首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The dentate gyrus of the hippocampus plays a pivotal role in pattern separation, a process required for the behavioral task of contextual discrimination. One unique feature of the dentate gyrus that contributes to pattern separation is adult neurogenesis, where newly born neurons play a distinct role in neuronal circuitry. Moreover, the function of neurogenesis in this brain region differs in adolescent and adult mice. The signaling mechanisms that differentially regulate the distinct steps of adult neurogenesis in adolescence and adulthood remain poorly understood. We used mice lacking RAS‐GRF1 (GRF1), a calcium‐dependent exchange factor that regulates synaptic plasticity and participates in contextual discrimination performed by mice, to test whether GRF1 plays a role in adult neurogenesis. We show Grf1 knockout mice begin to display a defect in neurogenesis at the onset of adulthood (~2 months of age), when wild‐type mice first acquire the ability to distinguish between closely related contexts. At this age, young hippocampal neurons in Grf1 knockout mice display severely reduced dendritic arborization. By 3 months of age, new neuron survival is also impaired. BrdU labeling of new neurons in 2‐month‐old Grf1 knockout mice shows they begin to display reduced survival between 2 and 3 weeks after birth, just as new neurons begin to develop complex dendritic morphology and transition into using glutamatergic excitatory input. Interestingly, GRF1 expression appears in new neurons at the developmental stage when GRF1 loss begins to effect neuronal function. In addition, we induced a similar loss of new hippocampal neurons by knocking down expression of GRF1 solely in new neurons by injecting retrovirus that express shRNA against GRF1 into the dentate gyrus. Together, these findings show that GRF1 expressed in new neurons promotes late stages of adult neurogenesis. Overall our findings show GRF1 to be an age‐dependent regulator of adult hippocampal neurogenesis, which contributes to ability of mice to distinguish closely related contexts. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The neural correlates of successful retrieval on tests of word stem recall and recognition memory were compared. In the recall test, subjects viewed word stems, half of which were associated with studied items and half with unstudied items, and for each stem attempted to recall a corresponding study word. In the recognition test, old/new judgments were made on old and new words. The neural correlates of successful retrieval were identified by contrasting activity elicited by correctly endorsed test items. Old > new effects common to the two tasks were found in medial and lateral parietal and right entorhinal cortex. Common new > old effects were identified in medial and left frontal cortex, and left anterior intra-parietal sulcus. Greater old > new effects were evident for cued recall in inferior parietal regions abutting those demonstrating common effects, whereas larger new > old effects were found for recall in left frontal cortex and the anterior cingulate. New > old effects were also found for the recall task in right lateral anterior prefrontal cortex, where they were accompanied by old > new effects during recognition. It is concluded that successful recall and recognition are associated with enhanced activity in a common set of recollection-sensitive parietal regions, and that the greater activation in these regions during recall reflects the greater dependence of that task on recollection. Larger new > old effects during recall are interpreted as reflections of the greater opportunity for iterative retrieval attempts when retrieval cues are partial rather than copy cues.  相似文献   

4.
Although the importance of cAMP‐response element binding protein (CREB) phosphorylation in long‐term memory formation is well documented for hippocampus‐dependent tasks, little is known about the changes in phosphorylated CREB (pCREB) that occur during the process of extinction. The purpose of this study was to characterize the temporal patterns of pCREB in the CA1 and the amygdala after the extinction of previously acquired spatial information in the water maze. Mice were trained to find a hidden platform located at a fixed position and then were given extinction sessions in which the platform was either absent (NoPF) or relocated every day (RandomPF). We show that water maze spatial training evoked a biphasic response of pCREB in the CA1, with two different peaks occurring 15 min and 8 h postacquisition. The extinction of the original spatial preference significantly reduced the two peaks of CA1 pCREB in both RandomPF and NoPF groups whereas CA1 pCREB at 60 min post‐training remained unaffected. Moreover, the early and late phases of extinction training produced regionally dissociable effects on pCREB in the CA1 and the lateral nucleus of the amygdala. These findings provide new insights on the molecular dynamics and anatomical dissociations underlying spatial memory and extinction learning. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
6.
Epigenetic mechanisms are increasingly acknowledged as major players in memory formation. Specifically, DNA methylation is necessary for the formation of long‐term memory in various brain regions, including the hippocampus (HPC); however, its role in the perirhinal cortex (PRh), a structure critical for object memory, has not been characterized. Moreover, the mnemonic effects of selective DNA methyltransferase (DNMT) inhibition have not yet been investigated systematically, despite distinct roles for de novo (DNMT3a, 3b) and maintenance (DNMT1) methyltransferases. Consequently, we assessed the effects of various DNMT inhibitors within the HPC and PRh of rats using the object‐in‐place paradigm, which requires both brain regions. The non‐nucleoside DNA methyltransferase inhibitor RG‐108 impaired long‐term object‐in‐place memory in both regions. Furthermore, intracranial administration of Accell short‐interference RNA sequences to inhibit the expression of individual DNMTs implicated DNMT3a and DNMT1 in the HPC and PRh effects, respectively. mRNA expression analyses revealed a complementary pattern of results, as only de novo DNMT3a and DNMT3b mRNA was upregulated in the HPC (dentate gyrus) following object‐in‐place learning, whereas DNMT1 mRNA was selectively upregulated in the PRh. These results reinforce the established functional double dissociation between the HPC and PRh and imply the operation of different epigenetic mechanisms in brain regions dedicated to long‐term memory processing for different types of information.  相似文献   

7.
8.
The perirhinal cortex of the temporal lobe has a crucial role in object recognition memory. Cholinergic transmission within perirhinal cortex also seems to be important for this function, as the muscarinic receptor antagonist scopolamine disrupts object recognition performance when administered systemically or directly into perirhinal cortex. In the present study, we directly assessed the contribution of cholinergic basal forebrain input to perirhinal cortex in object recognition. Selective bilateral removal of the cholinergic basal forebrain inputs to perirhinal cortex was accomplished by injecting the immunotoxin 192 IgG-saporin directly into perirhinal cortex in rats. These animals were significantly impaired relative to vehicle-injected controls in a spontaneous object recognition task despite intact spatial alternation performance. These results are consistent with recent reports of object recognition impairment following acute cholinergic receptor blockade and extend these findings by demonstrating that chronic removal of cholinergic basal forebrain input to an otherwise intact perirhinal cortex causes a severe object recognition deficit similar to that associated with more extensive cell body lesions of perirhinal cortex.  相似文献   

9.
The aging brain shows biochemical and morphological changes in the dendrites of pyramidal neurons from the limbic system associated with memory loss. Prolame (N‐(3‐hydroxy‐1,3,5 (10)‐estratrien‐17β‐yl)‐3‐hydroxypropylamine) is a non‐feminizing aminoestrogen with antithrombotic activity that prevents neuronal deterioration, oxidative stress, and neuroinflammation. Our aim was to evaluate the effect of prolame on motor and cognitive processes, as well as its influence on the dendritic morphology of neurons at the CA1, CA3, and granule cells of the dentate gyrus (DG) regions of hippocampus (HP), and medium spiny neurons of the nucleus accumbens (NAcc) of aged mice. Dendritic morphology was assessed with the Golgi‐Cox stain procedure followed by Sholl analysis. Prolame (60 µg/kg) was subcutaneously injected daily for 60 days in 18‐month‐old mice. Immediately after treatment, locomotor activity in a new environment and recognition memory using the Novel Object Recognition Task (NORT) were evaluated. Prolame‐treated mice showed a significant increase in the long‐term exploration quotient, but locomotor activity was not modified in comparison to control animals. Prolame‐treated mice showed a significant increase in dendritic spines density and dendritic length in neurons of the CA1, CA3, and DG regions of the HP, whereas dendrites of neurons in the NAcc remained unmodified. In conclusion, prolame administration promotes hippocampal plasticity processes but not in the NAcc neurons of aged mice, thus improving long‐term recognition memory. Prolame could become a pharmacological alternative to prevent or delay the brain aging process, and thus the emergence of neurodegenerative diseases that affect memory.  相似文献   

10.
Neuropathic pain produced by damage to or dysfunction of the nervous system is a common and severely disabling state that affects millions of people worldwide. Recent evidence indicates that activated microglia are key cellular intermediaries in the pathogenesis of neuropathic pain and that ATP serves as the mediator. However, the in vivo mechanism underlying the retention of activated microglia in the injured region has not yet been completely elucidated. Prostaglandin E(2) (PGE(2)) is the principal proinflammatory prostanoid and plays versatile roles by acting via four PGE receptor subtypes, EP1-EP4. In the present study, we investigated the role of PGE(2) in spinal microglial activation in relation to neuropathic pain by using genetic and pharmacological methods. Mice deficient in microsomal prostaglandin E synthase-1 impaired the activation of microglia and the NMDA-nitric oxide (NO) cascade in spinal neurons in the dorsal horn and did not exhibit mechanical allodynia after peripheral nerve injury. The intrathecal injection of indomethacin, a nonsteroidal anti-inflammatory drug, ONO-8713, a selective EP1 antagonist, or 7-nitroindole, a neuronal NO synthase inhibitor, attenuated mechanical allodynia and the increase in activated microglia observed in the established neuropathic-pain state. We further demonstrated that ATP-induced microglial migration was blocked in vitro by PGE(2) via EP2 and by S-nitrosoglutathione, an NO donor. Taken together, the present study suggests that PGE(2) participated in the maintenance of neuropathic pain in vivo not only by activating spinal neurons, but also by retaining microglia in the central terminals of primary afferent fibers via EP2 subtype and via EP1-mediated NO production.  相似文献   

11.
The hippocampus plays critical roles in both object‐based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object‐based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object‐place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object‐cueing period) to searching for its paired‐associate place (object‐cued place recognition period). Furthermore, the efficient retrieval of object‐place paired associate memory (object‐cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

12.
The neurobiological organization of action‐oriented working memory is not well understood. To elucidate the neural correlates of translating visuo‐spatial stimulus sequences into delayed (memory‐guided) sequential actions, we measured brain activity using functional magnetic resonance imaging while participants encoded sequences of four to seven dots appearing on fingers of a left or right schematic hand. After variable delays, sequences were to be reproduced with the corresponding fingers. Recall became less accurate with longer sequences and was initiated faster after long delays. Across both hands, encoding and recall activated bilateral prefrontal, premotor, superior and inferior parietal regions as well as the basal ganglia, whereas hand‐specific activity was found (albeit to a lesser degree during encoding) in contralateral premotor, sensorimotor, and superior parietal cortex. Activation differences after long versus short delays were restricted to motor‐related regions, indicating that rehearsal during long delays might have facilitated the conversion of the memorandum into concrete motor programs at recall. Furthermore, basal ganglia activity during encoding selectively predicted correct recall. Taken together, the results suggest that to‐be‐reproduced visuo‐spatial sequences are encoded as prospective action representations (motor intentions), possibly in addition to retrospective sensory codes. Overall, our study supports and extends multi‐component models of working memory, highlighting the notion that sensory input can be coded in multiple ways depending on what the memorandum is to be used for. Hum Brain Mapp 35:3465–3484, 2014. © 2013 Wiley Periodicals, Inc .  相似文献   

13.
It has been proposed that the retrosplenial cortex forms part of a ‘where/when’ information network. The present study focussed on the related issue of whether retrosplenial cortex also contributes to ‘what/when’ information, by examining object recency memory. In Experiment 1, rats with retrosplenial lesions were found to be impaired at distinguishing the temporal order of objects presented in a continuous series (‘Within‐Block’ condition). The same lesioned rats could, however, distinguish between objects that had been previously presented in one of two discrete blocks (‘Between‐Block’ condition). Experiment 2 used intact rats to map the expression of the immediate‐early gene c‐fos in retrosplenial cortex following performance of a between‐block, recency discrimination. Recency performance correlated positively with levels of c‐fos expression in both granular and dysgranular retrosplenial cortex (areas 29 and 30). Expression of c‐fos in the granular retrosplenial cortex also correlated with prelimbic cortex and ventral subiculum c‐fos activity, the latter also correlating with recency memory performance. The combined findings from both experiments reveal an involvement of the retrosplenial cortex in temporal order memory, which includes both between‐block and within‐block problems. The current findings also suggest that the rat retrosplenial cortex comprises one of a group of closely interlinked regions that enable recency memory, including the hippocampal formation, medial diencephalon and medial frontal cortex. In view of the well‐established importance of the retrosplenial cortex for spatial learning, the findings support the notion that, with its frontal and hippocampal connections, retrosplenial cortex has a key role for both what/when and where/when information.  相似文献   

14.
We previously demonstrated that the deficiency of class A macrophage scavenger receptor type I/II was involved in the delayed phagocytosis of degraded myelin by macrophages in class A macrophage scavenger receptor type I/II knockout mice after crush injury of the sciatic nerve [Naba et al. (2000) Exp. Neurol., 166, 83-89]. In order to elucidate the role of CD36, one of the scavenger receptors, here we inflicted crush injury to the sciatic nerves of CD36 knockout mice and investigated the remyelination after crush injury in comparison with that of class A macrophage scavenger receptor type I/II knockout mice. Although we previously reported a lot of onion-bulbs in class A macrophage scavenger receptor type I/II knockout mice at 3 weeks, the number of onion-bulbs was limited both in CD36 knockout mice and wild-type mice. In the morphometry, the remyelination was seriously delayed, and the infiltrating macrophages into the nerve fascicles were quite frequent in CD36 knockout mice compared with wild-type mice at 3 and 6 weeks postinjury. The immunohistochemistry with the monoclonal antibody reacted with oxidized phosphatidylcholine and oil red O staining were positive in wild-type mice, but were negative in CD36 knockout mice, suggesting that the oxidation of phosphatidylcholine and the generation of neutral lipids in macrophages were disturbed in CD36 knockout mice. We hypothesize that the delayed phagocytosis by macrophages and the defect in reuse of lipids from degraded myelin are related to seriously delayed remyelination and a small number of onion-bulbs in CD36 knockout mice.  相似文献   

15.
Memory formation has been associated with structural and functional modifications of synapses. Cell adhesion molecules are prominent modulators of synaptic plasticity. Here, we investigated the involvement of the cell adhesion molecules, NCAM, its polysialylated state (PSA-NCAM) and L1 in spatial learning-induced synaptic remodeling and memory storage. A differential regulation of these adhesion molecules was found in the hippocampus of rats submitted to one training session in the spatial, but not cued, version of the Morris water maze. Twenty-four hours after training, synaptic expression of NCAM and PSA-NCAM was increased, whereas L1 appeared markedly decreased. The regulation of these molecules was spatial learning-specific, except for L1 reduction, which could be attributed to swimming under stressful conditions rather than to learning. Subsequent psychopharmacological experiments were performed to address the functional role of NCAM and PSA-NCAM in the formation of spatial memories. Rats received an intracerebroventricular injection of either a synthetic peptide (C3d) aimed to interfere with NCAM function, or endoneuraminidase, an enzyme that cleaves polysialic acid from NCAM. Both treatments affected acquisition of spatial information and lead to impaired spatial memory abilities, supporting a critical role of the observed learning-induced up-regulation of synaptic NCAM expression and polysialylation on spatial learning and memory. Therefore, our findings highlight NCAM as a learning-modulated molecule critically involved in the hippocampal remodeling processes underlying spatial memory formation.  相似文献   

16.
17.
Task-switching has proved to be a fruitful paradigm for studying cognitive control mechanisms. Interestingly, this avenue of study has revealed that subjects are, to some degree, able to bring about a change in task-set prior to the performance of that task (provided that they are given advance warning of the upcoming task, for instance in the form of a cue). Event-related potentials (ERPs) have proved to be a good way of measuring these rapid anticipatory control processes. To explore these processes further, the current study examined the relationship between the availability of spatial information and cue-locked task-switching ERP effects. Two groups of subjects were compared: one group could separate the task-sets on the basis of the targets' colour (the 'colour' group), the second on the basis of the targets' location (the 'spatial' group). The performance of both groups benefited to the same extent from advance cueing of task-transitions (switches or repeats), yet the ERP data revealed cue-locked (but not target-locked) differences between the two groups. The most striking of these differences was the absence of both a late positivity over posterior scalp and a late negativity over frontal scalp when the spatial group switched between tasks. Thus, it seems unlikely that these effects index stimulus-response 'reconfiguration'per se--as the mappings were identical for both groups of subjects--but rather that these task-switching processes are sensitive to how the mappings are represented.  相似文献   

18.
Recent studies have highlighted the dentate gyrus as a region of increased vulnerability in mouse models of Down syndrome (DS). It is unclear to what extent these findings are reflected in the memory profile of people with the condition. We developed a series of novel tasks to probe distinct medial temporal functions in children and young adults with DS, including object, spatial, and temporal order memory. Relative to mental age‐matched controls (n = 45), individuals with DS (n = 28) were unimpaired on subtests involving short‐term object or configural recall that was divorced from spatial or temporal contexts. By contrast, the DS group had difficulty recalling spatial locations when contextual information was salient and recalling the order in which objects were serially presented. Results are consistent with dysfunction of spatial and temporal contextual pattern separation abilities in individuals with DS, mediated by the hippocampus, including the dentate gyrus. Amidst increasing calls to bridge human and animal work, the memory profile demonstrated here in humans with DS is strikingly similar to that of the Ts65Dn mouse model of DS. The study highlights the trisynaptic circuit as a potentially fruitful intervention target to mitigate cognitive impairments associated with DS.  相似文献   

19.
In clinical studies, interictal EEG spikes (IS) have been associated with numerous neuropsychological abnormalities, ranging from transitory cognitive impairment to epileptic encephalopathies. Understanding the pathophysiological mechanisms of IS has been hampered by the lack of validated animal models. To mimic IS, a stimulating microelectrode was implanted in the ventral hippocampal commissure and a recording microelectrode in the CA1 region of the hippocampus of normal male rats. Spike patterns were induced using a series of electrical pulses 10-30 ms in duration with a frequency of 0.5-2Hz and a current of 0.2mA. The commissural stimulation-evoked population discharges in the hippocampus resembled naturally occurring IS in epileptic rats and, in no cases, resulted in behavioral seizures. For behavioral testing, the Morris water maze, radial arm maze, and object recognition tasks were used. Spikes were induced during sleep between the two sets of water maze trials; during the trials in the radial arm maze task; and prior to the sample phase and during the delay periods in the object recognition task. We demonstrated that rats that received spikes took longer to reach the escape platform in the second set of water maze trials; had significantly more reference errors and required more trials to complete the radial arm maze task; and had lower investigation ratios in the object recognition task. The results indicate that induction of spikes in the hippocampus results in impairment of spatial reference and nonspatial object recognition memory.  相似文献   

20.
Multivariate functional connectivity analyses of neuroimaging data have revealed the importance of complex, distributed interactions between disparate yet interdependent brain regions. Recent work has shown that topological properties of functional brain networks are associated with individual and group differences in cognitive performance, including in episodic memory. After constructing functional whole‐brain networks derived from an event‐related fMRI study of memory retrieval, we examined differences in functional brain network architecture between forgotten and remembered words. This study yielded three main findings. First, graph theory analyses showed that successfully remembering compared to forgetting was associated with significant changes in the connectivity profile of the left hippocampus and a corresponding increase in efficient communication with the rest of the brain. Second, bivariate functional connectivity analyses indicated stronger interactions between the left hippocampus and a retrieval assembly for remembered versus forgotten items. This assembly included the left precuneus, left caudate, bilateral supramarginal gyrus, and the bilateral dorsolateral superior frontal gyrus. Integrative properties of the retrieval assembly were greater for remembered than forgotten items. Third, whole‐brain modularity analyses revealed that successful memory retrieval was marginally significantly associated with a less segregated modular architecture in the network. The magnitude of the decreases in modularity between remembered and forgotten conditions was related to memory performance. These findings indicate that increases in integrative properties at the nodal, retrieval assembly, and whole‐brain topological levels facilitate memory retrieval, while also underscoring the potential of multivariate brain connectivity approaches for providing valuable new insights into the neural bases of memory processes. Hum Brain Mapp 38:2242–2259, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号