首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 631 毫秒
1.
Numerous reports indicate that cyclic 3',5' guanosine monophosphate (cGMP) is involved in the regulation of immune processes. However, the mechanisms responsible for the synthesis of this nucleotide and its signaling pathways in immune cells are still not well recognized. The aim of our studies was to establish: 1) which form of guanylyl cyclase (GC) synthesizes cGMP in murine lymphoid organs and 2) whether the same organs express the isoforms PKG1alpha and/or PKG1beta of protein kinase G, known as possible target for synthesized cGMP. Cells isolated from thymus, lymph nodes, and spleen were treated with activators (SNP, ANP, CNP, STa) of soluble or particulate cyclases. Sodium nitroprusside (SNP) elevated intracellular cGMP 2-fold in thymic and lymph node cells and about 10-fold in spleen cells. Atrial natriuretic peptide (ANP) caused modest but statistically significant increases of cGMP in cells of all three organs. Additionally, spleen cells elevated their cGMP content about 2-fold in response to C-type natriuretic protein (CNP). In cellular homogenates of the all analyzed organs, the antibody anti-PKG1beta stained the 78 kDa band corresponding to the molecular mass of PKG1. Only homogenates of spleen cells were stained by the antibody recognizing PKG1alpha. Our results indicate that in the investigated organs cGMP may be synthesized mainly by soluble GC in response to nitric oxide. The modest increase of cGMP upon stimulation by ANP suggests that in all these organs either exists only a small subpopulation of cells that express particulate cyclase GC-A or GC-A is expressed at very low level. In spleen cells, however, cyclase GC-B appears to be the more active enzyme. Elevated cGMP concentration may in turn activate PKG1beta in thymus, lymph node, and spleen cells and also PKG1alpha in spleen cells.  相似文献   

2.
The cGMP/protein kinase G (PKG) signalling pathway, at basal levels, has anti-apoptotic/pro-survival effects in certain neural cells. The present study determined apoptosis-regulating effects of basal cGMP/PKG in an immortalized uterine epithelial cell line, HRE-H9 cells, using two soluble guanylyl cyclase (sGC) inhibitors, NS2028 and ODQ, and a PKG inhibitor, KT5823. A new quantitative, ultrasensitive technique using capillary electrophoresis with laser-induced fluorescent detector (CE-LIF), recently developed in our laboratory, was used to quantify levels of apoptotic DNA fragmentation. NS2028 and ODQ increased apoptotic DNA fragmentation by 3.5- and 9-fold respectively, suggesting that lowering basal cGMP levels causes spontaneous apoptosis. 8-Br-cGMP, a cell-permeable cGMP analogue that directly activates PKG, reduced ODQ-induced apoptosis by 81%, indicating that replacement of lowered cGMP with a direct PKG activator prevents apoptosis. Western blot analysis, using PKG type I (PKG-I)-specific antibody, indicated that HRE-H9 cells express PKG-I at moderate levels. Inhibiting basal PKG activity with KT5823 increased apoptotic DNA fragmentation by 9.8-fold. Overall, the data show that inhibitors of basal sGC and PKG activities in immortalized uterine epithelial cells cause apoptosis, suggesting that normal basal levels of cGMP and PKG activity may be necessary to prevent a spontaneous development of apoptosis in these cells.  相似文献   

3.
Adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channels couple cellular metabolic status to membrane electrical activity. In this study, we performed patch-clamp recordings to investigate how cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) regulates the function of K(ATP) channels, using both transfected human SH-SY5Y neuroblastoma cells and embryonic kidney (HEK) 293 cells. In intact SH-SY5Y cells, the single-channel currents of Kir6.2/sulfonylurea receptor (SUR) 1 channels, a neuronal-type K(ATP) isoform, were enhanced by zaprinast, a cGMP-specific phosphodiesterase inhibitor; this enhancement was abolished by inhibition of PKG, suggesting a stimulatory role of cGMP/PKG signaling in regulating the function of neuronal K(ATP) channels. Similar effects of cGMP accumulation were confirmed in intact HEK293 cells expressing Kir6.2/SUR1 channels. In contrast, direct application of purified PKG suppressed rather than activated Kir6.2/SUR1 channels in excised, inside-out patches, while tetrameric Kir6.2LRKR368/369/370/371AAAA channels expressed without the SUR subunit were not modulated by zaprinast or purified PKG. Lastly, reconstitution of the soluble guanylyl cyclase/cGMP/PKG signaling pathway by generation of nitric oxide led to Kir6.2/SUR1 channel activation in both cell types. Taken together, here, we report novel findings that PKG exerts dual functional regulation of neuronal K(ATP) channels in a SUR subunit-dependent manner, which may provide new means of therapeutic intervention for manipulating neuronal excitability and/or survival.  相似文献   

4.
We previously reported that hypoxia attenuates nitric oxide-cyclic guanosine monophosphate (NO-cGMP)-mediated fetal pulmonary vessel relaxation by inhibiting cGMP-dependent protein kinase 1 (PKG1) activity, but not all the mechanisms by which acute hypoxia inhibits PKG1 activity have been delineated. Here we demonstrate for the first time, to the best of our knowledge, that acute hypoxia induces an accumulation of ubiquitinated PKG1 in ovine fetal and newborn pulmonary artery smooth muscle cells. Such a modification was not evident in ovine fetal systemic (cerebral) artery smooth muscle cells. The accumulation of polyubiquitinated PKG1 observed after 4 hours of hypoxia was affected neither by the activation of PKG1 kinase activity with the cell-permeable cGMP analogue 8-bromo-cGMP, nor by its inhibition with DT-3 in fetal pulmonary artery smooth muscle cells. Ubiquitinated PKG1α was unable to bind the cGMP analogue 8-(2-aminoethyl)thioguanosine-3',5' (AET)-cGMP, a ligand for the unmodified protein. Inhibition of the proteasomal complex with MG132 led to the accumulation of polyubiquitinated PKG1 in normoxia, indicating the involvement of the ubiquitin-26S proteasomal system in degradation and clearance of this protein under normoxic conditions. The ubiquitinated PKG1 under hypoxic conditions, however, was not predominantly targeted for proteasomal degradation. Importantly, reoxygenation reversed the acute hypoxia-induced accumulation of ubiquitinated PKG1. Our results suggest that the PKG1 ubiquitination induced by acute hypoxia plays a unique role in the regulation of the pulmonary vascular smooth muscle cell vasoreactivity and relaxation mediated by the NO-cGMP-PKG1 pathway.  相似文献   

5.
Tumor necrosis factor (TNF)-alpha, a pluripotent cytokine implicated in the pathogenesis of airway inflammation, has been shown to provoke hypersecretion of mucin by airway epithelial cells in vitro. In this study, we investigated potential signaling pathways mediating TNF-alpha-induced mucin secretion using guinea pig tracheal epithelial (GPTE) cells in air-liquid interface culture. Exogenously applied TNF-alpha (human recombinant) stimulated mucin secretion in a concentration-dependent manner, with maximal effects at 10 to 15 ng/ml (286 to 429 U/ml). The pathway of stimulated secretion appeared to involve generation of intracellular nitric oxide (NO), activation of soluble guanylate cyclase (GC-S), production of cyclic guanosine monophosphate (cGMP), and activation of cGMP-dependent protein kinase (PKG). TNF-alpha increased production of nitrite and nitrate by GPTE cells; both mucin secretion and cGMP production were attenuated by NG-monomethyl-L-arginine (1 mM), a competitive inhibitor of nitric oxide synthase (NOS), or by the GC-S inhibitor LY83583 (50 microM); and mucin secretion in response to TNF-alpha or to the cGMP analogue dibutyryl cGMP (100 and 500 microM) was attenuated by the specific PKG inhibitor KT5823 (1 microM). Increased mucin secretion and increased cGMP production in response to TNF-alpha both appeared to be mediated by a phospholipase C that hydrolyzes phosphatidylcholine (PC-PLC), and by protein kinase C (PKC), since both responses were attenuated by either D609 (10 and 20 microg/ml), a specific PC-PLC inhibitor, or by each of three PKC inhibitors: Calphostin C (0.3 and 0.5 microM), bisindoylmaleimide (GF 109203X, Go 6850; 20 nM), or Ro31-8220 (10 microM). Collectively, the results suggest that TNF-alpha stimulates secretion of mucin by GPTE cells via a mechanism(s) dependent on PC-PLC and PKC, and involving activation of NOS, generation of NO, production of cGMP, and activation of PKG.  相似文献   

6.
Effects of cyclic nucleotides on the function of prestin   总被引:4,自引:3,他引:4  
Outer hair cells (OHCs) in the mammalian organ of Corti display electromotility, which is thought to provide the local active mechanical amplification of the cochlear response. Prestin is the key molecule responsible for OHC electromotility. Several compounds, including cGMP, have been shown to influence OHC electromotility. There are two potential cAMP/cGMP-dependent protein kinase phosphorylation sites on prestin. Whether these sites are involved in cGMP-dependent reactions is as yet unknown. In this study, prestin cDNA was transiently transfected into TSA 201 cells. Cells that expressed prestin were selected to measure non-linear capacitance (NLC), a signature of outer hair cell motility. We applied cGMP and cAMP analogues and a protein kinase G (PKG) antagonist to the cells. Furthermore, nine mutations at putative phosphorylation sites of prestin were produced. The neutral amino acid alanine replaced serine/threonine at phosphorylation sites to change the conserved phosphorylation motif in order to mimic the dephosphorylated state of prestin, whereas replacement with the negatively charged aspartic acid mimicked the phosphorylated state. The properties of such modified prestin-expressing cells were examined, through measurement of NLC and with confocal microscopy. Our data demonstrate that cGMP is significantly more influential than cAMP in modifying the non-linear, voltage-dependent charge displacement in prestin-transfected cells. The electrical properties of the single and double mutations further indicate a possible interaction between the two PKG target sites. One of these sites may influence the membrane targeting process of prestin. Finally, a new topology map of prestin is proposed.  相似文献   

7.
8.
9.
The inwardly rectifying K+ channel with an inward conductance of about 90 pS in the surface membrane of cultured opossum kidney proximal tubule (OKP) cell is activated by cyclic AMP-dependent protein kinase (PKA). In this study, we further examined the involvement of the guanosine 3',5'-cyclic monophosphate (cGMP)-dependent process in modulation of this K+ channel by using the patch-clamp technique. In cell-attached patches, channel activity was increased by the application of either N2, 2'-O-dibutyrylguanosine 3',5'-cyclic monophosphate (DBcGMP, 100 microM) or 8-bromoguanosine 3',5'-cyclic monophosphate (8BrcGMP, 100 microM), and it was inhibited by KT5823 (10 microM), a membrane-permeable specific inhibitor of cGMP-dependent protein kinase (PKG). The effect of DBcGMP on channel activity was abolished by the pretreatment of cells with KT5823 (10 microM), but it was observed in the presence of KT5720 (200 nM), a specific inhibitor of PKA. Furthermore, atrial natriuretic peptide (ANP, 10 nM) increased channel activity, which was also prevented by the application of KT5823 (10 microM). In inside-out patches, ATP (3 mM) was required to maintain channel activity, which was inhibited by KT5823 (10 microM), but it was not increased by cGMP (100 microM) alone. The channel activity was increased by the coapplication of PKG (500 U/ml) and cGMP (100 microM). These results suggest that cGMP activates the inwardly rectifying K+ channel in OKP cells through PKG-mediated phosphorylation processes independent of PKA-mediated processes, and that ANP is an agonist which stimulates PKG-mediated processes in the proximal tubule cell. Furthermore, it is suggested that the ATP-dependent channel activity in inside-out patches is maintained at least in part by PKG, which is the membrane-bound catalytic domain.  相似文献   

10.
Sonic hedgehog (Shh) patterns the dorsal-ventral axis of the neural tube by promoting the differentiation of ventral neural cell types while suppressing dorsal neural fates. Other signals impinge upon the Shh response, biasing the differentiation of a cell. Three dorsally expressed transforming Wnts, of which the most broadly expressed is Wnt3, may be among the signals that influence the Shh response. We demonstrate that activation of Wnt signaling results in an inhibition of the Shh response in neural tissue. Additionally, we show that the expression pattern of chick Wnt3 is consistent with a role in neural patterning. These results indicate that differentiating neural tube cells, besides integrating signals from Hedgehogs and BMPs, may also incorporate a Wnt response to make cell fate decisions.  相似文献   

11.
Although it is well established that cyclic adenosine monophosphate (cAMP) signalling via cAMP-dependent protein kinase (PKA)within neurons plays an important role in depression and antidepressant treatment, the importance of several newly discovered targets that function independently from PKA, such as exchange protein activated by cAMP (Epac), remains unexplored in this regard. In this study we used a cAMP analogue that inhibits PKA but not Epac (Rp-8-Br-cAMP), to explore the modifying actions of these two targets on immobility in the forced swim test (FST) and cerebellar cAMP response element binding protein (CREB) phosphorylation in rats. In addition, we assessed central cAMP and cGMP levels and investigated the involvement of cGMP-dependent protein kinase (PKG) on any observed effects by using a selective PKG inhibitor (Rp-8-Br-PET-cGMPS).Interestingly, Rp-8-Br-cAMPS strongly reduced immobility in the FST and induced an increase in the phosphorylation of CREB in the cerebellum, effects that were unaltered by the co-administration of Rp-8-Br-PET-cGMPS. Furthermore, Rp-8-Br-cAMPS increased the accumulation of cAMP and cGMP in the hippocampus, frontal cortex and cerebellum of these rats. Together, these results suggest that in addition to activating PKA, elevated cAMP may also stimulate other targets that mediate antidepressant activity. According to the pharmacodynamic profile of Rp-8-Br-cAMPS and taking into consideration what has recently been discovered regarding the cAMP signalling system, a likely candidate is the guanine nucleotide exchange factor, Epac.  相似文献   

12.
13.
Previously, we have shown that ethanol (EtOH) stimulates a rapid increase in the ciliary beat frequency (CBF) of bovine bronchial epithelial cells (BBECs) via the activation of PKA. We have also shown that inhibitors of nitric oxide synthase block EtOH-stimulated increases in CBF. We hypothesize that EtOH acutely stimulates CBF via the activation of both PKA and PKG pathways. Using chemiluminescence detection of nitric oxide (NO), we directly measured increases in NO production in BBECs treated with 100 mmol/L of EtOH beginning at 25 minutes. Pretreatment of BBECs with guanylyl cyclase inhibitors, ODQ or LY83583, resulted in the inhibition of EtOH-stimulated CBF. Low concentrations (1 nmol/L) of cyclic nucleotide analogues do not stimulate CBF increases. However, a combination of both 1 nmol/L of 8Br-cAMP and 8Br-cGMP stimulates a significant increase over baseline CBF. This effect could be blocked by pretreating BBECs with inhibitors of either PKA or PKG. Very high concentrations of either 8Br-cAMP or 8Br-cGMP (> or =100 micromol/L) were required to cross-activate both PKA and PKG. This suggests that cross-activation of PKA by cGMP is not occurring at the concentrations (1 nmol/L) capable of stimulating CBF. 8-pCPT-cGMPS, an antagonist analogue to cGMP, blocked EtOH-stimulated PKA activity increases. These data support that EtOH-stimulated increases in CBF require the dual activation of both PKA (via cAMP) and PKG (via NO).  相似文献   

14.
15.
16.
目的: 研究连接蛋白(connexin,Cx)40或43对cAMP-PKA、cGMP-PKG和DG-PKC信号通路的影响及对缺氧处理大鼠肠系膜上动脉内膜依赖的血管收缩反应性的调节作用。方法: 以SD大鼠肠系膜上动脉(superior mesenteric artery,SMA)为研究对象,用Cx40或Cx43的反义寡脱氧核苷酸(antisense oligodeoxyribonucleotide,AODN)阻断SMA的Cx40或Cx43的表达,观察缺氧处理后血管的环一磷酸腺苷(cyclic adenosine monophosphate,cAMP)、环一磷酸鸟苷(cyclic guanosine monophosphate,cGMP)、二酰基甘油(diacylglycerol,DG)浓度和蛋白激酶A(protein kinase A,PKA)、蛋白激酶G(protein kinase G,PKG)、蛋白激酶C(protein kinase C,PKC)活性的变化,以及这些变化与内膜依赖的血管收缩反应性变化的关系。结果: Cx40AODN可以降低血管cAMP、cGMP的浓度和PKA、PKG的活性,增加DG的浓度、PKC的活性和血管内膜依赖的收缩反应性;Cx43AODN可以增加血管cAMP、cGMP的浓度和PKA、PKG的活性,降低DG的浓度、PKC的活性和血管内膜依赖的收缩反应性。结论: Cx40、Cx43通过cAMP-PKA、cGMP-PKG、DG-PKC信号通路参与了休克后内膜依赖的血管收缩反应性的调节。  相似文献   

17.
The process of regulation of NOS after production of nitric oxide is not yet delineated. Protein kinase G may exert a feedback regulation of this enzyme. We used diaminofluorescein assays to detect changes in basal nitric oxide production caused by modulators of protein kinase G activity in freshly isolated ovine lung microvascular endothelial cells. We also used fluorescence activated cell sorter analysis (FACS) to determine molecular and phosphorylation changes caused by PKG activation with 8‐Br‐cGMP. The PKG activator, 8‐Br‐cGMP (100 μM) produced a shift in the basal NO production curve downward. The inhibition began within 5 min and was sustained over 4.5 hr. The two protein kinase G inhibitors 100 μM Rp‐8‐Br‐PET‐cGMPS and 50 nM guanosine 3′‐5′‐cyclic monophosphoro thionate‐8‐Br‐Rp isomer Na salt and the cGMP inhibitor 4 μM Rp‐8‐pCPT‐cGMPS all enhanced NO production as seen by the upward shift in the basal NO curve. Conversely, the PKG activator drug, 100 μM guanosine‐3′‐5′‐cyclic monophosphate‐β‐phenyl‐1NF‐ethano‐8‐bromo sodium salt decreased NO production causing a downward shift in the basal curve. FACS analysis revealed that 5 μM 8‐Br‐cGMP in <5 min caused an increase in N‐terminal labeling of NOS and a decrease in both C‐terminal and serine 1177 labeling of NOS. 8‐Br‐cGMP appeared to increase PKG 1α and to decrease PKG 1β labeling. Changes in other phosphorylation sites were less consistent but overall mean channel fluorescence increased from 19.92 to 217.36 for serine 116 and decreased from 329.27 to 254.03 for threonine 495 phosphorylation. Data indicated that PKG caused both molecular and phosphorylation changes in NOS. Anat Rec 293:1755–1765, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
We previously showed that chronic exposure to interleukin (IL)-6 decreases contractile and sarcoplasmic reticular (SR) function assessed by postrest potentiation (PRP) via a nitric oxide (NO)-dependent mechanism in adult rat ventricular myocytes (ARVM). Cyclic GMP (cGMP) has been associated with NO-associated negative inotropic effects of IL-6 during acute exposure; however, its role in chronic cardiac effects of IL-6 remains unclear. The present study examined the roles of cGMP and peroxynitrite (ONOO) in chronic IL-6-induced negative inotropy in ARVM. After ARVM were exposed to IL-6 for 2–24 h, intracellular cGMP contents were time dependently increased; this was mimicked by a NO donor and abolished by 1 H -[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase (sGC), or Rp-8-Br-cGMP, an inhibitor of cGMP-dependent protein kinase G (PKG). Meanwhile, the IL-6-induced decrease in PRP at 2 h was blocked by ODQ or Rp-8-Br-cGMP. By contrast, ODQ or Rp-8-Br-cGMP only attenuated the inhibition of PRP induced by IL-6 after 24 h exposure. Furthermore, IL-6 time dependently increased superoxide anion production and ONOO formation; the latter was abolished by 5,10,15,20-tetrakis-(4-sulphonatophenyl)-porphyrinato iron (III) (FeTPPS), an ONOO decomposition catalyst. Interestingly, FeTPPS had no effect on the IL-6-elicited decrease in PRP at 2 h, but attenuated it after 24 h exposure. Moreover, inhibition of sGC/cGMP/PKG, but not ONOO formation, abolished the IL-6-induced inhibition of kinetics of myocyte contraction during 24 h exposure. We conclude that while the sGC/cGMP/PKG pathway was the primary mechanism for chronic IL-6-induced negative inotropy at 2 h, both sGC/cGMP/PKG and ONOO, at least in part, mediate the IL-6-induced inhibition of SR function after 24 h exposure.  相似文献   

19.
Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) may act as a critical enzyme for nitric-oxide-induced vasodilation. In this study, the role of PKG in regulation of basal tension and in relaxation induced by nitrovasodilators in coronary arteries was determined. Under basal conditions, Rp-8-Br-PET-cGMPS, a specific PKG inhibitor, evoked a significant contraction of isolated porcine coronary arteries, which was prevented by nitro-l-arginine or the removal of the endothelium. Relaxation to nitroglycerin and (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA NONOate) in vessels preconstricted with U46619 was largely abolished by 1H-[1,2,4]oxadiazolo[4,3]quinoxalin-1-one (ODQ) and inhibited by 48 to 79% by Rp-8-Br-PET-cGMPS. Relaxation of the vessels to 8-Br-cGMP was inhibited by 56% by Rp-8-Br-PET-cGMPS. The basal activity of PKG but not that of cyclic adenosine monophosphate-dependent protein kinase (PKA) was inhibited by nitro-l-arginine, ODQ, or Rp-8-Br-PET-cGMPS. The activity of PKG but not that of PKA was increased by nitroglycerin and DETA NONOate in intact vessels and increased by cGMP in the tissue homogenates. These effects were abolished by Rp-8-Br-PET-cGMPS but not by myristoylated PKI, a specific inhibitor of PKA. These results suggest that in porcine coronary arteries, PKG is involved in the regulation of basal tension and plays a primary role in relaxation induced by nitrovasodilators, whereas PKA may play a minor role.  相似文献   

20.
During development of the neural tube, inhibition of the Notch response as well as the activation of the Sonic Hedgehog (Shh) response results in the formation of neuronal cell types. To determine whether Shh and Notch act independently, we tested the effects of the Notch inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester) on neuralized, embryonic stem (ES) cell-derived embryoid bodies (EBs), while varying the levels of Shh pathway activation. Shh-resistant EBs were derived from Smo null ES cells, while EBs with constitutive high level of Shh pathway activation were derived from Ptc1 null ES cells. Intermediate levels of Shh pathway activation was achieved by the addition of ShhN to the EB culture medium. It was found that DAPT-mediated inhibition of the Notch response resulted in enhanced neuronal differentiation. In the absence of Shh, more interneurons were detected, while the main effect of DAPT on EBs with an activated Shh response was the precocious loss of ventral neuronal precursor-specific markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号