首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied a patient with a mitochondrial encephalomyopathy characterized by the presence of all the cardinal features of both myoclonic epilepsy and ragged-red fibers (MERRF) and mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS) syndromes. Muscle biopsy showed ragged-red fibers (RRF). Some RRF were cytochrome c oxidase (COX)-negative, while some others stained positive for COX. Muscle biochemistry revealed defects of complexes I and IV of the respiratory chain. Both muscle and blood mitochondrial DNA from the patient showed the presence of the mutation at nucleotide position 3243 in the tRNALeu(UUR) gene and the absence of point mutations related to MERRF syndrome. The proportions of mutant mtDNA were 70% in muscle and 30% in blood. The mutation was absent in blood from all maternal relatives, in hair follicles from the mother, and in muscle from one sister of the proband. Therefore, there was no evidence of maternal inheritance. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
We present an autopsied case with A8344G‐mutated myoclonus epilepsy with ragged red fibers (MERRF)/mitochondrial encephalomyopathy with lactic acidosis and stroke‐like episodes (MELAS) overlap syndrome accompanied by stroke‐like episodes localized to the precentral gyrus. A 16‐year‐old Japanese woman suddenly experienced repetitive consciousness disturbances with increased serum lactate and creatine kinase levels. Magnetic resonance imaging showed abnormal intensity of bilateral precentral gyrus. She was clinically diagnosed as having a mitochondrial disorder and the A8344G mutation was detected in mitochondrial DNA. At 17 years of age, she died from congestive heart failure secondary to a third episode of lactic acidosis. Neuropatho‐logically, multifocal laminar necrosis, which is responsible for stroke‐like episodes in MELAS, was seen in the frontal cortex including the precentral gyrus, but there was no neuronal loss and gliosis in the basal ganglia, cerebellum, and brainstem, which were compatible with MERRF. Hypertrophy of the vascular smooth muscle and choroidal epithelium were seen, and were strongly visualized by an anti‐mitochondrial antibody. Skeletal muscles showed uneven muscular diameters, increased central nuclei, and ragged red fibers (RRFs). Decreased cytochrome c oxidase (COX) activity and strongly succinate dehydrogenase (SDH)‐reactive blood vessels were also noted. Stroke‐like episodes in MERRF/MELAS overlap syndrome are thought to be rare in the frontal cortex including the precentral gyrus. Only two cases of MERRF/MELAS overlap syndrome with A8344G mutation, including this case, have shown stroke‐like episodes in the frontal lobes. Other than the A8344G mutation and frontal lobe involvement, they had a high degree of similarity in terms of presence of RRFs, gastrointestinal dysfunction, and lack of typical MERRF neuropathology. In conclusion, this is an important case describing the clinical spectrum associated with A8344G‐mutated MERRF/MELAS overlap syndrome.  相似文献   

3.
A rare point mutation at nucleotide position 8356 in the transfer RNA gene in mitochondrial DNA was found in a Japanese family. Our proband had migraine and dementia associated with lactic acidosis in addition to myoclonic epilepsy with ataxia and ragged-red fibres in a muscle biopsy specimen consistent with the clinical characteristics of myoclonic epilepsy with ragged-red fibres (MERRF). His mother, who had the same point mutation, also had migraine but without myoclonus or ataxia. His aunt, who had the same point mutation and migraine, developed diabetes mellitus, encephalomyopathy and several stroke-like episodes associated with lactic acidosis (MELAS). This is the third family with the rare mutation seen in American and Italian families. The mutation may not be specific to Caucasians, and is probably closely related to the MERRF/MELAS overlap syndrome.  相似文献   

4.
目的 调查1个疑似患有母系遗传性线粒体脑肌病伴高乳酸血症和脑卒中样发作(MELAS)综合征家系的临床表现、生物化学检测数据和影像学资料,并探索其与血细胞线粒体基因突变异质性水平的关联性.方法 收集先证者和11位其母系家系成员的一般情况、抽搐及脑卒中样发作等病史,检测家系成员的血常规和运动前后血浆乳酸水平等生化指标,并做头颅磁共振检查.用聚合酶链反应(PCR)-限制性内切酶片段长度多态和DNA测序法检测其成员是否存在线粒体基因组A3243G点突变,并用荧光实时定量PCR定量该突变的水平.结果 该家系部分成员存在抽搐、脑卒中样发作和高乳酸血症等MELAS综合征典型症状,以及身材矮小、运动不耐受和发热、偏头痛等非典型症状.发作期头颅磁共振成像符合MELAS综合征的典型特点,且普遍存在小脑萎缩.母系亲属均存在线粒体基因的A3243G位点点突变,突变异质性水平越高,症状越典型且严重.结论 该调查家系确诊母系遗传性MELAS综合征,其致病基因为线粒体A3243G点突变.外周血血细胞线粒体基因突变异质性水平与亲缘关系、抽搐早现性和血乳酸值等临床表型存在相关性.  相似文献   

5.
MERRF/MELAS overlap syndrome in a family with A3243G mtDNA mutation   总被引:3,自引:0,他引:3  
Four members of a family were found to carry the A3243G mtDNA mutation. Clinical features varied from typical MELAS to myoclonic epilepsy to simple deafness without neurological signs. Several other members of the family had symptoms consistent with a mitochondrial disease. Muscle biopsy in 3 of the 4 patients showed the most prominent mitochondrial alterations with partial deficiency of cytochrome c oxidase in the case with the mildest phenotype. Mitochondrial DNA analysis detected a variable percentage of A3243G mutation, roughly correlating with the phenotype. The interesting feature of the family lies in the great intrafamilial variability of the severity of clinical expression, encompassing MELAS and MERRF features, associated with the A3243G mtDNA mutation. A search for the most common mtDNA mutations is recommended in all patients featuring incomplete MELAS or MERRF syndromes and in all familial cases presenting minimal clinical signs.  相似文献   

6.
We performed a neuropathological examination of the central nervous system from seven autopsied patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Five of the seven cases were confirmed to have the mitochondrial DNA (mtDNA) 3243 point mutation. In addition to the changes reported previously, diffuse atrophy of the cerebral and cerebellar cortices, diffuse gliosis of cerebral and cerebellar white matter, and cactus formation of Purkinje cells were observed. Electron microscopy revealed accumulation of mitochondria in the cactus formations. These lesions are common in MELAS with the mtDNA 3243 point mutation, but cannot be explained solely by mitochondrial angiopathy, and suggest that intrinsic mitochondrial malfunction contributes to neuronal damage in MELAS pathology. Moreover, the pathological changes observed in the cerebellum suggest that cerebellar function should be evaluated more carefully at the clinical level. Received: 3 December 1998 / Accepted: 21 April 1999  相似文献   

7.
8.
The A to G transition at nt.3243 of the tRNALeu(UUR) gene of mtDNA, commonly associated with MELAS, was detected in several members of a family affected by a maternally inherited form of hypertrophic cardiomyopathy. These findings suggest adding cardiomyopathy in the list of phenotypes associated with the 3243 mutation. © 1997 John Wiley & Sons, Inc. Muscle Nerve, 20, 221–225, 1997.  相似文献   

9.
We studied two pedigrees with a mutation at the nucleotide 3243 of mitochondrial DNA (mtDNA). The proband from the first pedigree had clinically defined MELAS plus maternally transmitted insulin-dependent diabetes mellitus (IDDM). The propositus of the other pedigree had exercise intolerance, lactic acidosis and ragged-red fibers (RRF). In the first pedigree, both the mother and the sister's proband harbored the point mutation in their muscle. The mother had 40% of mutant mitochondrial genomes and the sister 70%. In the second pedigree, the mutation was present in both muscle and blood from the proband as well as in blood from all other members studied. Proportion of mutant mtDNA was 90% in muscle and ranged from 40% to 90% in blood.  相似文献   

10.
The 13513G>A mutation in the ND5 gene of mitochondrial DNA (mtDNA) is usually associated with mitochondrial encephalomyopathy with lactate acidosis and stroke‐like episodes (MELAS), or Leigh syndrome (LS). In this study, we describe three young Chinese patients with MELAS/LS overlap syndrome who carried the m.13513G>A mutation. Clinical and MRI features were characteristic of both MELAS and LS. Interestingly, the clinical presentation of this overlap syndrome could be variable depending on the degree of relative contribution of MELAS and LS, that is, MELAS as the initial presenting syndrome, LS as the predominant syndrome, or both MELAS and LS appearing at the same time. The final brain MRI showed findings characteristic of both MELAS and LS, with asymmetrical lesions in the cortex and subcortical white matter of the occipital, temporal, and frontal lobes (MELAS), and bilateral and symmetrical lesions in the basal ganglia and brainstem (LS). Brain autopsy in one case revealed infarct‐like lesions in the cerebral cortex, basal ganglia and brainstem, providing further insight into the distribution of the pathological lesions in MELAS/LS overlap syndrome. This is the first report of the brain pathological changes in a patient with m.13513G>A mutation. The spatial distribution of infarct‐like lesions in the brain could explain the symptoms in MELAS/LS overlap syndrome.  相似文献   

11.
OBJECTIVE--To verify the phenotype to genotype correlations of mitochondrial DNA (mtDNA) related disorders in an atypical maternally inherited encephalomyopathy. METHODS--Neuroradiological, morphological, biochemical, and molecular genetic analyses were performed on the affected members of a pedigree harbouring the heteroplasmic A to G transition at nucleotide 3243 of the mitochondrial tRNALeu(UUR), which is usually associated with the syndrome of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). RESULTS--The proband was affected by a fullblown syndrome of myoclonic epilepsy with ragged red fibres (MERRF), severe brain atrophy, and basal ganglia calcifications, without the MRI T2 hyperintense focal lesions which are pathognomonic of MELAS. Oligosymptomatic relatives were variably affected by lipomas, goitre, brain atrophy, and basal ganglia calcifications. Muscle biopsies in the proband and his mother showed a MELAS-like pattern with cytochrome c oxidase hyperreactive ragged red fibres and strongly succinate dehydrogenase reactive vessels. Quantification of the A3243G mutation disclosed 78% and 70% of mutated mtDNA in the muscle of the severely affected proband and of his oligosymptomatic mother respectively. Nucleotide sequencing of the mitochondrial tRNALeu(UUR) and tRNALys in the proband's muscle failed to show any additional nucleotide change which could account for the clinical oddity of this pedigree by modulating the expression of the primary pathogenic mutation. CONCLUSION--So far, MERRF has been associated with mutations of the mitochondrial tRNALys, and MELAS with mutations of the mitochondrial tRNALeu(UUR). Now MERRF may also be considered among the clinical syndromes associated with the A to G transition at nt 3243 of the tRNALeu(UUR).  相似文献   

12.
Mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) is the most common mitochondrial disease due to mitochondrial DNA (mtDNA) mutations. At least 15 distinct mtDNA mutations have been associated with MELAS, and about 80% of the cases are caused by the A3243G tRNA(Leu(UUR)) gene mutation. We report here a novel tRNA(Val) mutation in a 37-year-old woman with manifestations of MELAS, and compare her clinicopathological phenotype with other rare cases associated tRNA(Val) mutations.  相似文献   

13.
We report myoclonic epilepsy with ragged-red fibers (MERRF) syndrome in a Chinese family with confirmed mitochondrial DNA point mutation. Six members of the family including the grandmother, two siblings, and three grandchildren were affected. Among them, action myoclonus was seen in five; short stature, muscle weakness, and mental retardation in four; lactic acidosis, hearing impairment, and ataxia in two; and seizures in one. Muscle biopsy from two affected siblings revealed ragged-red fibers and abundant subsarcolemmal mitochondria with paracrystalline inclusions. Pedigree analysis suggests a maternal transmission. Analysis of mitochondrial DNA showed a point mutation from A to G at the 8344th nucleotide position located in the tRNALys gene. To our knowledge, this is the first report of MERRF syndrome with such genetic defect from a Chinese family. The present and previous reports support the notion that mitochondrial DNA point mutation at the 8344th nucleotide position is the most common cause of MERRF syndrome. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
Summary Mitochondrial respiratory chain function was investigated with polarographic and enzymatic studies, and correlated with immunoblot studies using a battery of probes against respiratory chain holocomplexes in a series of patients with myoclonus epilepsy and ragged red fibers (MERRF) syndrome. State III respiration rates in intact skeletal muscle mitochondria were normal in two cases, suggested site I deficiency in one case and a midrespiratory defect in another. Immunological studies of complex I showed reduced levels of several subunits with the apparent absence of two bands (which at 45 and 42 kDa, coincide with the predicted electrophoretic mobility of the ND5 gene product) in one case. Complex I, III and IV composition was normal in the other three cases indicating no major disruption of complex assembly. A differing severity of skeletal muscle respiratory chain impairment in a group of unrelated patients with severe cerebral clinical involvement is best explained by uneven tissue distribution between brain and muscle of a heteroplasmic mtDNA mutation. The relationship between MERRF and mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) encephalopathies is reappraised by extension of this hypothesis.  相似文献   

15.
Mitochondrial disorders are frequently caused by mutations in mitochondrial genes and usually present as multisystem disease. One of the most frequent mitochondrial mutations is the A3,243G transition in the tRNALeu(UUR) gene. The phenotypic expression of the mutation is variable and comprises syndromic or non-syndromic mitochondrial disorders. Among the syndromic manifestations the mitochondrial encephalopathy, lactacidosis, and stroke-like episode (MELAS) syndrome is the most frequent. In single cases the A3,243G mutation may be associated with maternally inherited diabetes and deafness syndrome, myoclonic epilepsy and ragged-red fibers (MERRF) syndrome, MELAS/MERRF overlap syndrome, maternally inherited Leigh syndrome, chronic external ophthalmoplegia, or Kearns-Sayre syndrome. The wide phenotypic variability of the mutation is explained by the peculiarities of the mitochondrial DNA, such as heteroplasmy and mitotic segregation, resulting in different mutation loads in different tissues and family members. Moreover, there is some evidence that additional mtDNA sequence variations (polymorphisms, haplotypes) influence the phenotype of the A3,243G mutation. This review aims to give an overview on the actual knowledge about the genetic, pathogenetic, and phenotypic implications of the A3,243G mtDNA mutation.  相似文献   

16.
目的 报道1例线粒体DNA G13513A点突变所致线粒体脑肌病伴高乳酸血症和脑卒中样发作(MELAS)/Leigh重叠综合征的临床、影像学、神经病理学改变特点.方法 患者为22岁女性,反复出现头痛、视力下降和肢体抽动11年,因癫疴持续状态而死亡.之前多次MRI检查发现大脑皮质大片长T1长T2异常信号,病灶从枕叶开始,逐渐波及顶叶,疾病后期累及双侧基底节区及脑干灰质核团.对患者进行脑局部尸体解剖检查,取肌肉标本进行线粒体基因检查.结果 各个脑叶皮质以及双侧纹状体和中脑四叠体可见多灶性层样分布的海绵样改变,出现胶质增生、毛细血管内皮细胞增生以及较多单核细胞反应,其中双侧枕叶和顶叶的皮质全层以及皮质下白质被严重累及.基因检查显示线粒体还原型烟酰胺腺嘌呤二核苷酸脱氢酶5基因存在G13513A点突变.结论 MELAS/Leigh重叠综合征的临床表现以皮质损害为主,影像学改变提示病变先累及大脑皮质,而后累及脑干和基底节区,出现海绵样改变伴随毛细血管增生.  相似文献   

17.
We describe a family with two cases of adult-onset mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. Interestingly, the proband also had non-insulin dependent diabetes mellitus and hyperthyroidism. Endocrinological studies demonstrated a high titer of TSH receptor antibody in the proband and elevated levels in her maternal relatives. Analysis of mitochondrial DNA (mtDNA) showed an A-to-G transition at nucleotide position 3243 in the tRNALeu(UUR) gene (A3243G) in the three generations of the family. Furthermore, a previously described ~ 260 bp tandem duplication in the D-loop region of mtDNA was also found in the proband and her maternal relatives. To our knowledge, such kind of duplication has never before been reported in the MELAS syndrome. The proportions of mtDNA with the ~260 bp tandem duplication and A3243G point mutation were 12.5% and 82% in the muscle, respectively, and 1.6% and 35% in the blood cells, respectively, of the proband. We conclude that the hyperthyroidism in this MELAS patient may be related to the tandem duplication in the D-loop of mtDNA. This study further substantiates the importance of searching for additional genetic mutations in mitochondrial encephalomyopathic patients with new clinical phenotypes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号