首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Friedreich ataxia (FRDA) is the most common hereditary autosomal recessive ataxia, but is also a multisystemic condition with frequent presence of cardiomyopathy or diabetes. It has been linked to expansion of a GAA-triplet repeat in the first intron of the FXN gene, leading to a reduced level of frataxin, a mitochondrial protein which, by controlling both iron entry and/or sulfide production, is essential to properly assemble and protect the Fe-S cluster during the initial stage of biogenesis. Several data emphasize the role of oxidative damage in FRDA, but better understanding of pathophysiological consequences of FXN mutations has led to develop animal models. Conditional knockout models recapitulate important features of the human disease but lack the genetic context, GAA repeat expansion-based knock-in and transgenic models carry a GAA repeat expansion but they only show a very mild phenotype. Cells derived from FRDA patients constitute the most relevant frataxin-deficient cell model as they carry the complete frataxin locus together with GAA repeat expansions and regulatory sequences. Induced pluripotent stem cell (iPSC)-derived neurons present a maturation delay and lower mitochondrial membrane potential, while cardiomyocytes exhibit progressive mitochondrial degeneration, with frequent dark mitochondria and proliferation/accumulation of normal mitochondria. Efforts in developing therapeutic strategies can be divided into three categories: iron chelators, antioxidants and/or stimulants of mitochondrial biogenesis, and frataxin level modifiers. A promising therapeutic strategy that is currently the subject of intense research is to directly target the heterochromatin state of the GAA repeat expansion with histone deacytelase inhibitors (HDACi) to restore frataxin levels.  相似文献   

2.
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease most commonly caused by a GAA trinucleotide repeat expansion in the first intron of FXN, which reduces expression of the mitochondrial protein frataxin. Approximately 98% of individuals with FRDA are homozygous for GAA expansions, with the remaining 2% compound heterozygotes for a GAA expansion and a point mutation within FXN. Two siblings with early onset of symptoms experienced rapid loss of ambulation by 8 and 10 years. Diagnostic testing for FRDA demonstrated one GAA repeat expansion of 1010 repeats and one non-expanded allele. Sequencing all five exons of FXN identified a novel deletion-insertion mutation in exon 3 (c.371_376del6ins15), which results in a modified frataxin protein sequence at amino acid positions 124–127. Specifically, the amino acid sequence changes from DVSF to VHLEDT, increasing frataxin from 211 residues to 214. Using the known structure of human frataxin, a theoretical 3D model of the mutant protein was developed. In the event that the modified protein is expressed and stable, it is predicted that the acidic interface of frataxin, known to be involved in iron binding and interactions with the iron–sulphur cluster assembly factor IscU, would be impaired.  相似文献   

3.
Friedreich's ataxia (FRDA) is the most common hereditary ataxia, affecting about 1 in 50,000 individuals. It is caused by mutations in the frataxin gene; 98% of cases have homozygous expansions of a GAA trinucleotide in intron 1 of the frataxin gene. The remaining 2% of patients are compound heterozygotes, who have a GAA repeat expansion in one allele and a point mutation in the other allele. FRDA patients with point mutation have been suggested to have atypical clinical features. We present a case of compound heterozygotes in a FRDA patient who has a deletion of one T in the start codon (ATG) of the frataxin gene and a GAA repeat expansion in the other allele. The patient presented with chorea and subsequently developed FRDA symptoms. The disease in this case is the result of both a failure of initiation of translation and the effect of the expansion. This novel mutation extends the range of point mutations seen in FRDA patients, and also broadens the spectrum of FRDA genotype associated with chorea.  相似文献   

4.
Friedreich’s ataxia (FRDA), an autosomal recessive neurodegenerative disorder, is in most cases due to a homozygous intronic expansion resulting in the loss of function of frataxin. As mitochondrial DNA (mtDNA) copy number has been decreased in FRDA cells and mtDNA polymerase (POLG) is involved in the replication of mtDNA, we searched a trinucleotide CAG repeat length of this enzyme. The POLG CAG repeat length was determined in DNA samples extracted from 20 FRDA patients and 49 control subjects. Our findings showed that the distribution of the POLG CAG repeat length in the patients’ samples matched the distribution for control samples, but we found a statistically significant inverse correlation (r=−0.81) between the POLG CAG repeats and age of onset in FRDA patients. Our results suggest POLG CAG repeat instability would constitute a predisposing factor that, in combination with environmental risk factors, affect age of onset and disease progression.  相似文献   

5.
Friedreich ataxia (FRDA) is an inherited neurodegenerative disorder caused by GAA repeat expansion within the FXN gene, leading to epigenetic changes and heterochromatin-mediated gene silencing that result in a frataxin protein deficit. Histone deacetylase (HDAC) inhibitors, including pimelic o-aminobenzamide compounds 106, 109 and 136, have previously been shown to reverse FXN gene silencing in short-term studies of FRDA patient cells and a knock-in mouse model, but the functional consequences of such therapeutic intervention have thus far not been described. We have now investigated the long-term therapeutic effects of 106, 109 and 136 in our GAA repeat expansion mutation-containing YG8R FRDA mouse model. We show that there is no overt toxicity up to 5 months of treatment and there is amelioration of the FRDA-like disease phenotype. Thus, while the neurological deficits of this model are mild, 109 and 106 both produced an improvement of motor coordination, whereas 109 and 136 produced increased locomotor activity. All three compounds increased global histone H3 and H4 acetylation of brain tissue, but only 109 significantly increased acetylation of specific histone residues at the FXN locus. Effects on FXN mRNA expression in CNS tissues were modest, but 109 significantly increased frataxin protein expression in brain tissue. 109 also produced significant increases in brain aconitase enzyme activity, together with reduction of neuronal pathology of the dorsal root ganglia (DRG). Overall, these results support further assessment of HDAC inhibitors for treatment of Friedreich ataxia.  相似文献   

6.
Rescue of the Friedreich's ataxia knockout mouse by human YAC transgenesis   总被引:3,自引:0,他引:3  
We have generated and characterised transgenic mice that contain the entire Friedreich's ataxia gene (FRDA) within a human YAC clone of 370 kb. In an effort to overcome the embryonic lethality of homozygous Frda knockout mice and to study the behaviour of human frataxin in a mouse cellular environment, we bred the FRDA YAC transgene onto the null mouse background. Phenotypically normal offspring that express only YAC-derived human frataxin were identified. The human frataxin was expressed in the appropriate tissues at levels comparable to the endogenous mouse frataxin, and it was correctly processed and localised to mitochondria. Biochemical analysis of heart tissue demonstrated preservation of mitochondrial respiratory chain function, together with some increase in citrate synthase and aconitase activities. Thus, we have demonstrated that human frataxin can effectively substitute for endogenous murine frataxin in the null mutant. Our studies are of immediate consequence for the generation of Friedreich's ataxia transgenic mouse models, and further contribute to the accumulating knowledge of human-mouse functional gene replacement systems. Electronic Publication  相似文献   

7.
BackgroundCompound heterozygosity for a trinucleotide repeat expansion and a point mutation in the FXN gene is a rare cause of Friedreich ataxia (FRDA).MethodsWe identified three Swedish FRDA patients with an FXN p.R165P missense mutation and compared their clinical features with six homozygote trinucleotide repeat expansion carriers. Patients were assessed clinically. Trinucleotide expansion length was determined and lymphocyte frataxin levels measured.Resultsp.R165P mutation carriers became wheelchair bound early, but had retained reflexes, better arm function, milder dysarthria, and were more independent in activities of daily living. One p.R165P mutation carrier developed psychosis. Frataxin levels were higher than in homozygous trinucleotide expansion patients. One patient with homozygous trinucleotide repeat expansions and comorbid hemochromatosis had more severe FRDA symptoms than his sibling without hemochromatosis.Conclusionp.R165P patients progress to a less disabling disease state than typical FRDA. Comorbid hemochromatosis may worsen FRDA symptoms through additive effects on iron metabolism.  相似文献   

8.
Frataxin gene point mutations in Italian Friedreich ataxia patients   总被引:1,自引:0,他引:1  
Friedreich ataxia (FRDA) is associated with a GAA-trinucleotide-repeat expansion in the first intron of the FXN gene (9q13-21), which encodes a 210-amino-acid protein named frataxin. More than 95% of patients are homozygous for 90-1,300 repeat expansion on both alleles. The remaining patients have been shown to be compound heterozygous for a GAA expansion on one allele and a micromutation on the other. The reduction of both frataxin messenger RNA (mRNA) and protein was found to be proportional to the size of the smaller GAA repeat allele. We report a clinical and molecular study of 12 families in which classical FRDA patients were heterozygous for a GAA expansion on one allele. Sequence analysis of the FXN gene allowed the identification of the second disease-causing mutation in each heterozygous patient, which makes this the second largest series of FRDA compound heterozygotes reported thus far. We have identified seven mutations, four of which are novel. Five patients carried missense mutations, whereas eight patients carried null (frameshift or nonsense) mutations. Quantitation of frataxin levels in lymphoblastoid cell lines derived from six compound heterozygous patients showed a statistically significant correlation of residual protein levels with the age at onset (r = 0.82, p < 0.05) or the GAA expansion (r = -0.76, p < 0.1). In the group of patients heterozygous for a null allele, a strong (r = -0.94, p < 0.01) correlation was observed between the size of GAA expansion and the age at onset, thus lending support to the hypothesis that the residual function of frataxin in patients' cells derive exclusively from the expanded allele.  相似文献   

9.
Friedreich's ataxia (FRDA), the most-common form of autosomal recessive ataxia, is inherited in most cases by a large expansion of a GAA triplet repeat in the first intron of the frataxin (X25) gene. Genetic heterogeneity in FRDA has been previously reported in typical FRDA families that do not link to the FRDA locus on chromosome 9q13. We report localization of a second FRDA locus (FRDA2) to chromosome 9p23-9p11, and we provide evidence for further genetic heterogeneity of the disease, in a family with the classic FRDA phenotype.  相似文献   

10.
Friedreich’s ataxia (FRDA) is the most common of the inherited ataxias and is associated with GAA trinucleotide repeat expansions within the first intron of the frataxin (FXN) gene. There are expanded FXN alleles from 66 to 1,700 GAA·TTC repeats in FRDA patients and correlations between number of GAA repeats and frataxin protein levels are assumed. Here, we present for the first time frataxin protein levels as well as analysis of GAA triplet repeats in the FXN gene in a population of 50 healthy Austrian people. Frataxin protein levels were measured in lymphocytes from blood samples by ELISA and GAA repeats were analyzed by capillary electrophoresis. Rather unexpectedly, we found a high variation of frataxin protein levels among the individuals. In addition, there was no correlation between frataxin levels, GAA repeats, age and sex in this group. However, these findings are of great importance for better characterization of the disease.  相似文献   

11.
Friedreich ataxia (FRDA) is caused by a GAA expansion in the first intron of the FXN gene, which encodes frataxin. Four percent of patients harbor a point mutation on one allele and a GAA expansion on the other. We studied an Italian patient presenting with symptoms suggestive of FRDA, and carrying a single expanded 850 GAA allele. As a second diagnostic step, frataxin was measured in peripheral blood mononuclear cells, and proved to be in the pathological range (2.95 pg/μg total protein, 12.7 % of control levels). Subsequent sequencing revealed a novel deletion in exon 5a (c.572delC) which predicted a frameshift at codon 191 and a premature truncation of the protein at codon 194 (p.T191IfsX194). FXN/mRNA expression was reduced to 69.2 % of control levels. Clinical phenotype was atypical with absent dysarthria, and rapid disease progression. l-Buthionine-sulphoximine treatment of the proband’s lymphoblasts showed a severe phenotype as compared to classic FRDA.  相似文献   

12.
OBJECTIVES: Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by expansion of GAA repeats in the frataxin gene. We have carried out the first molecular analysis at the Friedreich's ataxia locus in the Indian population. MATERIALS AND METHODS: Three families clinically diagnosed for Friedreich's ataxia were analyzed for GAA expansion at the FRDA locus. The distribution of GAA repeats was also estimated in normal individuals of Indian origin. RESULTS: All patients clinically diagnosed for Friedreich's ataxia were found to be homozygous for GAA repeat expansion. The GAA repeat in the normal population show a bimodal distribution with 94% of alleles ranging from 7-16 repeats. CONCLUSION: Indian patients with expansion at the FRDA locus showed typical clinical features of Friedreich's ataxia. The low frequency of large normal alleles (6%) could indicate that the prevalence of this disease in the Indian population is likely to be low.  相似文献   

13.
Friedreich ataxia (FRDA) is the most common autosomal recessive ataxia characterized by a combination of neurological involvement, cardiomyopathy, and skeletal and glucose metabolism disturbances. FRDA is caused by mutations in FXN gene that results in reduction of mRNA and protein levels of frataxin. Previous microarray and real-time quantitative PCR (qPCR) studies showed that the downregulation of FXN is associated with a complex gene expression profile. However, these studies showed a wide variability in the subset of genes with altered expression among tissues and models. Genes differentially expressed in peripheral blood cells (PBC) could potentially help in the understanding of FRDA pathophysiology and also function as reliable disease biomarkers obtained from an easily accessible tissue, which could have implications in clinical practice. This study aimed to validate by qPCR the expression of 26 genes, revealed as differentially expressed by other studies, using peripheral blood cells (PBC) of 11 FRDA patients compared to 11 healthy controls. We found a robust downregulation of FXN, but no statistically significant differences were found between FRDA and controls for the remaining genes. Except for FXN, our study did not find a differential gene expression profile in PBC of FRDA patients and a reliable gene expression profile biomarker in a clinical relevant and noninvasive tissue remains unclear.  相似文献   

14.
Friedreich's ataxia (FRDA) is caused by reduction of frataxin levels to 5-35%. To better understand the biochemical sequelae of frataxin reduction, in absence of the confounding effects of neurodegeneration, we studied the gene expression profile of a mouse model expressing 25-36% of the normal frataxin levels, and not showing a detectable phenotype or neurodegenerative features. Despite having no overt phenotype, a clear microarray gene expression phenotype was observed. This phenotype followed the known regional susceptibility in this disease, most changes occurring in the spinal cord. Additionally, gene ontology analysis identified a clear mitochondrial component, consistent with previous findings. We were able to confirm a subset of changes in fibroblast cell lines from patients. The identification of a core set of genes changing early in the FRDA pathogenesis can be a useful tool in both clarifying the disease process and in evaluating new therapeutic strategies.  相似文献   

15.
Friedreich's ataxia (FRDA) is caused by point mutations or trinucleotide repeat expansions in both alleles of the gene encoding frataxin. Studies of frataxin homologues in lower eukaryotes suggest that mitochondrial iron accumulation may underlie the pathophysiology of FRDA. To evaluate the possible role of iron-chelation therapy for FRDA, we measured serum iron and ferritin concentration in 10 FRDA patients. The measurements were within normal limits, suggesting that iron-chelation therapy for FRDA may be problematic.  相似文献   

16.
Friedreich ataxia (FRDA), the most common autosomal recessive inherited ataxic disorder, is the consequence of deficiency of the mitochondrial protein frataxin, typically caused by homozygous intronic GAA expansions in the corresponding gene. The yeast frataxin homologue (yfh1p) is required for cellular respiration. Yfh1p appears to regulate mitochondrial iron homeostasis and protect from free radical toxicity. Complete loss of frataxin in knockout mice leads to early embryonic lethality, indicating an important role for frataxin during development. Heterozygous littermates with partial frataxin deficiency are apparently healthy and have no obvious phenotype. Here we evaluate iron metabolism and sensitivity to dietary and parenteral iron loading in heterozygote frataxin knockout mice (Fx(+/-)). Iron concentrations in the liver, heart, pancreas and spleen, and cellular iron distribution patterns were compared between wild type and Fx(+/-) mice. Response to parenteral iron challenge was not different between Fx(+/-) mice and wild type littermates, while sporadic iron deposits were observed in the hearts of dietary iron-loaded Fx(+/-) mice. Finally, we evaluated the effect of partial frataxin deficiency on susceptibility to cardiac damage in the mouse model of hereditary hemochromatosis (HH), the Hfe knockout mice. HH, an iron overload disease, is one of the most frequent genetic diseases in populations of European origin. By breeding Hfe(-/-) with Fx(+/-) mice, we obtained compound mutant mice lacking both Hfe and one frataxin allele. Sparse iron deposits in areas of mild to moderate cardiac fibrosis were found in the majority of these mice. However, they did not develop any neurological symptoms. Our studies indicate an association between frataxin deficiency, iron deposits and cardiac fibrosis, but no obvious association between iron accumulation and neurodegeneration similar to FRDA could be detected in our model. In addition, these results suggest that frataxin mutations may have a modifier role in HH, that predisposes to cardiomyopathy.  相似文献   

17.
18.
Friedreich ataxia (FRDA) is an autosomal recessive, neurodegenerative disease, characterized by progressive gait and limb ataxia, dysarthria, lower-limb areflexia, Babinski sign, loss of position and vibration senses, cardiomyopathy, and carbohydrate intolerance. It is the most common inherited ataxia, and is associated with a GAA triplet repeat expansion in the first intron of the X25 gene on the long arm of chromosome 9. We present a case whose clinical diagnosis was initially confounded by the mildness of the ataxic phenotype and a family history of multiple sclerosis. Evaluation of the X25 gene revealed that the patient was homozygous for the GAA triplet repeat expansion, pathognomonic of FRDA. Investigation of her sural nerve biopsy revealed a significantly smaller expansion size, constituting the first direct demonstration of somatic mosaicism involving the nervous system in FRDA. We speculate that a similar contraction in pathologically affected tissues could be the molecular basis for the mildness of the ataxia. © 1998 John Wiley & Sons, Inc. Muscle Nerve 21:390–393, 1998.  相似文献   

19.
We studied genotype-phenotype correlations in a group of 100 patients with typical Friedreich ataxia (FRDA), and in three groups of patients with atypical clinical presentations, including 44 Acadian FRDA, 8 late-onset FRDA (LOFA), and 6 FRDA with retained reflexes (FARR). All patients, except 3 with typical FRDA, carried two copies of the FRDA-associated GAA triplet repeat expansion. Overall, the phenotypic spectrum of FRDA appeared to be wider than defined by the currently used diagnostic criteria. Our study indicated the existence of several sources of variability in FRDA. Patients with larger GAA expansions tended to have earlier onset and were more likely to show additional manifestations of the disease. Mitotic instability of the expanded GAA repeats may partially account for the limited degree of correlation between expansion sizes as determined in lymphocytes and clinical parameters. Some clinical variants associated with specific FRDA haplotypes, such as Acadian FRDA and FARR, turned out to be unrelated to expansion sizes. No polymorphism in the frataxin coding sequence could be associated with these clinical variants.  相似文献   

20.
BACKGROUND: Friedrich ataxia (FRDA1) is most often the result of a homozygous GAA repeat expansion in the first intron of the frataxin gene (FRDA gene). This condition is seen in individuals of European, North African, Middle Eastern and Indian descent and has not been reported in Southeast Asian populations. Approximately 4% of FRDA1 patients are compound heterozygotes. These patients have a GAA expansion on one allele and a point mutation on the other and have been reported to have an atypical phenotype. OBJECTIVE: To describe a novel dinucleotide deletion in the FRDA gene in two Malaysian siblings with FRDA1. SETTING: Tertiary referral university hospital setting. PATIENTS AND METHODS: A previously healthy 10-year-old Malaysian boy, presented with fever, lethargy, headaches, dysarthria, dysphagia, vertigo and ataxia which developed over a one week period. His neurological exam revealed evidence of dysarthria and ataxia, mild generalized weakness and choreoform movements of the tongue and hands. His reflexes were absent and Babinski sign was present bilaterally. A nine-year-old sister was found to have mild ataxia but was otherwise neurologically intact. RESULTS: Molecular genetic studies demonstrated that both siblings were compound heterozygotes with a GAA expansion on one allele and a novel dinucleotide deletion on the other allele. CONCLUSIONS: We describe a novel dinucleotide deletion in the first exon of the FRDA gene in two siblings with FRDA1. Additionally this is the first report of FRDA1 occurring in a family of southeast Asian descent, it demonstrates intrafamilial phenotypic variability, and confirms that atypical phenotypes are associated with compound heterozygosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号