首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of ceramic-on-ceramic (alumina- and zirconia-based) couplings in hip joint prostheses has been reported to produce lower wear rates than other combinations (i.e., metal-on-polyethylene and ceramic-on-polyethylene). The addition of zirconia into an alumina matrix (zirconia-toughened alumina, ZTA) has been reported to result in an enhancement of flexural strength, fracture toughness, and fatigue resistance. The development of new processing routes in nonaqueous media has allowed to obtain high-density ZTA nanocomposites with a very homogeneous microstructure and a significantly smaller and narrower particle-size distribution of zirconia than conventional powder mixing methods. The aim of the present study was to set up and validate a new ZTA nanocomposite by testing its biocompatibility and wear behavior in a hip-joint simulator in comparison with commercial alumina and experimental alumina specimens. The primary osteoblast proliferation onto ZTA nanocomposite samples was found to be not significantly different from that onto commercial alumina samples. After 7 million cycles, no significant differences were observed between the wear behaviors of the three sets of cups. In this light, it can be affirmed that ZTA nanocomposite materials can offer the option of improving the lifetime and reliability of ceramic joint prostheses.  相似文献   

2.
Rods of dense alumina ceramic were aged in Ringer's solution for time periods up to 12 weeks, with half of the rods being aged while mechanically stressed. Pyrex-type glass rods were similarly tested for comparison purposes. No reduction in flexural strength was observed in dense alumina rods after aging, providing no permeation of the solution into the ceramic occurred. However, a marked reduction in flexural strength was experienced by alumina rods, nominally dense and nonporous, into which some permeation of the saline solution was observed after aging; the largest reduction in strength occurred in such rods aged while mechanically stressed. The results indicate the importance and advantage of using densely sintered alumina ceramics as implants for optimum structural performance over an extended time period.  相似文献   

3.
High strength oxide ceramic materials like alumina and zirconia are frequently used for artificial joints because of their biocompatibility and high wear resistance. Their suitability as materials for implants and biomedical devices with direct blood contact, such as cardiovascular implants or components for blood pumps and dialyzers, has not been confirmed to date. The objective of this study was to investigate whether oxide ceramics show sufficient hemocompatibility. Dense specimens were made out of alumina, zirconia, titanium oxide, and aluminum titanate. Polyvinylchloride and silicone were additionally tested as reference materials. Interactions of human blood with the surfaces were studied by investigating partial thromboplastin time (PTT), thrombin antithrombin III complex (TAT), free plasma hemoglobin concentration, complete blood count, complement factor 5a, and protein adsorption. The results from the PTT and TAT tests clearly indicated higher blood activation by the ceramic materials when compared to the two polymer materials. However, alumina and zirconia showed lower C5a concentrations and less protein adsorption than the reference materials. Our results revealed that oxide ceramic materials alone cannot be used for implants in direct blood contact without modification of the ceramic surface, for example, by made-to-measure inert nanocoatings.  相似文献   

4.
Jun YK  Kim WH  Kweon OK  Hong SH 《Biomaterials》2003,24(21):3731-3739
Alumina reinforced calcium phosphate porous implants were manufactured to improve the mechanical strength while maintaining the bioactivity of calcium phosphate ceramics. The alumina porous bodies, which provided the mechanical strength, were fabricated by a polyurethane sponge method and multiple coating techniques resulted in the porous bodies with a 90-75% porosity and a compressive strength of up to approximately 6MPa. The coating of hydroxyapatite (HAp) or tricalcium phosphate (beta-TCP) was performed by dipping the alumina porous bodies into calcium phosphate ceramic slurries and sintering the specimens. The fairly strong bonding between the HAp or TCP coating layer and the alumina substrate was obtained by repeating the coating and sintering processes. The biochemical evaluations of the porous implants were conducted by in vitro and in vivo tests. For in vitro test, the implants were immersed in Ringer's solution and the release of Ca and P ions were detected and compared with those of calcium phosphate powders. For in vivo test, the porous bodies were implanted into mixed breed dogs and bone mineral density measurements and histological studies were conducted. The alumina reinforced HAp porous implants had a higher strength than the HAp porous implants and exhibited a similar bioactivity and osteoconduction property to the HAp porous implants.  相似文献   

5.
Wear of yttria-zirconia (zirconia) in the femoral head was investigated in mature mongrel dogs weighing 10 to 13 kg. Two dogs, which were used as a control group, were sacrificed 18 months after implantation of the uncemented modular hip system with an alumina ceramic (alumina) femoral head. A zirconia femoral head was implanted in five dogs: one was sacrificed 12 months after implantation, two at 18 months, and two at 24 months. In each femoral head and polyethylene (PE) socket, the surface was observed by means of scanning electron microscopy (SEM); the mean articulation surface roughness on the femoral head and PE socket and the thickness of the PE socket were measured. Wear was not seen on the surface of either the zirconia or the alumina heads. In both groups, minute white spots on the smooth surface of the PE socket were visible by SEM. In the alumina and zirconia groups the mean roughness was 0.1 microm. The mean thickness of the PE socket was reduced by 0.2 mm in the alumina group. In the zirconia group it was reduced by 0.2 to 0.3 mm. However, the mechanical strength of zirconia is known to be greater than that of alumina and it may be possible to reduce the diameter of the femoral head. The smaller zirconia head may contribute to the reduction of the wear of the PE socket in an uncemented modular total hip system.  相似文献   

6.
Various methods of roughening type 316 stainless steel substrate surfaces for flame-spraying alumina (Al2O3) were investigated and tested for the best alumina-to-metal bond strength. Best strength values were obtained by means of roughening via anodic polarization pitting of the stainless steel. Subsequent in vitro testing indicated a severe loss in bond strength following exposure to aerated Ringer's solution. It is suggested that the utilization of flame-sprayed devices has potential in orthopedic prostheses, but precautions must be observed.  相似文献   

7.
The purpose of the present study was to evaluate the mechanical durability of a zirconia/alumina nanocomposite stabilized with cerium oxide (Ce-TZP/Al(2)O(3) nanocomposite) in comparison to yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) and discuss its application on ceramic dental restorations. The disk-shaped specimens of both materials were stored in physiological saline solution at 80 degrees C for 30 days, in 4% acetic acid at 80 degrees C for 30 days, and in an autoclave at 121 degrees C for 10 days. Before and after storage, specimens were subjected to the biaxial flexure test and to the determination of the monoclinic zirconia content. After autoclaving, Y-TZP showed remarkable increasing of the content of monoclinic zirconia: 0.3 vol % before and 49.9 vol % after, and slight decreasing of biaxial flexure strength: 1046 MPa before and 892 MPa after; whereas Ce-TZP/Al(2)O(3) nanocomposite showed no significant difference in the monoclinic content (4.8-5.5 vol %) and the biaxial flexure strength (1371-1422 MPa) after storage in any conditions. It is concluded that, compared to Y-TZP, the Ce-TZP/Al(2)O(3) nanocomposite has a high biaxial flexure strength along with a satisfactory durability in terms of low-temperature aging degradation in above conditions. This study indicates that the Ce-TZP/Al(2)O(3) nanocomposite demonstrates excellent mechanical durability for dental restorations such as all-ceramic bridges.  相似文献   

8.
The biocompatibility of two implantable materials, zirconia and alumina ceramics, was investigated in vitro using human osteoblast cell cultures. The viability of osteoblast cells with the materials was evaluated by the methylthiazole sulfate test that revealed an absence of any cytostatic or cytotoxic effect. Cell proliferation kinetic and total protein synthesis in osteoblasts with zirconia or alumina were similar to that observed in control cells cultured on glass coverslips. Light and scanning electron microscopic examinations showed an intimate contact between osteoblasts and the substrates; well-spread cells were observed on the surfaces of both materials. Adhesion ability and morphological characteristics were preserved in osteoblast cultures with these substrates. Moreover, immunohistochemical staining in osteoblasts with zirconia and alumina showed the capacity of these cells to elaborate the extracellular matrix composed of types I and V collagen, osteocalcin, osteonectin, bone sialoprotein, and cellular fibronectin. Finally, DNA image cytometry and interphase silver-nucleolar organizer regions quantification were applied as complementary biocompatibility tests to detect any changes in DNA synthesis and cell proliferation, respectively. The results showed that neither material altered cell ploidy or cell growth rate in accordance with the absence of any inducing effect on DNA synthesis or proliferation.  相似文献   

9.
Using ceramic materials it is possible to obtain a number of beneficial mechanical properties such as considerable hardness, good chemical resistance, high tensile strength, and a good fracture toughness. The use of ceramic-on-ceramic as bearing surfaces for hip joint prostheses has been reported to produce a lower wear rate than other combinations (i.e. metal-on-polyethylene and ceramic-on-polyethylene) in total hip artroplasty. These advantages may increase the life expectancy of hip implants and improve the life of patients. Two new types of mixed-oxide ceramics (alumina and yttria-stabilised zirconia) femoral heads and acetabular cups containing different ratios of alumina and zirconia were compared with pure commercial alumina in terms of wear behaviour in a hip joint simulator. Hip joint wear simulator studies were carried out with a full-peak load of 2030 N and a frequency of 1 Hz in bovine calf serum. After 10 million cycles the measured weight loss of all specimens was very low. However, the experimental results did not show any significant difference between the new experimental mixed-oxide ceramics prototype and the commercial ceramic material couplings.  相似文献   

10.
While only alumina is applied to all-ceramic joint prostheses at present, a stronger ceramic is required to prevent fracture and chipping due to impingement and stress concentration. Zirconia could be a potential substitute for alumina because it has high strength and fracture toughness. However, the wear of zirconia/zirconia combination is too high for clinical use. Although some investigations on composite ceramics revealed that mixing of different ceramics was able to improve the mechanical properties of ceramics, there are few reports about wear properties of composite ceramics for joint prosthesis. Since acetabular cup and femoral head of artificial hip joint are finished precisely, they indicate high geometric conformity. Therefore, wear test under flat contact was carried out with an end-face wear testing apparatus for four kinds of ceramics: alumina monolith, zirconia monolith, alumina-based composite ceramic, and zirconia based composite ceramic. Mean contact pressure was 10 MPa and sliding velocity was 40 mm/s. The wear test continued for 72 hours and total sliding distance was 10 km. After the test, the wear factor was calculated. Worn surfaces were observed with a scanning electron micrograph (SEM). The results of this wear test show that the wear factors of the both composite ceramics are similarly low and their mechanical properties are much better than those of the alumina monolith and the zirconia monolith. According to these results, it is predicted that joint prostheses of the composite ceramics are safer against break down and have longer lifetime compared with alumina/alumina joint prostheses.  相似文献   

11.
Although mixed oxides ceramics have been indicated in the literature as a promising compromise between strength and wear, to the authors' knowledge no reports are available on the influence of the percentage of zirconia in ceramic femoral heads when sliding against polyethylene cups. Two types of mixed oxides ceramic ball heads (alumina plus, respectively, 60 and 80% of zirconia) were compared to pure zirconia and pure alumina heads in terms of wear behaviour against UHMWPE in a hip joint simulator. Polyethylene cups and ceramic femoral heads were fixed on a simulator apparatus with a sinusoidal movement and load in presence of bovine calf serum. The experimental results did not show significant difference between the two experimental ceramic materials or in comparison with pure materials. Considering that all specimens, regardless of the material, had the same level of surface roughness, this roughness factor seems to have a more relevant role than the mix of oxides used to manufacture the ceramic head. Wear tests are conducted on materials used in prosthetic hip implants in order to obtain quality control and to acquire further knowledge of the tribological processes that involve joint prostheses, therefore reducing the risk of implant failure of innovative prostheses.  相似文献   

12.
The aim of this investigation was to determine the influence of simulated ageing on the tetragonal-to-monoclinic phase transformation and on the flexural strength of a 3Y-TZP ceramic, compared to alumina toughened zirconia (ATZ) and ceria-stabilized zirconia (12Ce-TZP). Standardized disc specimens of each material were hydrothermally aged in steam at 134°C and 3bar for 0, 16, 32, 64 or 128h. The phase transformation was determined by X-ray diffraction (XRD) and atomic force microscopy. Scanning electron microscopy was performed to estimate the depth of the transformation zone. The flexural strength was investigated in a biaxial flexural test. XRD revealed a significant increase in the monoclinic phase content for 3Y-TZP and ATZ due to ageing, although this increase was less pronounced for ATZ. In contrast, the monoclinic phase content of 12Ce-TZP was not influenced. For 3Y-TZP and ATZ, a transformation zone was found of which the depth linearly correlated with ageing time, while for 12Ce-TZP no transformation zone could be observed. Changes in flexural strength after ageing were heterogeneous: while 3Y-TZP showed a significant decrease in strength - from 1740 to 1169 MPa - with ATZ there was a considerable increase - from 1093 to 1378 MPa. The flexural strength of 12Ce-TZP remained unaffected at the low level of about 500 MPa. These results indicate that both alumina and ceria, as stabilizing oxides, reduce the susceptibility of zirconia to hydrothermal degradation; the alternative use of these oxides may enhance the clinical long-term stability of dental zirconia restorations.  相似文献   

13.
Aging studies were done on calcia stabilized zirconia rods of 72% theoretical density to determine the effect of actual and simulated biological environments on their strength. They were aged without stress in vitro in Ringer's solution for 1, 2 and 4weeks or in vivo in rabbits for 12 weeks. Rods aged in vitro showed mean losses in bending strength of 16, 17 and 19% respectively after 1, 2 and 4 weeks of immersion, while those aged in vivo showed a mean loss of 25%. It was concluded that the material tested would be unsatisfactory as an orthopedic replacement because of the rapid decrease in strength which occurred when exposed to actual or simulated biological media.  相似文献   

14.
Strength and reliability of surface treated Y-TZP dental ceramics   总被引:5,自引:0,他引:5  
This work was undertaken to evaluate the effects of dental grinding and sandblasting on the biaxial flexural strength and Weibull modulus of various Y-TZP ceramics containing 3 mol% yttria. In addition, the susceptibility of pristine and mechanically treated materials to low-temperature degradation under the conditions adopted for testing the chemical solubility of dental ceramics was investigated. The results revealed that surface grinding and sandblasting exhibit a counteracting effect on the strength of Y-TZP ceramics. Dental grinding lowered the mean strength and Weibull modulus, whereas sandblasting provided a powerful method for strengthening, but at the expense of somewhat lower reliability. The finest-grained material exhibited the highest strength after sintering, but it was less damage tolerant than tougher, coarse-grained materials. Upon extraction with the acetic acid solution and the ammonia solution, a significant amount of tetragonal zirconia had transformed to monoclinic, but extensive microcracking and attendant strength degradation had not yet occurred. Standard grade Y-TZP ceramics are more resistant in an alkaline than in an acidic environment, and there was a strong grain-size dependence of the diffusion-controlled transformation. Since a special Y-TZP grade containing a small amount of alumina exhibited the highest damage tolerance and superior stability in an acidic environment, this material shows considerable promise for dental applications.  相似文献   

15.
We have previously demonstrated that there was no significant difference between the affinity of bone to bio-inert ceramics and stainless steel in a histological study. In this study, the bone-implant interface shear strength of alumina ceramics (AI2O3), zirconia ceramics (ZrO2), stainless steel (SUS316L) and sintered hydroxyapatite (HA) were compared in 19 dogs using a transcortical push-out model of the femur 4 and 12 wk after implantation. The interface shear strength of HA was significantly greater than that of alumina ceramics, zirconia ceramics and stainless steel (P < 0.001). There was no significant difference between bio-inert ceramics and stainless steel.  相似文献   

16.
Among bioceramics, zirconia (ZrO(2)) and alumina (Al(2)O(3)) possess exceptional mechanical properties suitable for load-bearing and wear-resistant applications but the poor bioactivity of these materials is the major concern when bonding and integration to the living bone are desired. This article investigates two different approaches and their underlying mechanisms to improve the bioactivity of zirconia (3Y-TZP) and a zirconia composite with alumina (10Ce-TZP/Al(2)O(3)). Chemical treatment approach applied on 3Y-TZP where the substrates were soaked in 5M H(3)PO(4) to create chemically functional groups on the surface for inducing apatite nucleation. X-ray photoelectron spectroscopy (XPS) was used to detect chemical changes and X-ray diffraction (XRD) to monitor phase changes on the surface before and after acid treatment. Alternate soaking approach applied on 10Ce-TZP/Al(2)O(3) consisted of soaking the composite substrates in CaCl(2) and Na(2)HPO(4) solutions alternately to make a precursor for apatite formation. The bioactivity was evaluated by apatite-forming ability of surface-treated materials in simulated body fluid (SBF). Both methods resulted in the formation of hydroxyapatite on the surface of materials; however, alternate soaking approach showed to be a simpler, faster, and more effective method than the chemical treatment approach for enhancing the bioactivity of zirconia materials.  相似文献   

17.
The performance of total hip-joint replacements depends strongly on the state of lubrication in vivo. In order to test candidate prosthetic materials, in vitro wear testing requires a lubricant that behaves in the same manner as synovial fluid. The current study investigated three lubricants and looked in detail at the lubrication conditions and the consequent effect on ball-on-flat reciprocating wear mechanisms of Biolox®delta against alumina. Biolox®delta, the latest commercial material for artificial hip-joint replacements, is an alumina-matrix composite with improved mechanical properties through the addition of zirconia and other mixed oxides. Three commonly used laboratory lubricants, ultra pure water, 25 vol.% new-born calf serum solution and 1 wt.% carboxymethyl cellulose sodium salt (CMC-Na) solution, were used for the investigation. The lubrication regimes were defined by constructing Stribeck curves. Full fluid-film lubrication was observed for the serum solution whereas full fluid-film and mixed lubrications were observed in both water and the CMC-Na solution. The wear rates in the CMC-Na and new-born calf serum were similar, but were an order of magnitude higher in water. The worn surfaces all exhibited pitting, which is consistent with the transition from mild wear to severe or “stripe” wear. The extent of pitting was greatest in the serum solution, but least in the water. On all worn surfaces, the zirconia appeared to have fully transformed from tetragonal to monoclinic symmetry. However, there was no evidence of microcracking associated with the transformed zirconia. Nevertheless, AFM indicated that zirconia was lost preferentially to the alumina grains during sliding. Thus, the current study has shown conclusively that the wear mechanisms for Biolox®delta clearly depend on the lubricant used, even where wear rates were similar.  相似文献   

18.
The lifetime of a ceramic is dependent on the presence of incidental cracks and their gradual propagation under the conditions of the oral cavity. The objective of this study was to examine the long-term strength of glass-infiltrated alumina- and various zirconia ceramics currently used in CAD/CAM systems to manufacture crown and bridge frameworks. Fracture mechanics were applied to determine characteristic strength (sigma(omicron)), Weibull modulus (m), fracture toughness (K(Ic)), and the subcritical crack growth parameters n and B. Based on these parameters, lifetime diagrams were generated which allowed the evaluation of the long-term behavior. The results showed that in a moist environment, the glass-infiltrated alumina- and some zirconia ceramics have a high susceptibility to subcritical crack growth. Zirconia ceramics with an alumina oxide content of 0.25 wt %, however, exhibited the highest initial and most favorable long-term strength, and should therefore be suitable for crown and bridge restorations.  相似文献   

19.
Latest trends in load-bearing materials for arthroplastic applications involve the development of highly fracture resistant alumina/zirconia composites, as an alternative choice to alumina and zirconia monolithic ceramics. Composite materials are designed from both chemical and microstructural viewpoints in order to prevent environmental degradation and fracture events in vivo, whose shadow yet hampers the full exploitation of ceramic materials in the field of arthroplasty. The aim of this paper is to evaluate the resistance to environmental degradation in an alumina/zirconia composite (Biolox Delta®), which represents a primary candidate for hip and knee joint applications. Our approach consists first in the experimental determination of an activation energy value for environmentally driven tetragonal to monoclinic (t–m, henceforth) polymorphic transformation in the zirconia phase of the material; then, based on such an experimental value, a prediction is given for the long-term in vivo environmental resistance of prostheses made of the composite material. The present evaluation clarifies the in vivo performance of this new composite for orthopedic applications.  相似文献   

20.
Mono-phase bio-ceramics (alumina and zirconia) are widely used as femoral heads in total hip replacements (THR) as an alternative to metal devices. Unfortunately, the orthopaedic community reports significant in-vivo failures. Material scientists are already familiar with composites like alumina zirconia. Since both are biocompatible, this could prove to be a new approach to implants. This paper deals with a new generation of alumina-zirconia nano-composites having a high resistance to crack propagation, and as a consequence may offer the option to improve lifetime and reliability of ceramic joint prostheses. The reliability of the above mentioned three bio-ceramics (alumina, zirconia and zirconia toughened alumina) for THR components is analysed based on the study of their slow crack-growth behaviour. The influence of the processing conditions on the microstructure development, of the zirconia toughened alumina composites and the effect of these microstructures, on its mechanical properties, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号