首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main hallmarks of Alzheimer's disease (AD) are senile plaques, neurofibrillary tangles and neuronal death. The McGill‐R‐Thy1‐APP rat is one of the few transgenic rat models of AD that displays progressive amyloid pathology. This study aimed to further characterise this rat model, focusing on the pathological changes in the hippocampal formation and the parahippocampal region. These structures, that are important for episodic memory and spatial navigation, are affected in the early stages of the disease. This study used unbiased stereology to investigate possible neuronal loss in the CA1, subiculum and entorhinal cortex of 18‐month‐old homozygous McGill‐R‐Thy1‐APP rats, and also quantified the plaque load in all the areas of the hippocampal formation and parahippocampal region from 9 to 18 months old. A significant reduction of neurons at 18 months was only seen in the subiculum. The first plaque pathology was seen at 9 months in the subiculum. Although the quantified plaque load was variable between animals, the pattern of spatiotemporal progression was similar for all animals. The spread of plaque pathology mainly affected anatomically connected regions. Overall, the plaque pathology observed in the transgenic rats was similar to the early phases of amyloid beta (Aβ)‐deposition described in human patients. The findings here thus indicate that the McGill‐R‐Thy1‐APP rat could be a good model of the Aβ pathology in AD, but less so with respect to neuron loss.  相似文献   

2.
Previously we showed that steroidal sapogenin, sominone improved memory after a single i.p. injection into normal mice. However, it had not been reported that sominone could recover memory deficits in a severe Alzheimer's disease (AD) model animal. Therefore, we aimed to investigate that sominone improved memory impairments in the 5XFAD mouse, model for AD. In the current study, we used sominone that we had synthesized. 5XFAD mice were given 10 μmol/kg sominone intraperitoneally for 9 days. In addition to object recognition memory, axonal density, amyloid plaque number, and activated microglia in the brain were evaluated. Sominone treatment significantly improved object recognition memory compared with vehicle control treatment. Sominone treatment significantly enhanced axonal densities in the frontal cortex and parietal cortex but had no effects on amyloid plaque number and activated microglia. In cultured cortical neurons, the axonal length was significantly reduced by Aβ(1-42) treatment. However, that was markedly recovered 5 days after the treatment with 1 μM sominone. Neuronal loss was not observed in the cortex and hippocampus of 5XFAD mice at 6-8 months of age. These results suggest that memory deficits in AD may be improved by sominone independently of reducing amyloid plaques and neuroinflammation.  相似文献   

3.
The effects of ionizing irradiation on the brain are associated with oxidative stress. While oxidative stress following irradiation is generally viewed as detrimental for hippocampal function, it might have beneficial effects as part of an adaptive or preconditioning response to a subsequent challenge. Here we show that in contrast to what is seen in wild‐type mice, irradiation enhances hippocampus‐ dependent cognitive measures in mice lacking extracellular superoxide dismutase. These outcomes were associated with genotype‐dependent effects on measures of oxidative stress. When cortices and hippocampi were analyzed for nitrotyrosine formation as an index of oxidative stress, the levels were chronically elevated in mice lacking extracellular superoxide dismutase. However, irradiation caused a greater increase in nitrotyrosine levels in wild‐type mice than mice lacking extracellular superoxide dismutase. These paradoxical genotype‐dependent effects of irradiation on measures of oxidative stress and cognitive function underscore potential beneficial effects associated with chronic oxidative stress if it exists prior to a secondary insult such as irradiation. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
The hippocampus is one of the earliest brain regions affected in Alzheimer's disease (AD) and tests of hippocampal function have the potential to detect AD in its earliest stages. Given that the hippocampus is critically involved in allocentric spatial memory, this study applied a short test of spatial memory, the 4 Mountains Test (4MT), to determine whether test performance can differentiate mild cognitive impairment (MCI) patients with and without CSF biomarker evidence of underlying AD and whether the test can distinguish patients with MCI and mild AD dementia when applied in different cultural settings. Healthy controls (HC), patients with MCI, and mild AD dementia were recruited from study sites in UK and Italy. Study numbers were: HC (UK 20, Italy 10), MCI (UK 21, Italy 14), and AD (UK 11, Italy 9). Nineteen UK MCI patients were grouped into CSF biomarker‐positive (MCI+, n = 10) and biomarker‐negative (MCI–, n = 9) subgroups. Behavioral data were correlated with hippocampal volume and cortical thickness of the precuneus and posterior cingulate gyrus. Spatial memory was impaired in both UK and Italy MCI and AD patients. Test performance additionally differentiated between MCI+ and MCI– subgroups (P = 0.001). A 4MT score of ≤8/15 was associated with 100% sensitivity and 90% specificity for detection of early AD (MCI+ and mild AD dementia) in the UK population, and with 100% sensitivity and 50% specificity for detection of MCI and AD in the Italy sample. 4MT performance correlated with hippocampal volume in the UK population and cortical thickness of the precuneus in both study populations. In conclusion, performance on a hippocampus‐sensitive test of spatial memory differentiates MCI due to AD with high diagnostic sensitivity and specificity. The observation that similar diagnostic sensitivity was obtained in two separate study populations, allied to the scalability and usability of the test in community memory clinics, supports future application of the 4MT in the diagnosis of pre‐dementia due to AD. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Considerable advances have been made toward understanding the molecular signaling events that underlie memory acquisition and consolidation. In contrast, less is known about memory retrieval, despite its necessity for utilizing learned information. This review focuses on neuromodulatory and intracellular signaling events that underlie memory retrieval mediated by the hippocampus, for which the most information is currently available. Among neuromodulators, adrenergic signaling is required for the retrieval of various types of hippocampus‐dependent memory. Although they contribute to acquisition and/or consolidation, cholinergic and dopaminergic signaling are generally not required for retrieval. Interestingly, while not required for retrieval, serotonergic and opioid signaling may actually constrain memory retrieval. Roles for histamine and non‐opioid neuropeptides are currently unclear but possible. A critical effector of adrenergic signaling in retrieval is reduction of the slow afterhyperpolarization mediated by β1 receptors, cyclic AMP, protein kinase A, Epac, and possibly ERK. In contrast, stress and glucocorticoids impair retrieval by decreasing cyclic AMP, mediated in part by the activation of β2‐adrenergic receptors. Clinically, alterations in neuromodulatory signaling and in memory retrieval occur in Alzheimer's disease, Down syndrome, depression, and post‐traumatic stress disorder, and recent evidence has begun to link changes in neuromodulatory signaling with effects on memory retrieval. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Although it is generally agreed that Aβ contributes to the pathogenesis of AD, its precise role in AD and the reason for the varying intensity and time of onset of the disease have not been elucidated. In addition to genetic factors, environmental issues such as stress may also play a critical role in the etiology of AD. This study examined the effect of chronic psychosocial stress in an at‐risk (treatment with a subpathogenic dose of Aβ; “subAβ”) rat model of AD on long‐term memory by three techniques: memory tests in the radial arm water maze, electrophysiological recordings of synaptic plasticity in anesthetized rats, and immunoblot analysis of learning‐ and long‐term memory‐related signaling molecules. Chronic psychosocial stress was induced using a rat intruder model. The subAβ rat model of AD was induced by continuous infusion of 160 pmol/day Aβ1–42 via a 14‐day i.c.v. osmotic pump. All tests showed that subAβ rats were not different from control rats. Result from behavioral tests and electrophysiological recordings showed that infusion of subAβ in chronically stressed rats (stress/subAβ group) caused significant impairment of cognitive functions and late‐phase long‐term potentiation (L‐LTP). Molecular analysis of various signaling molecules after expression of L‐LTP, revealed an increase in the levels of p‐CREB in control, stress, and subAβ rats, but not in the stress/subAβ rats. These findings suggest that the chronic stress‐induced molecular alteration may accelerate the impairment of cognition and synaptic plasticity in individuals “at‐risk” for AD. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Olfactory dysfunction is among the signs of Alzheimer's disease (AD) and cognitive impairment. It has been demonstrated Aβ was associated with olfactory impairment observed in both transgenic mice and in AD patients. In this study, we evaluated amyloid deposition in the olfactory circuit of APP/PS1 transgenic mouse model of AD, which showed olfactory dysfunction in olfactory behavior tests. We found amyloid depositions were widely distributed in the whole olfactory circuit. Moreover, we think these amyloid depositions contribute to neuronal atrophy, dendritic abnormalities, synapse loss and axonal degeneration. Therefore, there was a correlation between olfactory deficits and amyloid deposition. Our findings provide initial insights into the pathological basis of AD‐related olfactory dysfunction.  相似文献   

8.
Learning is facilitated when information can be incorporated into an already learned set of rules or ‘mental schema’. The location of a new restaurant, for example, is learned more easily if the neighbourhood's general layout is already known. This type of information is processed by the hippocampus and stored as a schema in the cortex, but it is not known whether the hippocampus can also map new stimuli to cortical schemata that are hippocampus‐independent, such as odour classification. Using a hippocampus‐independent odour‐rule task we found that animals without a functional hippocampus learnt which odours did not fit the rule faster than sham animals, which persistently applied the rule to all odours. Conversely, when non‐fitting odours were linked to a new rule sham animals were faster to link these odours to the new rule. The hippocampus, thus, regulates the association of stimuli with existing schemata even when the schemata are hippocampus‐independent. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
Kamphuis W  Orre M  Kooijman L  Dahmen M  Hol EM 《Glia》2012,60(4):615-629
Plaque deposition in Alzheimer's disease (AD) is known to decrease proliferation in neurogenic niches in AD mouse models, but the effects on cell proliferation and differentiation in other brain areas have not been studied in detail. We analyzed cell proliferation in the cortex of wild type (WT) and APPswePS1dE9 transgenic (AD) mice at different ages. Mice were studied shortly after the last BrdU injection (BrdU[ST]). In AD mice, the number of proliferating cells increased fourfold, coinciding with plaque appearance and its associated reactive gliosis and activation of microglia. An increase in the number of BrdU[ST]-cells expressing markers for activated microglia is underlying the enhanced proliferation. Cortical reactive astrocytes did not become proliferative since BrdU[ST]-cells were negative for different astrocyte-specific markers. The number of Olig2-positive oligodendrocyte precursor cells was unchanged. Four weeks after the last BrdU application, the number of BrdU[LT]-cells with an activated microglia signature was still enhanced in AD mice. None of the newborn cells had differentiated into oligodendrocytes, astrocytes, or neurons. On the basis of these observations, we conclude that amyloid plaque deposition increases proliferation of microglia around plaques but does not affect the proliferation of cortical oligodendrocyte precursor cells. No evidence was found for damage-induced proliferation of reactive astrocytes or for a redirected neurogenesis from the subventricular zone. The proliferation of microglia contributes to the rapid accumulation of microglia around plaques and may play a role in limitating plaque expansion.  相似文献   

10.
In the hippocampus, the production of dentate granule cells (DGCs) persists into adulthood. As adult‐generated neurons are thought to contribute to hippocampal memory processing, promoting adult neurogenesis therefore offers the potential for restoring mnemonic function in the aged or diseased brain. Within this regenerative context, one key issue is whether developmentally generated and adult‐generated DGCs represent functionally equivalent or distinct neuronal populations. To address this, we labeled separate cohorts of developmentally generated and adult‐generated DGCs and used immunohistochemical approaches to compare their integration into circuits supporting hippocampus‐dependent memory in intact mice. First, in the water maze task, rates of integration of adult‐generated DGCs were regulated by maturation, with maximal integration not occurring until DGCs were five or more weeks in age. Second, these rates of integration were equivalent for embryonically, postnatally, and adult‐generated DGCs. Third, these findings generalized to another hippocampus‐dependent task, contextual fear conditioning. Together, these experiments indicate that developmentally generated and adult‐generated DGCs are integrated into hippocampal memory networks at similar rates, and suggest a functional equivalence between DGCs generated at different developmental stages. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
Expression of the lacZ‐sequence is a widely used reporter‐tool to assess the transgenic and/or transfection efficacy of a target gene in mice. Once activated, lacZ is permanently expressed. However, protein accumulation is one of the hallmarks of neurodegenerative diseases. Furthermore, the protein product of the bacterial lacZ gene is ß‐galactosidase, an analog to the mammalian senescence‐associated ß‐galactosidase, a molecular marker for aging. Therefore we studied the behavioral, structural and molecular consequences of lacZ expression in distinct neuronal sub‐populations. lacZ expression in cortical glutamatergic neurons resulted in severe impairments in hippocampus‐dependent memory accompanied by marked structural alterations throughout the CNS. In contrast, GFP expression or the expression of the ChR2/YFP fusion product in the same cell populations did not result in either cognitive or structural deficits. GABAergic lacZ expression caused significantly decreased hyper‐arousal and mild cognitive deficits. Attenuated structural and behavioral consequences of lacZ expression could also be induced in adulthood, and lacZ transfection in neuronal cell cultures significantly decreased their viability. Our findings provide a strong caveat against the use of lacZ reporter mice for phenotyping studies and point to a particular sensitivity of the hippocampus formation to detrimental consequences of lacZ expression. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Adult hippocampal neurogenesis has been suggested to play modulatory roles in learning and memory. Importantly, previous studies have shown that newborn neurons in the adult hippocampus are integrated into the dentate gyrus circuit and are recruited more efficiently into the hippocampal memory trace of mice when they become 3 weeks old. Interestingly, a single high‐dose treatment with the N‐methyl‐d ‐aspartate receptor antagonist memantine (MEM) has been shown to increase hippocampal neurogenesis dramatically by promoting cell proliferation. In the present study, to understand the impact of increased adult neurogenesis on memory performance, we examined the effects of a single treatment of MEM on hippocampus‐dependent memory in mice. Interestingly, mice treated with MEM showed an improvement of hippocampus‐dependent spatial and social recognition memories when they were trained and tested at 3–6 weeks, but not at 3 days or 4 months, after treatment with MEM. Importantly, we observed a significant positive correlation between the scores for spatial memory (probe trial in the Morris water maze task) and the number of young mature neurons (3 weeks old) in MEM‐treated mice, but not saline‐treated mice. We also observed that the young mature neurons generated by treatment with MEM were recruited into the trace of spatial memory similarly to those generated through endogenous neurogenesis. Taken together, our observations suggest that treatment with MEM temporally improves hippocampus‐dependent memory formation and that the newborn neurons increased by treatment with MEM contribute to this improvement when they become 3 weeks old. © 2014 The Authors. Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

13.
Autism is a complex neurodevelopmental disorder with high heritability. grik2 (which encodes the GluK2 subunit of kainate receptors) has been identified as a susceptibility gene in Autism Spectrum Disorders (ASD), but its role in the core and associated symptoms of ASD still remains elusive. We used mice lacking GluK2 (GluK2 KO) to examine their endophenotype with a view to modeling aspects of autism, including social deficits, stereotyped and repetitive behavior and decreased cognitive abilities. Anxiety was recorded in the elevated plus maze, social behavior in a three‐chamber apparatus, and cognition in different water maze protocols. Deletion of the GluK2 gene reduced locomotor activity and sociability as indicated by the social interaction task. In addition, GluK2 KO mice learnt to locate a hidden platform in a water maze surrounded by a curtain with hanging cues faster than wild‐type mice. They maintained a bias toward the target quadrant when some of these cues were removed, at which point wild‐types orthogonalized the behavior and showed no memory. However, GluK2 KO mice were impaired in spatial reversal learning. These behavioral data together with previously published electrophysiology showing severe anomalies in CA3 network activity, suggest a computational shift in this network for enhanced propensity of pattern completion that would explain the loss of behavioral flexibility in GluK2 KO mice. Although a single mutation cannot recapitulate the entire core symptoms of ASD, our data provide evidence for glutamatergic dysfunction underlying a number of social‐ and cognition‐related phenotypes relevant to ASD. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
This study provides an examination of spatial learning and a behavioral assessment of irritability and locomotion in TgCRND8 mice, an amyloid precursor protein transgenic model of Alzheimer's disease. Performance was assessed using the Barnes maze, the touch escape test, and an open-field test. While past research focused primarily on 2-5-month-old TgCRND8 mice, the present study used an older age cohort (9-month-old female mice), in addition to a 4-month-old cohort of both transgenic (Tg) and wildtype female mice. Both younger and older Tg mice displayed poor spatial learning in the Barnes maze task compared to their wildtype littermates, as demonstrated by significantly longer latencies and more errors both during acquisition and at a 2-week retest. No differences in irritability were found between Tg and control mice in the younger cohort; however, older Tg mice displayed significantly higher irritability compared with wildtype littermates, as measured by the touch escape test. Additionally, Tg mice of both age cohorts showed increased locomotion and slowed habituation during a 60-min open-field test over 3 days of testing. These results demonstrate that TgCRND8 mice show significant deficits in spatial and nonspatial behavioral tasks at advanced stages of amyloid pathology.  相似文献   

15.
The loss of cognitive function in Alzheimer's disease (AD) patients is strongly correlated with the loss of neurons in various regions of the brain. We have created a new fluorescent bigenic mouse model of AD by crossing “H‐line” yellow fluorescent protein (YFP) mice with the 5xFAD mouse model, which we call the 5XY mouse model. The 5xFAD mouse has been shown to have significant loss of L5 pyramidal neurons by 12 months of age. These neurons are transgenically labeled with YFP in the 5XY mouse, which enable longitudinal imaging of structural changes. In the 5XY mice, we observed an appearance of axonal dystrophies, with two distinct morphologies in the early stages of the disease progression. Simple swelling dystrophies are transient in nature and are not directly associated with amyloid plaques. Rosette dystrophies are more complex structures that remained stable throughout all imaging sessions, and always surrounded an amyloid plaque. Plaque growth was followed over 4 weeks, and significant growth was seen between weekly imaging sessions. In addition to axonal dystrophy appearance and plaque growth, we were able to follow spine stability in 4‐month old 5XY mice, which revealed no significant loss of spines. 5XY mice also showed a striking shrinkage of the neocortex at older ages (12–14 months). The 5XY mouse model may be a valuable tool for studying specific events in the degeneration of the neocortex, and may suggest new avenues for therapeutic intervention. J. Comp. Neurol. 521:2181–2194, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Why memory is a particular target for the pathological changes in Alzheimer's Disease (AD) has long been a fundamental question when considering the mechanisms underlying this disease. It has been established from numerous biochemical and morphological studies that AD is, at least initially, a consequence of synaptic malfunction provoked by Amyloid β (Aβ) peptide. APP/PS1 transgenic mice accumulate Aβ throughout the brain, and they have therefore been employed to investigate the effects of Aβ overproduction on brain circuitry and cognition. Previous studies show that Aβ overproduction affects spine morphology in the hippocampus and amygdala, both within and outside plaques (Knafo et al., (2009) Cereb Cortex 19:586‐592; Knafo et al., (in press) J Pathol). Hence, we conducted a detailed analysis of dendritic spines located in the stratum oriens and stratum radiatum of the CA1 hippocampal subfield of APP/PS1 mice. Three‐dimensional analysis of 18,313 individual dendritic spines revealed a substantial layer‐specific decrease in spine neck length and an increase in the frequency of spines with a small head volume. Since dendritic spines bear most of the excitatory synapses in the brain, changes in spine morphology may be one of the factors contributing to the cognitive impairments observed in this AD model. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
18.
Neurodegenerative disorders such as Alzheimer's disease (AD) are characterized by the loss of neurotrophic factors, and experimental therapeutical approaches to AD have investigated the efficacy of replacing or augmenting neurotrophic factor activity. Cerebrolysin, a peptide mixture with neurotrophic-like effects, has been shown to improve cognition in patients with AD and to reduce synaptic and behavioral deficits in transgenic (tg) mice overexpressing the amyloid precursor protein (APP). However, it is unclear how long-lasting the beneficial effects of Cerebrolysin are and whether or not behavioral and neuropathological alterations will reappear following treatment interruption. The objective of the present study was to investigate the consequences of interrupting Cerebrolysin treatment (washout effect) 3 and 6 months after the completion of a 3-month treatment period in APP tg mice. We demonstrate that, in APP tg mice, Cerebrolysin-induced amelioration of memory deficits in the water maze and reduction of neurodegenerative pathology persist for 3 months after treatment interruption; however, these effects dissipate 6 months following treatment termination. Immunohistochemical analysis demonstrated that the decrease in neocortical and hippocampal amyloid plaque load observed in Cerebrolysin-treated APP tg mice immediately after treatment was no longer apparent at 3 months after treatment interruption, indicating that the beneficial effects of Cerebrolysin at this time point were independent of its effect on amyloid-β deposition. In conclusion, the results demonstrate that the effects of Cerebrolysin persist for a significant period of time following treatment termination and suggest that this prolonged effect may involve the neurotrophic factor-like activity of Cerebrolysin.  相似文献   

19.
Impaired spatial memory characterizes many mouse models for Alzheimer's disease, but we understand little about how this trait arises. Here, we use a transgenic model of amyloidosis to examine the relationship between behavioral performance in tests of spatial navigation and the function of hippocampal place cells. We find that amyloid precursor protein (APP) mice require considerably more training than controls to reach the same level of performance in a water maze task, and recall the trained location less well 24 h later. At a single cell level, place fields from control mice become more stable and spatially restricted with repeated exposure to a new environment, while those in APP mice improve less over time, ultimately producing a spatial code of lower resolution, accuracy, and reliability than controls. The limited refinement of place fields in APP mice likely contributes to their delayed water maze acquisition, and provides evidence for circuit dysfunction underlying cognitive impairment. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Astrocytes are fundamental for brain homeostasis and are at the fulcrum of neurological diseases including Alzheimer's disease (AD). Here, we monitored changes in astroglia morphology throughout the age‐dependent progression of AD. We used an immunohistochemical approach that allows us to determine the domain of glial cytoskeleton, by measuring the surface, volume, and the relationship between astrocytes and neuritic plaques. We investigated astroglia in the hippocampus of a triple transgenic mouse model of AD (3xTg‐AD) that mimics the progression of the human disease. The numerical density of astrocytes is affected neither by AD nor by age. We found reduction of surface and volume of GFAP profiles from early ages (6 months; 43.84 and 52.76%, respectively), persisting at 12 (40.73 and 45.39%) and 18 months (64.80 and 71.95%) in the dentate gyrus (DG) of 3xTg‐AD, whereas in CA1 it appears at 18 months (29.42 and 32.74%). This cytoskeleton atrophy is accompanied by a significant reduction of glial somata volume in DG at 12 and 18 months (40.46 and 75.55%, respectively), whereas in CA1 it is significant at 18 months (42.81%). However, while astroglial atrophy appears as a generalized process, astrocytes surrounding plaques are clearly hypertrophic as revealed by increased surface (48.06%; 66.66%), and volume (57.10%; 71.06%) of GFAP profiles in DG and CA1, respectively, at 18 months. We suggest differential effects of AD on astroglial populations depending on their association with plaques accounting for the progressive disruption of neural networks connectivity and neurotransmitters imbalance which underlie mnesic and cognitive impairments observed in AD. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号