首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ischemic brain injury from stroke is an important cause of disability in infants and children, but current experimental models for the disorder are complex. These preparations require occlusion of small intracerebral vessels or common carotid artery ligation combined with exposure to reduced levels of oxygen. Unilateral carotid artery ligation alone was sufficient to cause brain injury in more than 70% of 12-day-old CD1 mice.Using a blinded behavioral rating scale of seizure activity in mice, a direct, highly significant correlation between the severity of seizures over the 4-hour period after ligation and the severity of histologic brain injury 7 days later (Spearman's rho = 0.835, P < 0.001) was documented. This study presents the first model of stroke in immature mice produced by unilateral carotid artery ligation alone, and the first to demonstrate a clear correlation between acute ischemia-induced seizures and brain injury. This new model should be useful for examining the pathogenesis of stroke in the immature brain and the potential contribution of seizures to final outcome.  相似文献   

2.
The non-competitive N-methyl-D-aspartate receptor antagonist dextromethorphan is protective against some types of brain injury. Unilateral carotid ligation in postnatal day 12 CD1 mice produces ischemic brain injury. To evaluate the neuroprotective potential of dextromethorphan against ischemic injury in the immature brain, seven litters of postnatal day 12 CD1 mice received either dextromethorphan or vehicle after a unilateral carotid ligation. Only the male pups were protected, and brain injury was unchanged in the female pups treated with dextromethorphan. These results suggest that dextromethorphan neuroprotection against ischemic injury in the immature brain is sex-dependent.  相似文献   

3.
Stroke is an important cause of neurologic injury in the neonatal period and frequently results in lifelong neurologic impairments. We reported previously that unilateral carotid ligation on postnatal day (P)12 in CD1 mice causes acute behavioral seizures and unilateral brain injury and provides a model for neonatal stroke in human infants. In the present study we confirmed that behavioral seizures observed after ligation on P12 in the CD1 strain are associated with rhythmic ictal discharges that show temporal progression on electrocorticograms. We also examined the effects of carotid ligation performed at different ages in CD1 mice or performed in the C57Bl/6 strain. The right common carotid was ligated at P7, P10, P12 or P21 in CD1 mice or at P12 in C57Bl/6 mice. Littermate controls received sham surgery. Seizures were rated for 4 h after surgery; brain injury was scored one week later. In a separate group of P12 CD1 mice, electrocorticographic activity was recorded continuously for 4 h after carotid ligation or sham surgery. Brain injury and cumulative seizure score varied significantly with age (p < 0.001) and strain (p < 0.001). In CD1 mice, injury was greatest after ligation on P10 to P12 and seizure score was maximal at P12. Seizure scores were significantly correlated with injury after ligation on P10 or P12. C57Bl/6 mice, like C3Heb/FeJ mice examined previously, were much less vulnerable to seizures and injury than CD1 mice after ligation on P12. This study demonstrates that carotid ligation in the CD1 mouse on P12 causes acute electrographic rhythmic discharges that correlate with behavioral seizures. We also found that the age at which ligation is performed and genetic strain have a strong influence on the severity of injury.  相似文献   

4.
Bilateral changes after neonatal ischemia in the P7 rat brain   总被引:1,自引:0,他引:1  
Neurogenesis persists throughout life in the rodent subventricular zone (SVZ) and subgranular zone (SGZ) and increases in the adult after brain injury. In this study, postnatal day 7 rats underwent middle cerebral artery electrocoagulation and transient homolateral common carotid artery occlusion, a lesioning protocol that resulted in ipsilateral (IL) forebrain ischemic injury, leading to a cortical cavity 3 weeks later. The effects of neonatal ischemia on hemispheric damage, cell death, cell proliferation, and neurogenesis were examined 4 hours to 6 weeks later by the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and immunohistochemistry of Ki-67 in proliferating cells and of doublecortin, a microtubule-associated protein expressed only by immature neurons. Neonatal ischemic injury resulted in persistent reduced IL and transient reduced contralateral (CL) hemispheric areas, a consequence of sustained and transient cell death in the IL and CL areas, respectively. Ki-67 immunostaining revealed 3 peaks of newly generated cells in the dorsal SVZ and SGZ in the IL side and also in the CL side at 48 hours and 7 and 28 days after ischemia. Double immunofluorescence revealed that most of the Ki-67-positive cells were astrocytes at 48 hours. Ischemic injury also stimulated SVZ neurogenesis, based on increased doublecortin immunostaining in both SVZs at 7 to 14 days after injury. Doublecortin-positive neurons remained visible around the lesion at 21 days but displayed an immature shape in discrete chains or clusters. Although unilateral ischemic damage was produced, results indicate successful regenerative changes in the CL hemisphere, allowing anatomical recovery.  相似文献   

5.
Children with severe neonatal hypoxic-ischemic encephalopathy (HIE) die or develop life-long neurological impairments such as cerebral palsy and mental retardation. Decreased regional cerebral blood flow (CBF) is believed to be the predominant factor that determines the level of tissue injury in the immature brain. However, the spatio-temporal profiles of CBF after neonatal HIE are not well understood. CB17 mouse and Wistar rat pups were exposed to a unilateral hypoxic-ischemic (HI) insult at eight or seven days of age. Laser speckle imaging sequentially measured the cortical surface CBF before the hypoxic exposure and until 24h after the hypoxic exposure. Seven days after the HI insult, brain damage was morphologically assessed by measuring the hemispheric volumes and by semi-quantitative scoring for neuropathologic injury. The mean CBF on the ipsilateral hemisphere in mice decreased after carotid artery ligation. After the end of hypoxic insult (i.e., the reperfusion phase), the mean CBF level gradually rose and nearly attained its pre-surgery level by 9h of reperfusion. It then decreased. The degree of reduced CBF during reperfusion was well correlated with the degree of later morphological brain damage. The correlation was the strongest when the CBF was measured in the ischemic core region at 24h of reperfusion in mice (R2=0.89). A similar trend in results was found in rats. These results suggest that the CBF level during reperfusion may be a useful predictive factor for later brain damage in immature mice. This may enable optimizing brain damage for detail analyses.  相似文献   

6.
To gain insights into the pathogenesis and management of perinatal hypoxic‐ischemic brain damage, the authors have used an immature rat model which they developed many years ago. The model entails ligation of one common carotid artery followed thereafter by systemic hypoxia. The insult produces permanent hypoxic‐ischemic brain damage limited to the cerebral hemisphere ipsilateral to the carotid artery occlusion. The mini‐review describes recently accomplished research pertaining to the use of the immature rat model, specifically, investigations involving energy metabolism, glucose transporter proteins, free radical injury, and seizures superimposed upon cerebral hypoxia‐ischemia. Future research will focus on molecular mechanisms of neuronal injury with a continuing focus on therapeutic strategies to prevent or minimize hypoxic‐ischemic brain damage. J. Neurosci. Res. 55:158–163, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
Neonatal stroke is an important cause of neurologic morbidity and cerebral palsy. Recently, we have determined that in postnatal day 12 CD1 mice unilateral carotid ligation alone results in seizures and brain injury. We have shown that, in this model, seizure scores correlate with brain injury scores. We have applied this model to another strain of mice to assess strain-related differences in vulnerability to seizures and brain injury after unilateral carotid ligation. Under isoflurane anesthesia, unilateral right-sided carotid ligation was performed in postnatal day 12 C3HeB/FeJ mice followed by a 4-hour period of observation in a 35 degrees C incubator. Seizure scores and brain jury scores were assigned and compared to scores in mice receiving sham surgery. Timing of seizure onset and regional distribution of brain injury were compared in the CD1 and C3HeB/FeJ mice. Unilateral carotid ligation in postnatal day 12 C3HeB/FeJ mice resulted in seizure behavior and brain injury in some animals, with similar time to seizure onset and regional injury distribution, but affected a significantly smaller percentage of C3HeB/FeJ pups than that observed in postnatal day 12 CD1 mice, indicating strain-related vulnerability in this model.  相似文献   

8.
Stroke in the neonatal brain is an understudied cause of neurologic morbidity. Recently we have characterized a new immature mouse model of stroke utilizing unilateral carotid ligation alone to produce infarcts and acute seizures in postnatal day 12 (P12) CD‐1 mice. In this study, the amount of poststroke neural progenitor proliferation was examined in the subgranular (SGZ) of the dentate gyrus and the subventricular zone (SVZ) 7, 14, and 21days after ischemia (DAI). A single IP injection (50 mg/kg) of bromodeoxyuridine (BrdU) given 2 hr before perfusion fixation labeled newborn cells. Early cell phenotypes were quantified by colabeling with GFAP, nestin, and DCX. Control mice revealed an age‐dependent decrease in neural proliferation, with an ~50% drop in BrdU‐labeled cell counts at P33 compared with P19 both in the SGZ and in the SVZ. Significant reduction in the amount of neural proliferation in the ipsilateral injured SGZ of ligated mice correlated with both the severity of the stroke‐injury and the acute seizure scores. Similar correlations were not detected contralaterally. Contralateral SGZ neural proliferation was initially lowered at 7 DAI but normalized by 21 DAI. In both injured and control brains, ~90% of newborn SGZ cells colabeled with nestin, ~30% colabeled with GFAP, and a few colabeled with DCX. In contrast, poststroke SVZ cell proliferation was enhanced ipsi‐ more than contralaterally at 7 DAI. In the SVZ, the enhanced neural proliferation normalized to control levels by P33. In conclusion, the neural cell proliferation was differentially altered in the SGZ vs. SVZ after neonatal stroke. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Premature infants with placental infection and adult stroke patients with fever have worse outcomes following intracerebral hemorrhage (ICH). We hypothesized that immune pre-activation would aggravate brain injury in mouse brain following ICH. The immune system of 2-day, 10-day and 7-week young adult CD1 mice was stimulated by intraperitoneal injection of concanavalin A (ConA), lipopolysaccharide (LPS) or polyinosinic-polycytidilic acid (PolyI:C) 12 h prior to intracerebral injection of blood. Two days later, brain damage and inflammation were worse in 2-day mice that had received LPS. The other agents had less consistent effects in 2-day mice. Brain damage in young adults was aggravated less after immune stimulation. These data suggest that immune pre-activation modifies hemorrhagic brain injury in immature mouse brain.  相似文献   

10.
Cerebral palsy in humans results from a diverse group of disorders that produce nonprogressive motor impairments in the developing brain. Stroke is an important cause of hemiparetic cerebral palsy in neonates and young children. We recently developed a new immature mouse model of stroke that demonstrates seizures, the severity of which correlates with brain injury. This model has strengths compared with other immature rodent models of ischemic injury, such as relative technical ease and the presence of seizures, as is seen in humans. This model also has relative weaknesses, such as the inability to titrate the severity of the injury with different periods of hypoxia. In addition, more work is needed to delineate the long-term consequences of the insult in this new model.  相似文献   

11.
Neuroregenerative effects of BMP7 after stroke in rats   总被引:7,自引:0,他引:7  
Previous reports have indicated that the expression of bone morphogenetic protein-7 (BMP7) is enhanced after ischemic injury in brain. This upregulation may induce endogenous neurorepair in the ischemic brain. The purpose of this study was to examine neuroregenerative effects of BMP7 after ischemia–reperfusion injury. Adult Sprague–Dawley rats were anesthetized with chloral hydrate. Right middle cerebral artery (MCA) was transiently ligated with 10-O suture for 1 h. One day after MCA occlusion, vehicle or BMP7 was infused to the contralateral cerebral ventricle. To identify possible neurogenesis, bromodeoxyurindine (BrdU) was systemically injected on the fourth and fifth days after MCA occlusion. Animals treated with BMP7 showed a rapid correction of body asymmetry and neurological deficits, suggesting BMP7 facilitates recovery after stroke. Animals were sacrificed at 1 month after stroke and brains were analyzed using immunohistological techniques. BMP7 treatment enhanced immunoreactivity of BrdU in the subventricular zone, lesioned cortex, and corpus callosum. These BrdU-positive cells co-labeled with nestin and NeuN. Our behavioral and anatomical data suggest that BMP7 promotes neuroregeneration in stroke animals, possibly through the proliferation of new neuronal precursors after ischemia.  相似文献   

12.
Stroke is a leading cause of death and disability and new therapies are desperately needed. Given the complex nature of ischemic brain injury, it has been postulated that cell-based therapies may be useful. However, cell resources, invasive extraction procedures, immunological rejection, tumorigenesis and ethical challenges make it unlikely that many stem cell types could serve as a practical source for therapy. By contrast, these issues do not pertain to human amnion epithelial cells(h AECs), which are placenta-derived stem cells. We recently assessed the effects of systemically delivered hAECs on stroke outcome using four animal models of stroke. We demonstrated that when injected intravenously after ischemia onset, hAECs migrate preferentially to the spleen and injured brain to limit apoptosis and inflammation, and attenuate early brain infiltration of immune cells, progression of infarction and systemic immunosuppression and to ultimately ameliorate functional deficits. When administration of hAECs is delayed by 1-3 days poststroke, long-term functional recovery can still be enhanced in young and aged mice of either sex. Moreover, our proof-of-principle findings suggest that h AECs are effective at limiting post-stroke infarct development in non-human primates. Overall, the results suggest that hAECs could be a viable clinical stroke therapy.  相似文献   

13.
Vascular early response gene (Verge) is a novel immediate early gene that is highly expressed during developmental angiogenesis and after ischemic insults in adult brain. However, the role of Verge after neonatal injury is not known. In the present study, we investigated the hypothesis that Verge contributes to vascular remodeling and tissue repair after neonatal ischemic injury. The Rice–Vanucci model (RVM) was employed to induce neonatal stroke in both Verge knockout (KO) and wild-type (WT) postnatal day 10 (P10) mice. Histological and behavioral outcomes at acute (24 h), subacute (7 days) and chronic (30 days) phases were evaluated. Angiogenesis, neurogenesis, and glial scar formation were also examined in the ischemic brain. No significant differences in outcomes were found between WT and Verge mice at 24 h or 7 days after stroke. However genetic deletion of Verge led to pronounced cystic cavitation, decreased angiogenensis and glial scar formation in the ischemic hemisphere compared to WT mice at 30 days. Verge KO mice also had significantly worse functional outcomes at 30 days which was accompanied by decreased neurogenesis and angiogenesis in the ischemic hemisphere. Our study suggests that Verge plays an important role in the induction of neurogenesis and angiogenesis after ischemia, contributes to improved tissue repair, and enhances chronic functional recovery.  相似文献   

14.
Ischemia-induced seizures and cortical monoamine levels   总被引:4,自引:0,他引:4  
Seizure activity as a component of the ischemic process possibly responsible for monoamine changes described in the gerbil stroke model was the subject of this study. Abnormal motor activity suggestive of seizures developed one to three hours after unilateral ligation of the common carotid artery in approximately 50% of gerbils that exhibited signs of stroke. Reduction of cortical levels of dopamine and norepinephrine was observed only when seizures occurred in association with stroke. The levels of 5-hydroxytryptamine were reduced bilaterally in animals with and without signs of stroke and were reduced further in animals with stroke plus seizures. Further study is needed to establish whether the catecholamine changes associated with ischemia-induced seizures are primary and causative or secondary to seizure activity itself. In the ischemic brain, 5-hydroxytryptamine metabolism appears disordered independent of seizure activity. Seizure activity must be taken into account when the mechanisms of disordered monoamine metabolism are being examined in the gerbil stroke model.  相似文献   

15.
Permanent cerebral blood flow reduction results in brain injury (stroke), whereas transient ischemic stress results in preconditioning, which can ameliorate the extent of irreversible brain injury from subsequent ischemia-the phenomena of ischemic tolerance. Neurogenesis in the brain occurs after both ischemic injury and the brief ischemia resulting in preconditioning. As neurogenesis is regarded as having an intrinsic neuroprotective role in the brain, we investigated the possible role of these endogenous progenitor cells in the induction of ischemic tolerance. Methylazoxymethanol acetate (MAM) was injected in wild-type mice to attenuate precursor cell proliferation and ganciclovir was used to diminish newly generated cells in GFAP/HSV-TK mice. Both MAM and ganciclovir significantly attenuated ischemia-induced progenitor cell proliferation in the subventricular zone, dentate gyrus, penumbra, and corpus callosum as quantified by 5-bromo-2'-deoxyuridine- or Ki-67-positive cells. Attenuation of ischemia-induced progenitor cell proliferation in the brain blocked the induction of ischemic tolerance. Further the number of TUNEL (TdT-mediated dUTP nick end labeling)-positive cells was considerably increased in MAM-treated animals, whereas MAM did not cause cell death in sham-operated controls. The results of this study suggest a role for endogenous progenitors in the protective effect of ischemic tolerance.  相似文献   

16.
Chu K  Kim M  Park KI  Jeong SW  Park HK  Jung KH  Lee ST  Kang L  Lee K  Park DK  Kim SU  Roh JK 《Brain research》2004,1016(2):145-153
Ischemic stroke is caused by the interruption of cerebral blood flow that leads to brain damage with long-term sensorimotor deficits. Stem cell transplantation may recover functional deficit by replacing damaged brain. In this study, we attempted to test whether the human neural stem cells (NSCs) can improve the outcome in the rat brain with intravenous injection and also determine the migration, differentiation and the long-term viabilities of human NSCs in the rat brain. Focal cerebral ischemia was induced by intraluminal thread occlusion of middle cerebral artery (MCA). One day after surgery, the rats were randomly divided into two groups: NSCs-ischemia vs. Ischemia-only. Human NSCs infected with retroviral vector encoding beta galactosidase were intravenously injected in NSCs-ischemia group (5 x 10(6) cells) and the same amount of saline was injected in Ischemia-only group for control. The animals were evaluated for 4 weeks using turning in an alley (TIA) test, modified limb placing test (MLPT) and rotarod test. Transplanted cells were detected by X gal cytohistochemistry or beta gal immunohistochemistry with double labeling of other cell markers. The NSCs-ischemia group showed better performance on TIA test at 2 weeks, and MLPT and rotarod test from 3 weeks after ischemia compared with the Ischemia-only group. Human NSCs were detected in the lesion side and labeled with marker for neurons or astrocytes. Postischemic hemispheric atrophy was noted but reduced in NSCs-ischemia group. X gal+ cells were detected in the rat brain as long as 540 days after transplantation. Our data suggest intravenously transplanted human NSCs can migrate and differentiate in the rat brain with focal ischemia and improve functional recovery.  相似文献   

17.
Restoration of local blood supply in the post-ischemic brain plays a critical role in tissue repair and functional recovery. The present investigation explored beneficial effects of recombinant human erythropoietin (rhEPO) on vascular endothelial cell survival, angiogenesis, and restoration of local cerebral blood flow (LCBF) after permanent focal cerebral ischemia in adult mice. Saline or rhEPO (5,000 U/kg, intraperitoneal) was administered 30 mins before ischemia and once daily after ischemic stroke. Immunohistochemistry showed an enhancing effect of rhEPO on expression of EPO receptor (EPOR) of endothelial cells in the penumbra region 3 to 21 days after the ischemic insult. The treatment with rhEPO decreased ischemia-induced cell death and infarct volume 3 days after stroke. Specifically, rhEPO reduced the number of terminal deoxynucleotidyl transferase biotin-dUPT nick end labeling- and caspase-3-positive endothelial cells in the penumbra region. Colocalization of the vessel marker glucose transporter-1 (Glut-1) and cell proliferation marker 5-bromo-2'-deoxyuridine indicated enhanced angiogenic activity in rhEPO-treated mice 7 to 21 days after stroke. Western blot showed upregulation of the expression of angiogenic factors Tie-2, Angiopoietin-2, and vascular endothelial growth factor in rhEPO-treated animals. Local cerebral blood flow was measured by laser scanning imaging 3 to 21 days after stroke. At 14 days, LCBF in the penumbra was recovered to preischemia levels in rhEPO-treated mice but not in control mice. Our data suggest that rhEPO treatment upregulates the EPOR level in vascular endothelial cells, confers neurovascular protection, and enhances angiogenesis. We further show a promoting effect of rhEPO on LCBF recovery in the ischemic brain. These rhEPO-induced effects may contribute to therapeutic benefits in the treatment of ischemic stroke.  相似文献   

18.
The neurological functional disabilities caused by cerebral infarction significantly deteriorate life quality and increase the medical and socio-economic costs. Although some molecular agents show potential in acting against the pathological mechanisms in animal studies, none has been proven effective for cerebral ischemia treatment in human patients. New treatment strategy needs to be developed. Stem cell therapy is promising for neural regeneration and thus become one of the current trends. More evidence has shown stem cells, such as embryonic stem cells (ESCs), skeletal muscle satellite cells and mesenchymal stem cells, to be useful in tissue repair and regeneration. However all these stem cells mentioned above have limitations. Adipose tissue-derived stem cells (ADSCs) are an alternative autologous stem cell source for the characters as abundant, easy to obtain, immunological and ethic problem free. So far, this treatment strategy has been rarely adopted on ischemic brain injury. In this study, we investigated the transplantation effects of rat ADSCs for the treatment of cerebral ischemia in rats. ADSCs were isolated from rat adipose tissue and then induced to initiate neural differentiation. Following neural induction, ADSCs developed neural morphology and displayed molecular expression of Nestin, MAP2 and GFAP. We evaluate the neurobehavioral function, infarct volume and cell properties as apoptosis, survival, migration, proliferation, differentiation and immunogenicity. Treatment with i-ADSCs (induction from ADSCs) results in better functional recovery and more reduction in hemispheric atrophy then without i-ADSCs in other groups. Our study demonstrates that i-ADSCs therapy is promising in stroke treatment and finally leads to an efficacious therapeutic modalities for much better outcome in clinical patients.  相似文献   

19.
OBJECTIVES: Glial scars around a damaged area after brain injury inhibit neurite elongation from surviving neurons and axonal plasticity, and thus prevent neural network regeneration. However, the generation, differentiation and maturation of neural stem cells (NSCs) among glial scars after brain injury have not yet been reported. METHODS: In the present study, we investigated the chronological relationship between gliosis and maturation of new neurons around a damaged area using a rat traumatic brain injury (TBI) model. RESULTS: Between 1 and 7 days after injury, many nestin-positive cells were observed around the damaged area. Three days after injury, many small nestin-positive cells showed an astrocytic morphology. Between 1 and 30 days after injury, doublecortin (DCX)-positive cells were present around the damaged area. Three and 7 days after injury, a small number of nestin-positive cells were immunopositive for glial fibrillary acidic protein (GFAP). Seven days after injury, there were DCX-positive cells in the gliosis occurring in the lesion. Thirty days after injury, DCX-positive cells were observed near and among the glial scars and a small number of these cells were immunopositive for NeuN. DISCUSSION: These results suggest that DCX-positive cells were present near and among the glial scars after brain injury, and that these cells changed from immature to mature neurons. It is considered that promotion of the maturation and differentiation of newly formed immature neurons near and among glial scars after injury may improve the brain dysfunction induced by glial scars after brain injury.  相似文献   

20.
The chemokine stromal-derived factor-1 (SDF-1, also known as CXCL12) and its receptor CXCR4 have been implicated in homing of stem cells to the bone marrow and the homing of bone marrow-derived cells to sites of injury. Bone marrow cells infiltrate brain and give rise to long-term resident cells following injury. Therefore, SDF-1 and CXCR4 expression patterns in 40 mice were examined relative to the homing of bone marrow-derived cells to sites of ischemic injury using a stroke model. Mice received bone marrow transplants from green fluorescent protein (GFP) transgenic donors and later underwent a temporary middle cerebral artery suture occlusion (MCAo). SDF-1 was associated with blood vessels and cellular profiles by 24 hours through at least 30 days post-MCAo. SDF-1 expression was principally localized to the ischemic penumbra. The majority of SDF-1 expression was associated with reactive astrocytes; much of this was perivascular. GFP+ cells were associated with SDF-1-positive vessels and were also found in the neuropil of regions with increased SDF-1 immunoreactivity. Most vessel-associated GFP+ cells resemble pericytes or perivascular microglia and the majority of the GFP+ cells in the parenchyma displayed characteristics of activated microglial cells. These findings suggest SDF-1 is important in the homing of bone marrow-derived cells, especially monocytes, to areas of ischemic injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号