ii) the dendritic arborization of new neurons might be insensitive to moderate daily running activity (i.e., several hours). In keeping with these uncertainties, we have examined neurogenesis and dendritic arborization in newly formed granular cells in adult C57Bl/6N male mice housed for 3 weeks under standard conditions, with a locked wheel, with a running wheel set free 3 h/day, or with a running wheel set permanently free. The results indicate that the presence of a blocked wheel in the home cage increased cell proliferation, but not the number of new neurons while running increased in a duration‐dependent manner the number of newborn neurons, as assessed by DCX labeling. Morphological analyses of the dendritic tree of newborn neurons, as identified by BrdU‐DCX co‐staining, revealed that although the presence of the wheel stimulated their dendritic architecture, the amplitude of this effect was lower than that elicited by running activity, and was found to be running duration‐dependent. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Episodic memory impairment due to aging has been linked to hippocampal dysfunction. Evidence exists for alterations in specific circuits within the hippocampal system that are closely coupled to individual differences in the presence and severity of such memory loss. Here, we used the newly developed Diversity Outbred (DO) mouse that was designed to model the genetic diversity in human populations. Young and aged DO mice were tested in a hippocampal‐dependent water maze task. Young mice showed higher proficiency and more robust memory compared to the overall performance of aged mice. A substantial number of the older mice, however, performed on par with the normative performance of the younger mice. Stereological quantification of somatostatin‐immunoreactive neurons in the dentate hilus showed that high‐performing young and unimpaired aged mice had similar numbers of somatostatin‐positive interneurons, while aged mice that were impaired in the spatial task had significantly fewer such neurons. These data in the DO model tie loss of hilar inhibitory network integrity to age‐related memory impairment, paralleling data in other rodent models. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Status epilepticus (SE) in adulthood dramatically alters the hippocampus and produces spatial learning and memory deficits. Some factors, like environmental enrichment and exercise, may promote functional recovery from SE. Prenatal choline supplementation (SUP) also protects against spatial memory deficits observed shortly after SE in adulthood, and we have previously reported that SUP attenuates the neuropathological response to SE in the adult hippocampus just 16 days after SE. It is unknown whether SUP can ameliorate longer‐term cognitive and neuropathological consequences of SE, whether repeatedly engaging the injured hippocampus in a cognitive task might facilitate recovery from SE, and whether our prophylactic prenatal dietary treatment would enable the injured hippocampus to more effectively benefit from cognitive rehabilitation. To address these issues, adult offspring from rat dams that received either a control (CON) or SUP diet on embryonic days 12–17 first received training on a place learning water maze task (WM) and were then administered saline or kainic acid (KA) to induce SE. Rats then either remained in their home cage, or received three additional WM sessions at 3, 6.5, and 10 weeks after SE to test spatial learning and memory retention. Eleven weeks after SE, the brains were analyzed for several hippocampal markers known to be altered by SE. SUP attenuated SE‐induced spatial learning deficits and completely rescued spatial memory retention by 10 weeks post‐SE. Repeated WM experience prevented SE‐induced declines in glutamic acid decarboxylase (GAD) and dentate gyrus neurogenesis, and attenuated increased glial fibrilary acidic protein (GFAP) levels. Remarkably, SUP alone was similarly protective to an even greater extent, and SUP rats that were water maze trained after SE showed reduced hilar migration of newborn neurons. These findings suggest that prophylactic SUP is protective against the long‐term cognitive and neuropathological effects of KA‐induced SE, and that rehabilitative cognitive enrichment may be partially beneficial. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The adult brain responds to diverse pathologies such as stroke with increased generation of neurons in the dentate gyrus of the hippocampus. However, only little is known regarding the functional integration of newborn neurons into pre-existing neuronal circuits. In this study, we investigated whether newborn neurons generated after experimental stroke are recruited for different behavioral tasks. Adult mice received photochemical cortical infarcts in the sensorimotor cortex and proliferating cells were labeled using the proliferation marker, bromodeoxyuridine. Eight weeks after stroke induction, the animals were trained to perform either a spatiotemporal task or a sensorimotor task. Immediate early gene expression (c-fos, Zif268) in newborn neurons was analyzed directly after the last session. Using this approach, we demonstrate that post-stroke generated neurons are recruited within the hippocampal networks. The sensorimotor task activates significantly more newborn neurons compared to the spatiotemporal task. Further experiments employing the two well-established stimulators of neurogenesis, enriched environment and voluntary wheel running, both significantly increase post-stroke neurogenesis in the dentate gyrus but do not affect the percentage of recruited neurons compared to controls. Significantly, the spatiotemporal task leads to a higher portion of activated newborn neurons in the granule cell layer, suggesting a specific spatial activation pattern of new neurons in the dentate gyrus.  相似文献   

17.
In recent years, much effort has been devoted to identifying stimuli capable of enhancing adult neurogenesis, a process that generates new neurons throughout life, and that appears to be dysfunctional in the senescent brain and in several neuropsychiatric and neurodegenerative diseases. We previously reported that in vivo exposure to extremely low‐frequency electromagnetic fields (ELFEFs) promotes the proliferation and neuronal differentiation of hippocampal neural stem cells (NSCs) that functionally integrate in the dentate gyrus. Here, we extended our studies to specifically assess the influence of ELFEFs on hippocampal newborn cell survival, which is a very critical issue in adult neurogenesis regulation. Mice were injected with 5‐bromo‐2′‐deoxyuridine (BrdU) to label newborn cells, and were exposed to ELFEFs 9 days later, when the most dramatic decrease in the number of newly generated neurons occurs. The results showed that ELFEF exposure (3.5 h/day for 6 days) enhanced newborn neuron survival as documented by double staining for BrdU and doublecortin, to identify immature neurons, or NeuN labeling of mature neurons. The effects of ELFEFs were associated with enhanced spatial learning and memory. In an in vitro model of hippocampal NSCs, ELFEFs exerted their pro‐survival action by rescuing differentiating neurons from apoptotic cell death. Western immunoblot assay revealed reduced expression of the pro‐apoptotic protein Bax, and increased levels of the anti‐apoptotic protein Bcl‐2, in the hippocampi of ELFEF‐exposed mice as well as in ELFEF‐exposed NSC cultures, as compared with their sham‐exposed counterparts. Our results may have clinical implications for the treatment of impaired neurogenesis associated with brain aging and neurodegenerative diseases.  相似文献   

18.
Brain‐derived neurotrophic factor (BDNF) is implicated in the pathophysiology of major depression; mice lacking BDNF expression through promoter IV (BDNF‐KIV) exhibit a depression‐like phenotype. We tested our hypothesis that deficits caused by promoter IV deficiency (depression‐like behavior, decreased levels of BDNF, and neurogenesis in the hippocampus) could be rescued by a 3‐week treatment with different types of antidepressants: fluoxetine, phenelzine, duloxetine, or imipramine. Each antidepressant reduced immobility time in the tail suspension test without affecting locomotor activity in the open field test in both BDNF‐KIV and control wild type mice, except that phenelzine increased locomotor activity in wild type mice and anxiety‐like behavior in BDNF‐KIV mice. The antidepressant treatments were insufficient to reverse decreased BDNF levels caused by promoter IV deficiency. No antidepressant treatment increased the hippocampal progenitors of either genotype, whereas phenelzine decreased the surviving progenitors in both genotypes. The antidepressant treatments differently affected the dendritic extension of hippocampal immature neurons: fluoxetine and imipramine increased extension in both genotypes, duloxetine increased it only in BDNF‐KIV mice, and phenelzine decreased it only in wild type mice. Interestingly, a saline‐only injection increased neurogenesis and dendrite extensions in both genotypes. Our results indicate that the behavioral effects in the tail suspension test by antidepressants do not require promoter IV‐driven BDNF expression and occur without a detectable increase in hippocampal BDNF levels and neurogenesis but may involve increased dendritic reorganisation of immature neurons. In conclusion, the antidepressant treatment demonstrated limited efficacy; it partially reversed the defective phenotypes caused by promoter IV deficiency but not hippocampal BDNF levels.  相似文献   

19.
20.
Clinical studies have highlighted an association between retinoid treatment and depressive symptoms. As we had shown before that chronic application of all‐trans retinoic acid (RA) potently activated the hypothalamus‐pituitary‐adrenal (HPA) stress axis, we here questioned whether RA also induced changes in adult hippocampal neurogenesis, a form of structural plasticity sensitive to stress and implicated in aspects of depression and hippocampal function. RA was applied intracerebroventricularly (i.c.v.) to adult rats for 19 days after which animals were subjected to tests for depressive‐like behavior (sucrose preference) and spatial learning and memory (water maze) performance. On day 27, adult hippocampal neurogenesis and astrogliosis was quantified using BrdU (newborn cell survival), PCNA (proliferation), doublecortin (DCX; neuronal differentiation), and GFAP (astrocytes) as markers. RA was found to increase retinoic acid receptor‐α (RAR‐α) protein expression in the hippocampus, suggesting an activation of RA‐induced signaling mechanisms. RA further potently suppressed cell proliferation, newborn cell survival as well as neurogenesis, but not astrogliosis. These structural plasticity changes were significantly correlated with scores for anhedonia, a core symptom of depression, but not with water maze performance. Our results suggest that RA‐induced impairments in hippocampal neurogenesis correlate with depression‐like symptoms but not with spatial learning and memory in this design. Thus, manipulations aimed to enhance neurogenesis may help ameliorate emotional aspects of RA‐associated mood disorders. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号