首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow cytometric analysis of human peripheral blood T lymphocytes demonstrated that the majority of the CD4+ cells were CD29+ or CD45RO+ “mature” cells while the CD8+ cells were primarily CD45RA+ “naive” cells. After an initial separation into CD4+ and CD8+ cells and a secondary separation into CD45 subsets, lymphokine secretion was assessed after phorbol 12-myristate 13-acetate and ionomycin or fixed anti-CD3 stimulation. Within the respective CD45 subsets, CD4+ cells produced more interleukin (IL)-2, IL-4, and IL-6; but the CD8+ cells secreted more interferon-γ and granulocyte/macrophage-colony-stimulating factor. Tumor necrosis factor-α secretion was similar in the matched CD45 subsets. Northern analysis revealed a parallel pattern of lymphokine mRNA expression in the four lymphocyte subsets. These results suggest that human CD8+ peripheral blood lymphocytes have a significant capacity to secrete lymphokines, and that the low lymphokine production observed in unseparated CD8+ cells reflects the higher percentage of less functional CD45RA+ cells.  相似文献   

2.
The chemokines macrophage inflammatory protein 1α (MIP 1α), interleukin-8 (IL-8) and RANTES are potent regulators of leukocyte trafficking. Examination of chemokine secretion by human peripheral blood lymphocytes after stimulation with anti-CD3 or phorbol 12, 13 myristate acetate and ionomycin showed CD8+ cells were the dominant source of MIP 1α and RANTES. Although production of MIP 1α and IL-8 were similar in pharmacologically stimulated CD4+ CD45RA+, CD4+ CD45RO+, and CD8+ CD45RA+ cells, the largest amounts of MIP 1α and RANTES were secreted by CD8+ CD45RO+ lymphocytes. A parallel pattern of prolonged chemokine mRNA expression for at least 18 h after activation was observed in the T cell subsets. These results confirm that human T lymphocytes have a unique capacity for secretion of these three chemokines. In addition, CD8+ cells have an unrecognized role in recruiting cells to sites of inflammation, and adult human CD45RA+ cells have a physiologically significant secretory capacity.  相似文献   

3.
T lymphocytes may be separated into subsets according to their expression of CD45 isoforms. The CD45R0+ T cell subset has been reported to proliferate in response to recall antigen and to mitogenic mAb to a much greater extent than the CD45RA+ subset. This difference could be due to more efficient coupling of the T cell antigen receptor complex to mitogenic signaling pathways. To investigate this possibility, CD3 antigen-induced calcium signals, diacylglycerol (DAG) production and protein kinase C (PKC) activation levels were compared in CD45RA+ and CD45R0+ human T lymphocyte subsets derived from peripheral blood. The mean CD3-induced rise in intracellular calcium was 80% greater in CD45R0+ than in CD45RA+ cells. Basal DAG levels in CD45R0+ cells were found to be, on average, 60% higher than in CD45RA+ cells (p = 0.002), but the CD3-induced production of DAG over background was not different in the two subsets (p = 0.4). Basal PKC activity, and CD3-induced PKC activation levels over background, were found to be 50% and 140% higher, respectively, in CD45R0+ cells than in CD45RA+ cells (p = 0.015 and 0.023). The CD45R0+ subset contained a higher proportion of cells expressing activation markers, such as CD25, CD71 and major histocompatibility complex class II, when compared to the CD45RA+ subset. Our results suggest that the elevated basal DAG levels observed in the CD45R0+ subset may reflect the recent activation of these cells. Both the higher basal DAG and CD3-induced elevation in intracellular calcium observed in the CD45R0+ cells may contribute to the greater PKC activation signals triggered by CD3 mAb in this subset. These findings elucidate the greater response of CD45R0+ T cells to mitogenic stimuli compared to CD45RA+ cells.  相似文献   

4.
Infections are a major cause of illness and death amongst elderly people. Peripheral blood CD8+ T lymphocytes -which play a crucial role in host defence against viral infections-, are divided in subsets based upon the expression of several cell and activation markers. Since in senescence changes in peripheral blood CD8+ T lymphocyte compartment have been described, studies were performed to determine whether in aging there are variations in the peripheral blood CD8+CD38+, CD8+CD57+, CD8+HLA-DR+, CD8+CD45RA+ and CD8+CD45RO+ cell subset. A decrease in the CD8+CD45RA+ lymphocytes was observed, indicating that variations in the CD8+ compartment can take place with ageing.  相似文献   

5.
The selection of T lymphocytes in the thymus and their activation upon the encounter with foreign antigens in the periphery require the aggregation and signals of the Tcell receptor (TcR)/CD3 complex and several surface molecules termed coreceptors (notably CD4 or CD8 and CD45). The spatial arrangement and interactions of the different molecules in the resulting multimolecular recognition structure are mostly unknown. Here we report, from studies on a healthy human CD3γ deficiency, that the lack of the CD3γ component of the TcR/CD3 complex is associated with a long-term severe defect of peripheral blood CD4+CD45RA+ and CD8+ lymphocytes, whereas CD4+CD45RO+, B and natural killer lymphocytes are unaffected. These results suggest that the CD3y site of the TcR/CD3 complex is required for the peripheral representation of certain Tcell types.  相似文献   

6.
CD3+CD20+ T cells are a population of CD3+ T cells that express CD20 and identified in healthy donors and autoimmune diseases. However, the nature and role of these cells in patients with psoriasis remain unclear. In this study, we aimed to investigate the level, phenotype, functional and clinical relevance of CD3+CD20+ T cells in the peripheral blood of patients with psoriasis. We found that a small subset of CD3+ T cells expressed CD20 molecule in the peripheral blood of patients with psoriasis, and their levels were similar to those in healthy donors. Circulating CD3+CD20+ T cells in patients with psoriasis were enriched in CD4+ cells and displayed an activated effector phenotype, as these cells contained fewer CD45RA+‐naive and CCR7+ cells with increased activity than those of CD3+ T cells lacking CD20. In addition, compared with healthy donors, circulating CD3+CD20+ T cells in patients with psoriasis produced more cytokines, interleukin (IL)‐17A, tumour necrosis factor (TNF)‐α and IL‐21, but not IL‐4 and IFN‐γ. Furthermore, a significantly positive correlation was found between the levels of IL‐17A, TNF‐α and IL‐21‐production CD3+CD20+ T cells with Psoriasis Area and Severity Index scores. Our findings suggest that CD3+CD20+ T cells may play a role in the pathogenesis of psoriasis.  相似文献   

7.
Antigen-independent adhesion of resting adult CD4+ CD45RO+ T cells to B lymphocytes has been shown to be transient and can be down-regulated by CD4 major histocompatibility complex (MHC) class II molecule interactions. Conversely, adhesion of adult CD4+ CD45RA+ subpopulation to B cells is not regulated by ligands of CD4. We have investigated the regulation of adhesion of cord blood CD45RA+ CD4+ T lymphocytes. In contrast to adult CD45RA+ CD4+ T cells, cord blood CD45RA+ CD4+ T cells were strongly sensitive to the down-regulation of adhesion mediated by the CD4-HLA class II interaction, since adhesion to MHC class II(+) B cells was transient and inhibited by an anti-CD4 antibody. In addition, human immunodeficiency virus gpl60, synthetic gpl06-derived peptides encompassing a CD4 binding site inhibited conjugate formation between cord blood CD45RA+ CD4+ T cells and B cells. Following activation of the cord blood CD4 T cells by an anti-CD3 antibody, a conversion from a transient to a stable adhesion pattern of cord blood CD4 T cells to B cells occurred in 2 days. The reversal to a transient adhesion occurred at day 8 following anti-CD3 activation in correlation with a complete shift to a CD45RO phenotype of the cord blood CD4 T cells. These data suggest that CD4 T cell adhesion can be developmentally regulated.  相似文献   

8.
Interleukin (IL)-13 is a cytokine originally identified as a product of activated T cells. Little is known, however, about IL-13 production by human T cells and its modulation by other cytokines. Here, we show that IL-13 is produced by activated human CD4+ and CD8+ CD45R0+ memory T cells and CD4+ and CD8+ CD45RA+ naive T cells. In contrast, IL-4, which shares many biological activities with IL-13, is only produced by CD45R0+ T cells following activation. Analysis of intracellular cytokine production by single CD45RA+ and CD45R0+ T cells indicated that IL-13 continued to be produced for more than 24 h after stimulation, whereas IL-4 could not be detected after 24 h. These data were confirmed by measurement of specific mRNA and suggest that IL-13, unlike IL-4, but like interferon-γ (IFN-γ), is a cytokine with long-lasting kinetics. The majority of human CD45R0+ T cells produced IL-4 and IL-13 simultaneously. In contrast, IFN-γ protein was generally not co-expressed with IL-4 or IL-13. IL-4 added to primary cultures of highly purified peripheral blood T cells activated by the combination of anti-CD3+anti-CD28 mAb enhanced IL-13 production by CD45RA+ and to a lesser extent by CD45R0+ T cells. Under these conditions, however, IL-12 inhibited IL-13 production by CD45RA+ T cells and to a lesser extent by CD45R0+ T cells in a dose-dependent fashion. These inhibiting effects were not related to enhanced IFN-γ production induced by IL-12, since IFN-γ by itself did not affect IL-13 production. Collectively, our data indicate that IL-13 is produced by peripheral blood T cells which also produce IL-4, but not IFN-γ, and by naive CD45RA+ T cells which, in contrast, fail to produce IL-4. These observations, together with the long-lasting production of IL-13, suggest that IL-13 may have IL-4-like functions in situations where T cell-derived IL-4 is still absent or where its production has already been down-regulated.  相似文献   

9.
We have compared the expression of CD45RA on αβ and γδ T cells emigrating from the fetal and postnatal thymus. The fetal and postnatal thymus export both CD45RA+ and CD45RA- T cells. The number of γδ+CD45RA+ T cells was remarkably constant regardless of stage of ontogeny or T cell maturity. Around 5--8% of γδ thymic emigrants, thymocytes and peripheral blood lymphocytes expressed CD45RA in both fetal and postnatal animals. In contrast to γδ T cells, up to one quarter of both fetal and postnatal αβ emigrants expressed CD45RA. Post-thymic maturation of CD45RA expression on αβ emigrants, which occurred both before and after birth, appeared to be antigen independent.  相似文献   

10.
Individuals infected with HIV have elevated numbers of total and activated CD8+ lymphocytes in peripheral blood. CD8+ lymphocytes from HIV-infected individuals have been shown to mediate non-human histocompatibility-linked antigen (HLA)-restricted suppression of viral replication, HLA-restricted killing of cells expressing HIV antigens, and killing of uninfected lymphocytes. We studied CD8( T lymphocytes that lysed autologous CD4+ lymphocytes, hetcrologous CD41 lymphocytes from HIV-infected individuals and uninfected CD4+ lymphocytes. Killing in all cases required T cell receptor (TCR)-mediated recognition or triggering. However, these CD8 cytotoxic T lymphocytes (CTL) killed HLA class I mismatched CD4* lymphocytes and CD44 lymphocytes treated with a MoAb against HLA-A, B and C antigens (PA2.6) which blocks HLA class I-restricted killing. HLA class H-negativc CD4* T lymphoma cells (CEM.NKR) were also killed by anti-CD3 inhibited CTL. Stimulation of peripheral blood lymphocytes (PBL) from HIV-infected individuals, but not uninfected controls, with concanavalin A (Con A) and IL-2, induced non-HLA-restricted TCR aft1, CD8f CTL which lysed CD4+ lymphocytes. Activation ofCD4’lymphocytes increased their susceptibility to CD8f CTL-mediated lysis. In HIV infection, a population of non-HLA-restricted CTL which lyse activated CD4+ lymphocytes is expanded. The expansion of CTL with unusual characteristics is interesting, because the stimulus for this expansion is unknown. CTL which recognize activated CD4+ cells could play a role in immune regulation and the pathogenesis of A IDS.  相似文献   

11.
The relative roles that ageing and lifelong cytomegalovirus (CMV) infection have in shaping naive and memory CD4+ T-cell repertoires in healthy older people is unclear. Using multiple linear regression analysis we found that age itself is a stronger predictor than CMV seropositivity for the decrease in CD45RA+ CD27+ CD4+ T cells over time. In contrast, the increase in CD45RA CD27 and CD45RA+ CD27 CD4+ T cells is almost exclusively the result of CMV seropositivity, with age alone having no significant effect. Furthermore, the majority of the CD45RA CD27 and CD45RA+ CD27 CD4+ T cells in CMV-seropositive donors are specific for this virus. CD45RA+ CD27 CD4+ T cells have significantly reduced CD28, interleukin-7 receptor α (IL-7Rα) and Bcl-2 expression, Akt (ser473) phosphorylation and reduced ability to survive after T-cell receptor activation compared with the other T-cell subsets in the same donors. Despite this, the CD45RA+ CD27 subset is as multifunctional as the CD45RA CD27+ and CD45RA CD27 CD4+ T-cell subsets, indicating that they are not an exhausted population. In addition, CD45RA+ CD27 CD4+ T cells have cytotoxic potential as they express high levels of granzyme B and perforin. CD4+ memory T cells re-expressing CD45RA can be generated from the CD45RA CD27+ population by the addition of IL-7 and during this process these cells down-regulated expression of IL-7R and Bcl-2 and so resemble their counterparts in vivo. Finally we showed that the proportion of CD45RA+ CD27 CD4+ T cells of multiple specificities was significantly higher in the bone marrow than the blood of the same individuals, suggesting that this may be a site where these cells are generated.  相似文献   

12.
The present study consists of a phenotypic and functional characterization of peripheral blood T lymphocytes in a group of 21 patients with hereditary haemochromatosis (HH), an MHC class I-linked genetic disease resulting in iron overload, and a group of 30 healthy individuals, both HLA-phenotyped. The HH patients studied showed an increased percentage of CD8+ CD28 T cells with a corresponding reduction in the percentage of CD8+ CD28+ T cells in peripheral blood relative to healthy blood donors. No anomalies of CD28 expression were found in the CD4+ subset. The presence of the HLA-A3 antigen but not age accounted for these imbalances. Thus, an apparent failure of the CD8+ CD28+ T cell population ‘to expand’, coinciding with an ‘expansion’ of CD8+ CD28 T cells in peripheral blood of HLA-A3+ but not HLA-A3 HH patients was observed when compared with the respective HLA-A3-matched control group. A significantly higher percentage of HLA-DR+ but not CD45RO+ cells was also found within the peripheral CD8+ T cell subset in HH patients relative to controls. Phytohaemagglutinin (PHA) stimulation of peripheral blood mononuclear cells (PBMC) for 5 days showed: (i) that CD8+ CD28+ T cells both in controls and HH were able to expand in vitro; (ii) that CD8+ CD28 T cells decreased markedly after activation in controls but not in HH patients. Moreover, functional studies showed that CD8+ cytotoxic T lymphocytes (CTL) from HH patients exhibited a diminished cytotoxic activity (approx. two-fold) in standard 51Cr-release assays when compared with CD8+ CTL from healthy controls. The present results provide additional evidence for the existence of phenotypic and functional anomalies of the peripheral CD8+ T cell pool that may underlie the clinical heterogeneity of this iron overload disease. They are of particular relevance given the recent discovery of a novel mutated MHC class I-like gene in HH.  相似文献   

13.
Administration of anti-retroviral drugs induces a decrease of viral load associated with increase of CD4+ cell count in most HIV-infected patients. To investigate the early changes in CD4+ cell phenotype induced by anti-retroviral therapy, six patients with CD4+ cell count > 100/mm3 and never treated with anti-HIV therapy were enrolled and blood samples collected several times within 14 days from the initiation of therapy with Zidovudine plus Didanosine. CD4+ cell count and HIV viraemia were investigated at each time point, as well as the expression of CD45RA, CD45RO and CD95/Fas molecules on CD4+ cells, and the T cell receptor (TCR) Vβ repertoire of CD4+ cells. All patients showed a rapid and dramatic decrease in viral load with a corresponding increase of CD4+ cell count. The main remodelling of CD4+ cell subpopulations took place in the first 14 days of therapy, and consisted of: (i) increased CD4+ CD45RA+/CD4+ CD45RO+ ratio; (ii) decrease of CD95/Fas expression. The rise in absolute number of CD4+ CD45RA+ cells was paralleled by an increase of CD4+ CD95/Fas? cells and accounted for most of the early increment of CD4+ cell count. The TCR Vβ repertoire of CD4+ cells was conserved after anti-HIV therapy, with the exception of two patients with expanded CD4+ Vβ12+ cells, which also tested CD45RA+ and CD95/Fas?. These experiments show that newcomer CD4+ lymphocytes are CD45RA+ CD95/Fas? cells, suggesting that blocking HIV replication causes an early and antigen-independent proliferation of possibly ‘naive’ cells unprimed for CD95/Fas-mediated apoptosis. These cells expressed a conserved and widespread TCR repertoire, suggesting that their capability for antigenic recognition is intact.  相似文献   

14.
CD3+ T cells expressing the 110-kDa CD57 antigen are found in survivors of renal, cardiac and bone marrow transplants, in patients with acquired immune deficiency syndrome and in patients with rheumatoid arthritis. They are also present in normal individuals and expand upon ageing. They do not grow in culture and their role in the immune response is poorly understood. The expression of the various isoforms of the leukocyte common antigen (CD45) identifies a spectrum of differentiation in CD4+ and CD8+ T cells ranging from naive (CD45RA+CD45RBbrightCD45RO?) through early primed cells (CD45RA?RBbrightROdull) to highly differentiated memory cells which are CD45RA?RBdullRObright. CD45 isoforms expressed by CD57+ T cells showed distinct differences between CD4+ and CD8+ populations, but in each case indicated an advanced state of differentiation. The expression of T cell receptor Vβ families was highly variable between individuals, but both CD57+ and CD57? cells show a full range of the specificities tested. Vβ expression was more closely related within either the CD4+ or the CD8+ subsets, irrespective of CD57 expression, than between these subsets, suggesting a relationship between CD57+ and CD57? cells within the same T cell pool. This possibility was supported by experiments showing that CD3+CD57+ lymphocytes were similar to CD3+CD57? T cells in terms of the production of basic T cell cytokines [interleukin (IL)-2, IL-4, and interferon-γ]. Furthermore, in vitro stimulation of CD3+CD57? T cells in secondary mixed leukocyte reaction or by co-culture with IL-2 and IL-4 induced the appearance of CD3+CD57+ cells with phenotypic and functional similarities to in vivo CD3+CD57+ cells. These data strongly suggest that the expression of CD57 is a differentiation event which occurs on CD57? T cells late in the immune response.  相似文献   

15.
The leukocyte common antigen isoforms CD45RA and CD45RO havelong been used to discriminate human naive and memory T cellsrespectively. This model was largely based on the observationthat CD45RO+ T cells respond preferentially to and show a higherfrequency of precursors specific for recall antigens. However,CD45RA+ T cells have more stringent requirements for stimulationand standard in vitro assays may favour CD45RO+ cells in thisrespect. We tested the hypothesis that CD45RAf T cells respondpoorly to in vitro stimulation with recall antigens becauseof inadequate stimulation rather than a lack of precursors.Limiting dilution analyses (LDA) for tetanus toxoid (lT)-specificT cells were performed in the presence or absence of exogenousantLCD28 antibody. Addition of antLCD28 yielded no proliferationin the absence of specific antigen. The precursor frequencyfor lT in the CD4+ CD45RO+ population was –1:4000, whilethe frequency of CD4+ CD45RA+ T cells specific for lT was 4-to >>20-fold lower. Addition of anti-CD28 antibody didnot significantly alter the apparent precursor frequency forCD45RA+ cells but yielded an enhancement of the value for CD45RA+cells by 3- to >>5-fold. No enhancement of antigen-specificproliferation by antLCD28 was observed with CD45RA+ T cellsderived from cord blood, although phytohemagglutinin responsesof these cells were amplified by CD28 antibody. These resultsindicate that conventional LDA underestimate the true precursorfrequency of antigen-specific cells within the adult CD45RA+population and support the possibility that a small number ofcells revert from a primed (CD45RO+) to an unprimed (CD45RA+)state. The majority of memory T cells, however, appear to residein the CD45RO+ population  相似文献   

16.
The differential expression of CD45 isoforms has been suggested as a marker for stages of post-thymic T cell development, that is, CD45RA+CD45R0? T cells and CD45RA?CD45R0+ T cells are supposed to be virgin and memory cells respectively. Recently, several adhesion molecules have been shown to be up-regulated on the cell surface of memory T cells, and have been suggested to serve as a memory marker. In this study, we investigated the levels of LFA-1 expression on T cells in various subpopulations defined by CD45 isoform expression in donors of various ages. In CD4+ T cells, the proportion of LFA-1high cells among CD45RAhighCD45R0-T cells remained low in all age groups and did not show significant accumulation with age. CD4+CD45RA?CD45R0highTcells expressed LFA-1 at a higher level than CD4+CD45RAhighCD45R0? T cells. Thus, the currently prevailing view that CD45RA and CD45R0 can be markers for virgin and primed cells was consistent with LFA-1 expression in CD4+ T cell population. In CD8+ T cells, however, CD45RAhighCD45R0? T cells consisted of two distinct subpopulations, LFA-1low and LFA-1high cells, whereas CD45RA?CD45R0high T cells were almost exclusively LFA-1high When CD29 expression was examined in place of LFA-1 expression, similar results were obtained; CD45RAhigh CD45R0? T cells consisted of two distinct subpopulations, CD29-to low and CD29high cells, while CD45RA-CD45R0high T cells were mostly CD29high. The proportion of LFA-1high cells in the CD8+CD45RAhigh T cell subpopulation increased significantly as a function of age (r = 0.9, p < 0.001). It ranged from 8% in a 14-year-old donor to 94% in a 79-year-old donor. Furthermore, the proportion of CD8+CD45RAhighLFA-1high cells in the CD8+ T cell population increased significantly as a function of age (r = 0.85, p < 0.001). On the other hand, the proportion of LEA-1high cells in CD8+CD45RA? T cell subpopulation exceeded 90% in most donors irrespective of age. These results indicate that the CD8+CD45RAhighCD45R0? T cell subpopulation contains a considerable number of LFA-1high cells and CD29high cells, phenotypically similar to previously activated cells. Thus, in terms of LFA-1 and CD29 expressions, the simple scheme that CD45RA is a marker of virgin cells is not applicable to the CD8+ T cell population.  相似文献   

17.
CD45RA+ cells have been described to be less responsive to CD3/T cell receptor (TcR)-mediated activation than CD45R0+ T cells. To analyze the underlying mechanism of the differential responses we compared CD3/TcR-triggered tyrosine phosphorylation in the two subsets and studied the role of co-stimulatory signals provided either by accessory cells or pharmacologic activation of protein kinase C by phorbol ester. Stimulation of purified CD45RA+ and CD45R0+ T cells with CD3/TcR antibodies induced similar patterns and intensities of tyrosine phosphorylation in the two subsets, but no proliferation. If accessory cells were used as the source of co-stimulatory signals, strong expression of the 55-kDa chain of the interleukin-2 (IL-2) receptor (CD25), significant IL-2 production and vigorous proliferation were observed in CD45R0+ cells, whereas CD45RA+ cells responded weakly. However, when CD3/TcR-mediated triggering was combined with activation of protein kinase C by phorbol ester, CD45RA+ cells responded strongly. These data indicate that the transmembrane signaling capacity of the T cell receptor expressed by CD45RA+ and CD45R0+ cells is similar and, therefore, is presumably not responsible for the differential reactivities of the two subsets. It is more likely that co-stimulatory signals determine whether CD3/TcR-initiated activation results in strong or weak responses.  相似文献   

18.
Previously, we showed that CD11c defines a novel subset of CD8+ T cells whose in vivo activity is therapeutic for arthritis; however, the mechanisms directing their development, identity of their precursors, and basis of their effector function remain unknown. Here, we show that the novel subset develops from CD11csurface?CD8+ T cells and undergoes robust expansion in an antigen‐ and 4‐1BB (CD137)‐dependent manner. CD11c+CD8+ T cells exist in naïve mice (<3%) with limited suppressive activity. Once activated, they suppress CD4+ T cells in vivo and in vitro. Suppression of CD4+ by CD11c+CD8+ T cells is related to an increase in IDO activity induced in competent cells via the general control non‐derepressible‐2 pathway. CD11c+CD8+ T cells are refractory to the effect of IDO but constrict in a novel 1‐methyl D ,L ‐tryptophan‐dependent mechanism resulting in reversal of their suppressive effects. Thus, our data uncover, for the first time, the origin, development, and basis of the suppressive function of this novel CD11c+CD8+ T‐cell subpopulation that has many signature features of Treg.  相似文献   

19.
Human CD93 has a molecular weight of about 100 kDa and is selectively expressed by myeloid cell lineages in peripheral blood (PB) mononuclear cells. Although CD93 was initially identified as a receptor for complement component 1, subcomponent q phagocytosis (C1qRp) involved in the C1q-mediated enhancement of the phagocytosis of various antigens, several recent studies have reported that CD93 is not a receptor for the C1q-mediated enhancement of phagocytosis. The expression patterns of CD93 have been previously investigated in PB mononuclear cells (lymphocytes, monocytes, and granulocytes) from adult PB and neonatal umbilical cord blood (UCB), and the expression of CD93 was not found on lymphocytes from either normal adult PB or neonatal UCB. However, the detection of CD93 expression in neonatal UCB using CD93 monoclonal antibodies (mAbs) that recognize different antigenic epitopes remains poorly understood. In this study, we examined the expression of CD93 on lymphocytes, monocytes, and granulocytes from neonatal UCB using four different types of CD93 mAb detection probes, mNI-11, R139, R3, and X-2, using flow cytometric and western blot analyses. We found that CD93, as defined using all four mAbs, was expressed on monocytes and granulocytes in PB mononuclear cells from adult PB and neonatal UCB. On the other hand, we observed for the first time that the expression of CD93 on lymphocytes in neonatal UCB can only be detected using the mNI-11 mAb, established in our laboratory, and not with commercially available CD93 mAbs (R139, R3, and X-2). However, CD93 expression on lymphocytes from normal adults was not detected using any of the four CD93 mAbs. Two-color flow cytometric analyses showed that the CD93 recognized by mNI-11 mAb was expressed on CD3+ T lymphocytes (mainly CD4+ helper T lymphocytes), but not on CD19+ B lymphocytes or on CD8+ suppressor/cytotoxic T lymphocytes from neonatal UCB. In addition, CD93 was expressed on CD45RA+ (naive antigen) lymphocytes from neonatal UCB, but not on CD45RO+ (memory antigen) lymphocytes from neonatal UCB or on CD45RA+ and CD45RO+ lymphocytes from normal adult PB. Three-color flow cytometric analysis showed that CD93 was co-expressed on naive T lymphocytes (CD4+CD45RA+) from neonatal UCB. In a western blot analysis, the CD93 mAb (mNI-11) immunoprecipitated at a molecular weight of 98 kDa, identified as a CD93 molecule, in the CD4+CD45RA+ cells from neonatal UCB but not from adult PB, similar to the results in the human monocyte-like cell line U937 (human CD93-positive cells). Taken together, these results provide the first direct evidence of a novel/naive cell population (CD4+CD45RA+CD93+) in neonatal UCB that may have an important role in cell biology, transplantation, and immature/mature immune responses.  相似文献   

20.
Absence of CD7 is a stable phenotype in a subset of normal human T cells. Most circulating CD7 T cells express the CD4+CD45RO+CD45RA memory phenotype. We analysed CD4+CD45RA peripheral blood lymphocytes that were separated into CD7+ and CD7 for their in vitro cytokine secretion in response to different stimuli. The CD4+CD7 subpopulation was found to secrete significantly higher levels of IL-5 compared with the CD4+CD7+ subset upon stimulation with ionomycin/phorbol myristate acetate (PMA) plus anti-CD28 MoAbs. In contrast to IL-5 secretion, IL-4 and interferon-gamma (IFN-γ) secretion was not significantly different in CD7+ and CD7 T cells upon stimulation in vitro. The data indicate that the CD4+CD7 T cell represents the majority of IL-5-secreting cells within the population of CD4+CD45RA memory T cells. Since CD4+CD7 T cells were found to be enriched in various skin lesions associated with eosinophilic infiltration, the results of our study support the hypothesis that skin-infiltrating CD7 T cells are one of the major sources of IL-5 responsible for the development of eosinophilic inflammation in certain skin diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号