首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Attention deficit hyperactivity disorder (ADHD) can coexist with epilepsy. Spontaneously hypertensive rats (SHRs) are considered to model ADHD with overactivity, impulsiveness, deficient sustained attention, and alterations in circadian autonomic profiles. The present study explored spontaneous recurrent seizures (SRSs) and behavioral diurnal activity rhythms in normotensive Wistar rats and SHRs in the kainate model of epilepsy. Rats were video monitored (24 h/3 months) to detect SRSs. SHRs manifested a lower seizure frequency during the light phase in the 8th and 10th weeks and a lower frequency of SRSs during the night phase accompanied by attenuated responses in hyperexcitability tests. Both epileptic strains were hyperactive, with lower anxiety levels, and their diurnal rhythms were abolished. Epileptic Wistar rats and SHRs exhibited less exploration during the dark phase. This study suggests that SHRs may be useful in modeling some aspects (particularly hypertension-related diurnal rhythm disturbance) of behavior associated with epilepsy.  相似文献   

2.
Melatonin is involved in the control of circadian and seasonal rhythmicity, possesses potent antioxidant activity, and exerts a neuroprotective and anticonvulsant effect. Spontaneously hypertensive rats (SHRs) are widely accepted as an experimental model of essential hypertension with hyperactivity, deficient sustained attention, and alterations in circadian autonomic profiles. The purpose of the present study was to determine whether melatonin treatment during epileptogenesis can prevent the deleterious consequences of status epilepticus (SE) in SHRs in the kainate (KA) model of temporal lobe of epilepsy (TLE). Spontaneous recurrent seizures (SRSs) were EEG- and video-recorded during and after the treatment protocol. Melatonin (10 mg/kg diluted in drinking water, 8 weeks) increased the seizure-latent period, decreased the frequency of SRSs, and attenuated the circadian rhythm of seizure activity in SHRs. However, melatonin was unable to affect the disturbed diurnal rhythms and behavioral changes associated with epilepsy, including the decreased anxiety level, depression, and impaired spatial memory. Melatonin reduced neuronal damage specifically in the CA1 area of the hippocampus and piriform cortex and decreased hippocampal serotonin (5-HT) levels both in control and epileptic SHRs. Although long-term melatonin treatment after SE shows a potential to attenuate seizure activity and neuronal loss, it is unable to restore epilepsy-associated behavioral abnormalities in SHRs.  相似文献   

3.
The lithium-pilocarpine (Li-Pilo) model of epilepsy reproduces most of the features of human temporal lobe epilepsy. After having studied the metabolic changes occurring during the silent phase, in the present study, we explored the relationship between interictal metabolic changes and neuronal loss during the chronic phase following status epilepticus (SE) induced by Li-Pilo in 10-day-old (P10), 21-day-old (P21), and adult rats. Rats were observed and their EEG was recorded to detect the occurrence of spontaneous recurrent seizures (SRS). Local cerebral glucose utilization was measured during the interictal period of the chronic phase, between 2 and 7 months after SE, by the [(14)C]2-deoxyglucose method in rats subjected to SE at P10, P21, or as adults. Neuronal damage was assessed by cell counting on adjacent cresyl violet stained sections. When SE was induced at P10, rats did not become epileptic, did not develop lesions and cerebral glucose utilization was in the normal range 7 months later. When SE was induced in adult rats, they all became epileptic after a mean duration of 25 days and developed lesions in the forebrain limbic areas, which were hypometabolic during the interictal period of the chronic phase, 2 months after SE. When SE was induced in P21 rats, 24% developed SRS, and in 43% seizures could be triggered (TS) by handling, after a mean delay of 74 days in both cases. The remaining 33% did not become epileptic (NS). The three groups of P21 rats developed quite comparable lesions mainly in the hilus of the dentate gyrus, lateral thalamus, and entorhinal cortex; at 6 months after SE, the forebrain was hypometabolic in NS and TS rats while it was normo- to slightly hypermetabolic in SRS rats. These data show that interictal metabolic changes are age-dependent. Moreover, there is no obvious correlation, in this model, between interictal hypometabolism and neuronal loss, as reported previously in human temporal lobe epilepsy.  相似文献   

4.
The relationship between free radical and scavenger enzymes has been found in the epileptic phenomena and reactive oxygen species have been implicated in seizure-induced neurodegeneration. Using the epilepsy model obtained by systemic administration of pilocarpine (PILO) in rats, we investigated the superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities as well as the hydroperoxide (HPx) concentration in the hippocampus of rats during status epilepticus (SE), silent and chronic periods. The enzyme activities as well as the HPx concentration were measured using spectrophotometric methods and the results compared to values obtained from saline-treated animals. The SOD activity decreased after long-lasting SE period and during the chronic phase. In addition, HPx levels increased in same periods whereas the GPx activity increased only in the hippocampus of animals submitted to 1 h of SE. Animals presenting partial seizures, those submitted to 5 h of SE and animals from the silent period (seizure free) showed normal levels of SOD, GPx and HPx. These results show a direct evidence of lipid peroxidation during seizure activity that could be responsible for neuronal damage in the hippocampus of rats, during the establishment of PILO model of epilepsy.  相似文献   

5.
Previous studies have shown that the susceptibility to pilocarpine-induced status epilepticus (SE) in female rats changes according to estrous cycle phases. These studies have also shown that following pilocarpine administration changes occur in gonadal, hypophyseal and hypothalamic hormones that could contribute for the sequence of the epileptic events. Accordingly, the present work aimed to investigate the role of sexual hormones withdrawal on the development of the pilocarpine model of epilepsy in female rats. With this purpose, castrated and non-castrated adult female Wistar rats were injected with pilocarpine and some characteristic parameters of the experimental model were observed. The results showed increased mortality after pilocarpine injection in the castrated rats when compared with non-castrated females. The latency period for SE onset and for the first spontaneous seizure was decreased in castrated when compared with non-castrated animals. The mossy fiber sprouting measured by neo-Timm scale during the chronic period, reached grade 3 for castrated epileptic rats while the non-castrated epileptic rats showed grade 2. Our results indicate that castration interferes with the epileptogenesis in the pilocarpine model of epilepsy suggesting that female sexual hormones could have protective effects against pilocarpine-induced SE.  相似文献   

6.
As several epilepsy syndromes are associated with changes in sodium channel subunits we investigated the expression of beta1 sodium channel protein in a rat epilepsy model. In this model a chronic epileptic syndrome develops after electrically induced status epilepticus (SE). Many neuropathological characteristics of mesial temporal lobe epilepsy can be reproduced (cell loss, gliosis and synaptic reorganization). In control hippocampus beta1 subunit protein was moderately expressed in neurons and weakly expressed in resting astrocytes. beta1 sodium channel immunoreactivity increased markedly within 1 week after SE mainly in astrocytes that were colocalized with vimentin (marker for reactive astrocytes). This up-regulation was still present in reactive astrocytes of chronic epileptic rats (> 3 months after SE). Considering the fact that the beta1 subunits may function as cell adhesion molecules interacting with extracellular matrix, the observed increase in reactive astrocytes might subserve a function in cellular and synaptic reorganization during epileptogenesis.  相似文献   

7.
Our previous studies revealed that Angiotensin (Ang) II has anticonvulsant effects in acute seizure models. However, data on its role in experimental models of epilepsy are missing. In the present study, we tested whether posttreatment with Ang II after kainate (KA)-induced status epilepticus (SE) can affect epileptogenesis, concomitant behavioral changes, and brain damage. The Wistar rats were intracerebroventricularly infused via osmotic mini-pumps with Ang II (1.52 μg/μl/day for 28 days) after SE. Spontaneous motor seizures (SMS) were video-recorded for up to three months. Locomotor activity, anxiety, and depression-like behavior were evaluated during the last week of drug infusion, while spatial memory was assessed during the 3rd month after SE. Angiotensin II decreased the latency for onset of the first SMS and increased the frequency of SMS two months after SE. The continuous peptide infusion exacerbated the KA-induced hyperactivity and caused depression-like behavior. The reduced anxiety of KA-treated rats was alleviated by Ang II exposure. The KA-induced deficit in the hippocampal-dependent spatial memory was not influenced by Ang II. However, Ang II partially prevented the neuronal damage in the hippocampus, specifically in the CA1 area. The role of AT1 and AT2 receptor activation in the effects of the octapeptide is discussed.  相似文献   

8.
PURPOSE: To determine whether repeated seizures contribute to hippocampal sclerosis, we investigated whether cell loss in the (para) hippocampal region was related to the severity of chronic seizure activity in a rat model for temporal lobe epilepsy (TLE). METHODS: Chronic epilepsy developed after status epilepticus (SE) that was electrically induced 3-5 months before. The presence of neuronal damage was assessed by using Fluoro-Jade and dUTP nick end-labeling (TUNEL) of brain sections counterstained with Nissl. RESULTS: We found a negative correlation between the numbers of surviving hilar cells and the duration of the SE (r = -0.66; p < 0.01). In the chronic phase, we could discriminate between rats with occasional seizures (0.15 +/- 0.05 seizures per day) without progression and rats with progressive seizure activity (8.9 +/- 2.8 seizures/day). In both groups, the number of TUNEL-positive cells in parahippocampal regions was similar and higher than in controls. In the hippocampal formation, this was not significantly different from controls. Fluoro-Jade staining showed essentially the same pattern at 1 week and no positive neurons in chronic epileptic rats. CONCLUSIONS: Cell death in this rat model is related to the initial SE rather than to the frequency of spontaneous seizures. These results emphasize that it is of crucial importance to stop the SE as soon as possible to prevent extended cell loss and further progression of the disease. They also suggest that neuroprotectants can be useful during the first week after SE, but will not be very useful in the chronic epileptic phase.  相似文献   

9.
van Vliet EA  Aronica E  Redeker S  Gorter JA 《Epilepsia》2004,45(12):1506-1516
PURPOSE: Because drug transporters might play a role in the development of multidrug resistance (MDR), we investigated the expression of a vesicular drug transporter, the major vault protein (MVP), in a rat model for temporal lobe epilepsy. METHODS: By using real-time polymerase chain reaction (PCR) analysis and immunocytochemistry, we quantified MVP mRNA and protein from the dentate gyrus (DG) and parahippocampal cortex (PHC) taken from EEG-monitored rats at 1 week after electrically induced status epilepticus (SE) and at 5-9 months after SE, when rats exhibit spontaneous seizures. RESULTS: Within 1 week after SE, MVP mRNA levels increased in both DG and PHC compared with those in controls. In chronic epileptic rats, MVP mRNA was still significantly upregulated in the PHC, whereas in the DG, the expression returned to control levels. MVP protein increased within 1 day after SE in reactive microglial cells within most limbic regions; the hippocampus showed the highest expression at 1 week after SE. In chronic epileptic rats, MVP protein expression was largely decreased in most brain regions, but it was still high, especially in the piriform cortex. The occurrence of SE was a prerequisite for increased MVP expression, because no increase was found in electrically stimulated rats that did not exhibit SE. CONCLUSIONS: MVP expression is upregulated in chronic epileptic rats and may contribute to the development of pharmacoresistance.  相似文献   

10.
Malnutrition during the earliest stages of life may result in innumerable brain problems. Moreover, this condition could increase the chances of developing neurological diseases, such as epilepsy. We analyzed the effects of early-life malnutrition on susceptibility to epileptic seizures induced by the pilocarpine model of epilepsy. Wistar rat pups were kept on a starvation regimen from day 1 to day 21 after birth. At day 60, 16 animals (8 = well-nourished; 8 = malnourished) were exposed to the pilocarpine experimental model of epilepsy. Age-matched well-nourished (n = 8) and malnourished (n = 8) rats were used as controls. Animals were video-monitored over 9 weeks. The following behavioral parameters were evaluated: first seizure threshold (acute period of the pilocarpine model); status epilepticus (SE) latency; first spontaneous seizure latency (silent period), and spontaneous seizure frequency during the chronic phase. The cell and mossy fiber sprouting (MFS) density were evaluated in the hippocampal formation. Our results showed that the malnourished animals required a lower pilocarpine dose in order to develop SE (200 mg/kg), lower latency to reach SE, less time for the first spontaneous seizure and higher seizure frequency, when compared to well-nourished pilocarpine rats. Histopathological findings revealed a significant cell density reduction in the CA1 region and intense MFS among the malnourished animals. Our data indicate that early malnutrition greatly influences susceptibility to seizures and behavioral manifestations in adult life. These findings suggest that malnutrition in infancy reduces the threshold for epilepsy and promotes alterations in the brain that persist into adult life.  相似文献   

11.
PURPOSE: Iron accumulation in the brain has been associated with neurodegenerative disorders, including epilepsy. In our previous SAGE study, we showed that ferritin, an iron-storage protein, was one of the genes (Ferritin-H) that showed overexpression before the chronic epileptic phase. In this study we used ferritin as indicator for disturbed iron homeostasis to acquire insight into whether this could play a role in the pathogenesis of temporal lobe epilepsy. METHODS: With immunocytochemistry, we studied the regional and cellular distribution of ferritin protein in an animal model for temporal lobe epilepsy in which spontaneous seizures develop a few weeks after electrically induced status epilepticus (SE). RESULTS: Increased ferritin expression was observed in regions known to be vulnerable to cell death, mainly in reactive microglial cells of epileptic rats. Ferritin expression after SE was initially high, especially throughout the hippocampus, but decreased over time. In the chronic epileptic phase, it was still upregulated in regions where extensive cell loss occurs during the early acute and latent period. Within the parahippocampal region, the most persistent ferritin overexpression was present in microglial cells in layer III of the medial entorhinal area. The upregulation was most extensive in rats that had developed a progressive form of epilepsy with frequent seizures (approximately five to 10 seizures per day). CONCLUSIONS: The fact that ferritin upregulation is still present in specific limbic regions in chronic epileptic rats, when neuronal loss is absent or minimal, suggests a role of iron in the pathogenesis and progression of epilepsy.  相似文献   

12.
In human mesial temporal lobe epilepsy (mTLE), seizure occurrence peaks in the late afternoon and early evening. This temporal binding of seizures has been replicated in animal models of mTLE following electrically-induced status epilepticus (SE). We hypothesized that in chronic epilepsy, alterations of circadian excitatory and inhibitory functions of the dentate gyrus (DG), which is believed to regulate the generation of limbic seizures, pathophysiologically contribute to the temporal binding of ictogenesis. We performed electrophysiological single and paired pulse measurements hourly over 24h in the DG of epileptic rats (n=8) 8 weeks after electrically induced SE. Results were compared to individual data obtained before induction of SE and to those of control animals (n=3). Pre and post SE data were analyzed in two distinct phases of the day, i.e. a high-seizure phase between 2p.m. and 10p.m. and a low-seizure phase between 10p.m. and 2p.m. In chronic epileptic animals, latency of evoked potentials was significantly reduced in the high-seizure phase (p=0.027) but not in the low-seizure phase. Compared to baseline values, paired pulse inhibition was significantly increased during the low-seizure phase (interpulse interval (IPI) 25ms, p=0.003; IPI 30ms; p<0.001) but not in the high-seizure phase. Similarly, when compared to controls, inhibition at IPI 20ms was diminished only in the high-seizure phase (p=0.027). Thus, in chronic epileptic animals, DG excitability is increased in the afternoon and early evening possibly contributing to the time of day-dependency of spontaneous seizures in this model system of mTLE. Alterations of circadian DG excitability in epileptic animals may be influenced by changes in hypothalamus-regulated superordinate functions such as excretion of endocrine hormones but further studies are needed.  相似文献   

13.
PURPOSE: Previous studies in neonatal (postnatal day 10) and adult rats suggest that status epilepticus (SE) induces changes in the alpha1 subunit of the GABA(A) receptor (GABRA1) in dentate granule neurons (DGNs) that are age dependent and vary inversely with the likelihood of epilepsy development. In the present study, we examined GABRA1 expression after SE at postnatal day 20 (P20), an intermediate age when only a subset of SE-exposed animals develop epilepsy. METHODS: SE was induced with lithium-pilocarpine or kainate at P20. Animals were video-EEG monitored after SE to determine the presence or absence of spontaneous seizures. GABRA1 mRNA and protein levels were determined 7 days or 3 months later in SE-exposed and control animals by using a combination of aRNA amplification, Western blotting, and immunohistochemistry techniques. RESULTS: GABRA1 mRNA levels in DGNs of SE-exposed rats that did not become epileptic were higher than those in control rats, but were not different from DGNs in epileptic SE-exposed rats. GABRA1 protein levels in dentate gyrus were significantly increased in both epileptic and nonepileptic SE-exposed rats compared with controls. GABRA1 mRNA changes were region specific and did not occur in CA1 or CA3 areas of hippocampus. GABRA1 alterations were present by 1 week after P20 SE and were similar whether pilocarpine or kainate was used to induced SE. CONCLUSIONS: P20 SE results in persistent increases in GABRA1 levels selectively in dentate gyrus. These changes preceded the onset of epilepsy, were not model specific, and occurred in both epileptic and nonepileptic animals.  相似文献   

14.
Psychiatric disorders frequently occur in patients with epilepsy, but the relationship between epilepsy and psychopathology is poorly understood. Frequent comorbidities in epilepsy patients comprise major depression, anxiety disorders, psychosis and cognitive dysfunction. Animal models of epilepsy, such as the pilocarpine model of acquired epilepsy, are useful to study the relationship between epilepsy and behavioral dysfunctions. However, despite the advantages of mice in studying the genetic underpinning of behavioral alterations in epilepsy, mice have only rarely been used to characterize behavioral correlates of epilepsy. This prompted us to study the behavioral and cognitive alterations developing in NMRI mice in the pilocarpine model of epilepsy, using an anxiety test battery as well as tests for depression, drug-induced psychosis, spatial memory, and motor functions. In order to ensure the occurrence of status epilepticus (SE) and decrease mortality, individual dosing of pilocarpine was performed by ramping up the dose until onset of SE. This protocol was used for studying the consequences of SE, i.e. hippocampal damage, incidence of epilepsy with spontaneous recurrent seizures, and behavioral alterations. SE was terminated by diazepam after either 60, 90 or 120 min. All mice that survived SE developed epilepsy, but the severity of hippocampal damage varied depending on SE length. In all anxiety tests, except the elevated plus maze test, epileptic mice exhibited significant increases of anxiety-related behavior. Surprisingly, a decrease in depression-like behavior was observed in the forced swimming and tail suspension tests. Furthermore, epileptic mice were less sensitive than controls to most of the behavioral effects induced by MK-801 (dizocilpine). Learning and memory were impaired in epileptic mice irrespective of SE duration. Thus, the pilocarpine-treated mice seem to reflect several of the behavioral and cognitive disturbances that are associated with epilepsy in humans. This makes these animals an ideal model to study the neurobiological mechanisms underlying the association between epilepsy and psychopathology.  相似文献   

15.
海人酸颞叶癫痫模型及丙戊酸钠治疗作用的观察   总被引:1,自引:0,他引:1  
目的 建立海人酸癫痫动物模型并给予丙戊酸钠治疗,探讨其治疗作用。方法 42只Wistar大鼠置于立体定向仪上,于右侧海马注射海人酸制备大鼠癫痫模型。根据癫痫发作病程,随机分为急性期、静止期、慢性期等实验组;另设丙戊酸钠治疗组,分别于海人酸注射后24h和自发性癫痫出现后给予丙戊酸钠治疗。在实验过程中以视频录像监测大鼠症状的改变,深部脑电图观察癫痫的病理过程及丙戊酸钠治疗前后脑电活动的改变。组织切片经Nissl和Timm染色观察海马神经元数目、苔藓状纤维发芽。结果 (1)电生理学改变:海人酸注射后数分钟大鼠即出现癫痫发作并呈现急性期、静止期和慢性期等病变过程。脑电图于急性期和慢性期均表现为典型的癫痫发作电活动及发作间期表现。(2)病理学改变:海马神经元死亡主要出现在急性期,以实验侧CA3、CA4区最为明显,齿状回无明显神经元缺失。Timm染色显示从静止期开始出现苔藓状纤维发芽并进行性增加。(3)丙戊酸钠治疗前后症状的改变:早期应用丙戊酸钠治疗可抑制癫痫发作及其症状的发展;出现自发性癫痫后丙戊酸钠的治疗效果欠佳,停药后症状再次出现。结论 海人酸模型是模拟人类颞叶癫痫较为理想的动物模型。早期丙戊酸钠治疗效果较好,否则不能有效控制癫痫。  相似文献   

16.
Purpose:   The WAG/Rij strain of rats, a well-established model for absence epilepsy, has comorbidity for depression. These rats exhibit depression-like behavioral symptoms such as increased immobility in the forced swimming test and decreased sucrose intake and preference (anhedonia). These depression-like behavioral symptoms are evident in WAG/Rij rats, both at 3–4 and 5–6 months of age, with a tendency to aggravate in parallel with an increase in seizure duration. Here we investigated whether the behavioral symptoms of depression could be prevented by the suppression of absence seizures.
Methods:   Ethosuximide (ETX; 300 mg/kg/day, in the drinking water) was chronically applied to WAG/Rij rats from postnatal day 21 until 5 months. Behavioral tests were done before the cessation of the treatment. Electroencephalography (EEG) recordings were made before and after cessation of treatment to measure seizure severity at serial time-points.
Results:   ETX-treated WAG/Rij rats exhibited no symptoms of depression-like behavior in contrast to untreated WAG/Rij rats of the same age. Moreover, treated WAG/Rij rats did not differ from control age-matched Wistar rats. ETX treatment led to almost complete suppression of spike-wave discharges (SWDs) in 5–6 month old WAG/Rij rats. Discontinuation of chronic treatment was accompanied by a gradual emergence of SWDs; however, a persistent reduction in seizure activity was still present 47 days after discontinuation of the chronic treatment.
Discussion:   The results suggest that seizure activity is necessary for the expression of depression-like behavioral symptoms and confirm that epileptogenesis can be prevented by early and chronic treatment.  相似文献   

17.
Purpose:   We previously showed that gene expression of synaptic vesicle protein 2A (SV2A), the binding site for the antiepileptic drug levetiracetam, is reduced during epileptogenesis in the rat. Since absence of SV2A has been associated with increased epileptogenicity, changes in expression of SV2A could have consequences for the progression of epilepsy. Therefore we investigated hippocampal SV2A protein expression of temporal lobe epilepsy (TLE) patients and in rats during epileptogenesis and in the chronic epileptic phase.
Methods:   SV2A immunocytochemistry and Western blot analysis were performed on the hippocampus of autopsy controls, patients that died from status epilepticus (SE), and pharmacoresistant TLE patients. In addition, in epileptic rats, SV2A expression was determined after SE during the acute, latent, and chronic epileptic phase.
Results:   In control tissue, presynaptic SV2A was expressed in all hippocampal subfields, with strongest expression in mossy fiber terminals. SV2A positive puncta were distributed in a patchy pattern over the somata and dendrites of neurons. SV2A decreased throughout the hippocampus of TLE patients with hippocampal sclerosis (HS), compared to autopsy control, SE, and non-HS tissue. In most rats, SV2A was already decreased in the latent period especially in the inner molecular layer and stratum lucidum. Similarly as in humans, SV2A was also decreased throughout the hippocampus of chronic epileptic rats, specifically in rats with a progressive form of epilepsy.
Discussion:   These data support previous findings that reduced expression of SV2A could contribute to the increased epileptogenicity. Whether this affects the effectiveness of levetiracetam needs to be further investigated.  相似文献   

18.
A great number of clinical observations show a relationship between epilepsy and depression. Idiopathic generalized epilepsy, including absence epilepsy, has a genetic basis. The review provides evidence that WAG/Rij rats can be regarded as a valid genetic animal model of absence epilepsy with comorbidity of depression. WAG/Rij rats, originally developed as an animal model of human absence epilepsy, share many EEG and behavioral characteristics resembling absence epilepsy in humans, including the similarity of action of various antiepileptic drugs. Behavioral studies indicate that WAG/Rij rats exhibit depression-like symptoms: decreased investigative activity in the open field test, increased immobility in the forced swimming test, and decreased sucrose consumption and preference (anhedonia). In addition, WAG/Rij rats adopt passive strategies in stressful situations, express some cognitive disturbances (reduced long-term memory), helplessness, and submissiveness, inability to make choice and overcome obstacles, which are typical for depressed patients. Elevated anxiety is not a characteristic (specific) feature of WAG/Rij rats; it is a characteristic for only a sub-strain of WAG/Rij rats susceptible to audiogenic seizures. Interestingly, WAG/Rij rats display a hyper-response to amphetamine similar to anhedonic depressed patients. WAG/Rij rats are sensitive only to chronic, but not acute, antidepressant treatments, suggesting that WAG/Rij rats fulfill a criterion of predictive validity for a putative animal model of depression. However, more and different antidepressant drugs still await evaluation. Depression-like behavioral symptoms in WAG/Rij rats are evident at baseline conditions, not exclusively after stress. Experiments with foot-shock stress do not point towards higher stress sensitivity at both behavioral and hormonal levels. However, freezing behavior (coping deficits) and blunted response of 5HT in the frontal cortex to uncontrollable sound stress, increased c-fos expression in the terminal regions of the meso-cortico-limbic brain systems and greater DA response of the mesolimbic system to forced swim stress suggest that WAG/Rij rats are vulnerable to some, but not to all types of stressors. We propose that genetic absence epileptic WAG/Rij rats have behavioral depression-like symptoms, are vulnerable to stress and might represent a model of chronic low-grade depression (dysthymia). Both 5HT and DAergic abnormalities detected in the brain of WAG/Rij rats are involved in modulation of vulnerability to stress and provocation of behavioral depression-like symptoms. The same neurotransmitter systems modulate SWDs as well. Recent studies suggest that the occurrence and repetition of absence seizures are a precipitant of depression-like behavior. Whether the neurochemical changes are primary to depression-like behavioral alterations remains to be determined. In conclusion, the WAG/Rij rats can be considered as a genetic animal model for absence epilepsy with comorbidity of dysthymia. This model can be used to investigate etiology, pathogenic mechanisms and treatment of a psychiatric comorbidity, such as depression in absence epilepsy, to reveal putative genes contributing to comorbid depressive disorder, and to screen novel psychotropic drugs with a selective and/or complex (dual) action on both pathologies.  相似文献   

19.
Temporal lobe epilepsy is often presented by medically intractable recurrent seizures due to dysfunction of temporal lobe structures, mostly the temporomesial structures. The role of transient receptor potential vaniloid 1 (TRPV1) activity on synaptic plasticity of the epileptic brain tissues was investigated. We studied hippocampal TRPV1 protein content and distribution in the hippocampus of epileptic rats. Furthermore, the effects of pharmacologic modulation of TRPV1 receptors on field excitatory postsynaptic potentials have been analyzed after induction of long term potentiation (LTP) in the hippocampal CA1 and CA3 areas after 1 day (acute phase) and 3 months (chronic phase) of pilocarpine‐induced status epilepticus (SE). A higher expression of TRPV1 protein in the hippocampus as well as a higher distribution of this channel in CA1 and CA3 areas in both acute and chronic phases of pilocarpine‐induced SE was observed. Activation of TRPV1 using capsaicin (1 µM) enhanced LTP induction in CA1 region in non‐epileptic rats. Inhibition of TRPV1 by capsazepine (10 µM) did not affect LTP induction in non‐epileptic rats. In acute phase of SE, activation of TRPV1 enhanced LTP in both CA1 and CA3 areas but TRPV1 inhibition did not affect LTP. In chronic phase of SE, application of TRPV1 antagonist enhanced LTP induction in CA1 and CA3 regions but TRPV1 activation had no effect on LTP. These findings indicate that a higher expression of TRPV1 in epileptic conditions is accompanied by a functional impact on the synaptic plasticity in the hippocampus. This suggests TRPV1 as a potential target in treatment of seizure attacks. Synapse 69:375–383, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
BackgroundAnxiety and depression are the most frequent comorbidities of different types of convulsive and non-convulsive epilepsies. Increased anxiety and depression-like phenotype have been described in the genetic absence epilepsy models as well as in models of limbic epilepsy and acquired seizure models, suggesting a neurobiological connection. However, whether anxiety and/or depression are comorbid to audiogenic epilepsy remains unclear. The aim of this study was to investigate whether anxiety or depression-like behavior can be found in rat strains with different susceptibility to audiogenic seizures (AS) and whether chronic fluoxetine treatment affects this co-morbidity.MethodsBehavior in the elevated plus-maze and the forced swimming test was studied in four strains: Wistar rats non-susceptible to AS; Krushinsky–Molodkina (KM) strain, selectively bred for AS propensity from outbred Wistar rats; and a selection lines bred for maximal AS expression (strain “4”) and for a lack of AS (strain “0”) from KM × Wistar F2 hybrids. Effects of chronic antidepressant treatment on AS and behavior were also evaluated.ResultsAnxiety and depression levels were higher in KM rats (with AS) compared with Wistar rats (without AS), indicating the comorbidity with AS. However, in strains “4” and “0” with contrasting AS expression, but with a genetic background close to KM rats, anxiety and depression were not as divergent as in KMs versus Wistars. Fluoxetine treatment exerted an antidepressant effect in all rat strains irrespective of its effect on AS.ConclusionsGenetic background contributes substantively to the co-morbidity of anxiety and depression with AS propensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号