首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In addition to causing a slow depolarization, thyrotropin-releasing hormone (TRH, 5-10 microM) evoked synaptic activity in antidromically identified motoneurons in thin transverse neonatal rat spinal cord slices. The synaptic activity but not the slow depolarization was reversibly abolished by TTX or low Ca2+/high Mg2+ solution. Furthermore, the TRH-induced synaptic activity was eliminated by the glutamate receptor antagonist kynurenic acid (0.5 or 1 mM) and/or the glycine receptor antagonist strychnine (1 microM). Our results indicate that in addition to depolarizing motoneurons, TRH modifies the activity of spinal interneurons which may secondarily alter the activity of motoneurons.  相似文献   

2.
Acetylcholine (ACh) was found here to be a strong modulator of swimming activity in the isolated spinal cord preparation of the adult lamprey (Ichthyomyzon unicuspis). During fictive swimming induced with either D-glutamate or N-methyl-D-aspartate, addition of ACh (200 microM) significantly reduced the cycle period of ventral root bursts to 54%, intersegmental phase lag to 32%, and ventral root burst proportion to 80% of control levels. Effects of ACh were apparent at concentrations as low as 1 microM. Both nicotinic and muscarinic receptors are involved, in that application of either nicotinic or muscarinic agonists alone significantly reduced cycle period. There is sufficient endogenous ACh in the spinal cord to modulate ongoing fictive swimming, as shown by application of the cholinesterase inhibitor eserine (physostigmine). Eserine (20 microM) significantly reduced the cycle period to 78% and phase lag to 58% of control levels, and these effects were reversed with the addition of cholinergic blockers. Addition of only a nicotinic or muscarinic antagonist, mecamylamine (10 microM) or scopolamine (20 microM), respectively, to the spinal cord during fictive swimming produced significant increases in cycle period and phase lag, suggesting that both types of cholinergic receptors participate in endogenous cholinergic modulation. It is concluded that ACh is an endogenous modulator of the locomotor network in the lamprey spinal cord and that ACh may take part in the regulation of cycle period, intersegmental coupling, and ventral root burst duration.  相似文献   

3.
1. The chemical synapses between mechanoreceptor neurons and first-order interneurons in the lateral giant (LG) neuron escape circuit of the crayfish have plastic properties, some of which are believed to be the basis for behavioral habituation and sensitization. In this investigation pharmacological experiments were conducted to assess the role of cholinergic synaptic transmission in this pathway. 2. Arterial perfusion of the cholinergic agonist carbachol produced increased activity of many abdominal nerve cord units, including an identified first-order interneuron (interneuron A) in the LG circuit. A general increase in activity of interneurons in this circuit in the presence of certain cholinergic agonists was inferred from an increase in the frequency of occurrence of spontaneous excitatory postsynaptic potentials (EPSPs) recorded in the LG. 3. Cholinergic antagonists reduced the amplitude of spontaneous and evoked sensory neuron-to-interneuron A EPSPs and decreased the disynaptic (via 1st-order interneurons) component of evoked EPSPs in the LG. These effects indicate that postsynaptic cholinergic receptors are utilized in mechanosensory synaptic transmission to the first-order interneurons of this circuit. The relative potencies of the blockers tested (mecamylamine > picrotoxin > curare > atropine) suggest that the receptors on the interneurons belong to a previously characterized class of crustacean cholinergic receptors that resemble the ganglionic nicotinic subtype of vertebrates. 4. Nicotinic agonists (carbachol, tetramethylammonium hydroxide, 1,1-dimethyl-4-phenyl-piperazium iodide) produced depolarizing (decreased input resistance) responses on the LG neuron itself. These responses persisted during blockade of chemical transmission by cobalt. The presence of cholinergic receptors on the LG, a cell in which all known inputs mediating sensory excitation are electrical, is discussed. 5. Application of muscarinic agonists (pilocarpine, oxotremorine) resulted in a long-lasting reduction of the evoked sensory neuron-to-interneuron A EPSP and the disynaptic component of the evoked EPSP in the LG. No effects on the membrane potential or input resistance of the interneurons were detected. It is proposed that presynaptic receptors with a muscarinic profile are present on mechanosensory neurons and that these receptors mediate a reduction of transmitter release.  相似文献   

4.
Intracellular and sucrose gap recording techniques were used to examine synaptically evoked potentials and the response of neurons in bullfrog paravertebral sympathetic ganglia to muscarinic agonists. These neurons were defined as either B or C cells on the basis of the conduction velocity of antidromically evoked action potentials. Following stimulation of preganglionic C-fibers in the rostral portion of the VIIIth spinal nerve, a fast nicotinic excitatory postsynaptic potential (EPSP) and a slow atropine-sensitive inhibitory postsynaptic potential (IPSP) could be recorded intracellularly in C cells of the IXth and Xth paravertebral ganglia treated with 70 microM d-tubocurarine chloride (dTC). Under these conditions, local iontophoretic application of acetylcholine (ACh) could produce a slow hyperpolarization of C cell membrane potential. ACh hyperpolarizations or slow IPSPs were not detected in ganglionic B cells. Stimulation of the preganglionic B-fibers in the sympathetic chain produced a fast nicotinic EPSP and a slow muscarinic EPSP in ganglionic B cells. A small population of C cells also received cholinergic B-fiber innervation from the sympathetic chain and exhibited a slow IPSP upon tetanic stimulation of this pathway. When curarized ganglia were examined by means of sucrose gap recording, superfusion of the muscarinic agonist, methacholine (MCh), produced an initial hyperpolarization (MChH) followed by a depolarization (MChD). Both responses were blocked by atropine and therefore presumably reflect the activation of muscarinic receptors involved in the generation of the slow IPSP and the slow EPSP, respectively. Although synaptic transmission was blocked by Ringer solution containing 4 mM Co2+, neither this solution nor 10 microM tetrodotoxin reduced the amplitude of the MChH. The MChH was slightly reduced by Ringer solution containing 0.1 mM Ca2+, however, the response could be restored by the addition of 6 mM Mg2+. These results indicate that the MChH in curarized bullfrog sympathetic ganglia results from a direct muscarinic action on ganglionic cells. This suggests that the slow IPSP is mediated by ACh released from cholinergic preganglionic fibers that make synaptic contact with ganglionic C cells.  相似文献   

5.
Ipsilaterally projecting spinal excitatory interneurons (EINs) generate the hemisegmental rhythmic locomotor activity in lamprey, while the commissural interneurons ensure proper left-right alternation. 5-HT is a potent modulator of the locomotor rhythm and is endogenously released from the spinal cord during fictive locomotion. The effect of 5-HT was investigated for three segmental premotor interneuron types: EINs, commissural excitatory and commissural inhibitory interneurons. All three types of interneurons produced chemical postsynaptic potentials in motoneurons, but only those from EINs had an electrical component. The effect of 5-HT was studied on the slow afterhyperpolarization, involved in spike frequency regulation, and on the segmental synaptic transmission to motoneurons. 5-HT induced a reduction in the slow afterhyperpolarization and a depression of synaptic transmission in all three types of segmental interneurons. Thus 5-HT is a very potent modulator of membrane properties and synaptic transmission of last-order segmental premotor interneurons. Such modulation of locomotor network interneurons can partially account for the observed effects of 5-HT on the swimming pattern in lamprey.  相似文献   

6.
Intracellular recording from lumbar motoneurons in isolated spinal cord preparations from the frog Rana ridibunda was used to study the contributions of glycine and GABAA receptors to the generation of inhibitory postsynaptic potentials (IPSP) induced by microstimulation of fibers close to these motoneurons. IPSP were identified by blockade of excitatory synaptic transmission using kynurenate, CNQX, and AP-5 and by reversion of polarity on injection of a depolarizing current (1–10 nA) via the microelectrode. The selective glycine receptor antagonist strychnine at 1–5 μM decreased IPSP amplitude in all the motoneurons studied (by an average factor of 4.7), while the GABAA receptor antagonist bicuculline at 50–70 mM decreased the amplitude (by an average factor of 1.6) in only some motoneurons, while no decrease occurred in others. Sequential application of strychnine and bicuculline completely blocked IPSP. These data support the view that postsynaptic inhibition in frog motoneurons is mediated mainly by glycine and to a lesser extent by GABAA receptors. These latter are probably partially extrasynaptic.  相似文献   

7.
1. In the in vitro preparation of the lamprey spinal cord, paired intracellular recordings of membrane potential were used to identify interneurons producing excitatory postsynaptic potentials (EPSPs) on myotomal motoneurons. 2. Seventy-nine interneurons (8.4% of all neuron-motoneuron pairs tested) elicited unitary EPSPs that followed one-for-one at short, constant latencies and were therefore considered monosynaptic according to conventional criteria. Evidence was obtained for selectivity and divergence of excitatory interneuron (EIN) outputs and for convergence of EIN input to motoneurons. 3. The neurotransmitter released by EINs may be an excitatory amino acid such as glutamate, because the EPSPs were depressed by antagonists of excitatory amino acids. 4. Intracellular dye injection revealed that EINs have small cell bodies (average 11 x 27 microns), transversely oriented dendrites, and thin (less than 3 microns) slowly conducting axons (0.7 m/s) that project caudally and ipsilaterally. One EIN exhibited a system of thin multi-branching axon collaterals with periodic swellings. Ultrastructurally, these swellings contained clear spherical vesicles, and they apposed postsynaptic membrane specializations. 5. During fictive locomotion, the membrane-potential oscillations of EINs were greater in amplitude than, but similar in shape and timing to, those of their postsynaptic motoneurons. EINs fired action potentials during fictive locomotion and contributed to the depolarization of motoneurons. 6. These interneurons are proposed to be a source of excitation to motoneurons and interneurons in the lamprey spinal cord, participating in motor activity including locomotion.  相似文献   

8.
We have studied the modulatory effects of cholinergic agonists on excitatory postsynaptic currents (EPSCs) in nucleus accumbens (nAcb) neurons during postnatal development. Recordings were obtained in slices from postnatal day 1 (P1) to P27 rats using the whole cell patch-clamp technique. EPSCs were evoked by local electrical stimulation, and all experiments were conducted in the presence of bicuculline methchloride in the bathing medium and with QX-314 in the recording pipette. Under these conditions, postsynaptic currents consisted of glutamatergic EPSCs typically consisting of two components mediated by AMPA/kainate (KA) and N-methyl-D-aspartate (NMDA) receptors. The addition of acetylcholine (ACh) or carbachol (CCh) to the superfusing medium resulted in a decrease of 30-60% of both AMPA/KA- and NMDA-mediated EPSCs. In contrast, ACh produced an increase ( approximately 35%) in both AMPA/KA and NMDA receptor-mediated EPSCs when administered in the presence of the muscarinic antagonist atropine. These excitatory effects were mimicked by the nicotinic receptor agonist 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) and blocked by the nicotinic receptor antagonist mecamylamine, showing the presence of a cholinergic modulation mediated by nicotinic receptors in the nAcb. The antagonistic effects of atropine were mimicked by pirenzepine, suggesting that the muscarinic depression of the EPSCs was mediated by M(1)/M(4) receptors. In addition, the inhibitory effects of ACh on NMDA but not on AMPA/KA receptor-mediated EPSC significantly increased during the first two postnatal weeks. We found that, under our experimental conditions, cholinergic agonists produced no changes on membrane holding currents, on the decay time of the AMPA/KA EPSC, or on responses evoked by exogenous application of glutamate in the presence of tetrodotoxin, but they produced significant changes in paired pulse ratio, suggesting that their action was mediated by presynaptic mechanisms. In contrast, CCh produced consistent changes in the membrane and firing properties of medium spiny (MS) neurons when QX-314 was omitted from the recording pipette solution, suggesting that this substance actually blocked postsynaptic cholinergic modulation. Together, these results suggest that ACh can decrease or increase glutamatergic neurotransmission in the nAcb by, respectively, acting on muscarinic and nicotinic receptors located on excitatory terminals. The cholinergic modulation of AMPA/KA and NMDA receptor-mediated neurotransmission in the nAcb during postnatal development could play an important role in activity-dependent developmental processes in refining the excitatory drive on MS neurons by gating specific inputs.  相似文献   

9.
Application of the acetylcholinesterase inhibitor physostigmine to conventional hippocampal slices caused a significant reduction of field excitatory postsynaptic potentials (EPSPs) elicited by single pulse stimulation to the medial perforant path. Similar but smaller effects were obtained in the lateral perforant path and other excitatory pathways within hippocampus. The reductions were blocked by atropine, were not accompanied by evident changes in the EPSP waveform, and were eliminated by lesions to the cholinergic septo-hippocampal projections. Antidromic responses to mossy fiber stimulation, recorded in stratum granulosum, were not affected by the drug. However, paired-pulse facilitation was reliably increased, indicating that the depressed synaptic responses were secondary to reductions in transmitter release. The absence of cholinergic axo-axonic connections in the molecular layer suggests that physostigmine reduces presynaptic release by increasing retrograde signaling from the granule cells. In accord with this, an antagonist of the CB1 cannabinoid receptor eliminated the effects of physostigmine on synaptic responses, while an antagonist of the presynaptically located m2 muscarinic acetylcholine receptor did not. This is in contrast to previously reported effects involving application of cholinergic agonists, in which presynaptic inhibition likely results from direct activation of presynaptically located muscarinic receptors. In summary, it is proposed that the cholinergic inputs from the septum to the middle molecular layer modulate, via endocannabinoid release, the potency of the primary excitatory afferent of hippocampus.  相似文献   

10.
1. The responses of thalamocortical neurons to stimulation of mesopontine [peribrachial (PB) and laterodorsal (LDT)] cholinergic nuclei were studied intracellularly in urethan-anesthetized cats. Neurons recorded from anterior thalamic (AT), ventroanterior-ventrolateral (VA-VL) and rostral intralaminar centrolateral (CL) nuclei were physiologically identified by their orthodromic responses to prethalamic stimulation and/or antidromic activation from the cerebral cortex. 2. Besides early excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) that were not sensitive to cholinergic antagonists, two types of cholinergic responses were elicited by PB/LDT stimulation: a short-lasting and a late, long-lasting depolarization. All these components survived monoamine depletion by reserpine. 3. The latency of the short-lasting depolarizing response was 147.4 +/- 27.3 (SE) ms. The response lasted for 1.3 +/- 0.1 s and had a peak amplitude of 4.2 +/- 0.3 mV. This component was associated with 10-30% increase in membrane conductance and was abolished by systemic administration of the nicotinic antagonist mecamylamine. 4. The long-lasting depolarizing response had a latency of 1.2 +/- 0.1 s, a duration of 20.8 +/- 2.2 s, and a peak amplitude of 5.4 +/- 0.4 mV. Similar values were found in decorticated animals. The duration and amplitude of the late depolarizing component were dependent on stimulation parameters and membrane potential. This response increased under depolarizing current, decreased and eventually disappeared under hyperpolarizing current, and was associated on average with 40% increase in apparent input resistance. After systemic administration of the muscarinic antagonist scopolamine, the long-lasting depolarization disappeared; the surviving short-lasting depolarization was subsequently abolished by mecamylamine. 5. The prolonged depolarizing response of thalamocortical neurons to mesopontine cholinergic stimulation was accompanied by a desynchronization of the electroencephalogram (EEG). These two phenomena had a similar time course. Stimulation of deep cerebellar nuclei, whose axons traverse the PB area, did not induce a long-lasting depolarization of target thalamic cells, nor an EEG desynchronization. 6. These data demonstrate that, in addition to an initial nicotinic excitation, brain stem cholinergic stimulation elicits a late, long-lasting muscarinic depolarization of thalamocortical neurons. We suggest that the prolonged depolarization plays an important role in cortical activation.  相似文献   

11.
Types and projections of neurons that received cholinergic, purinergic and other fast excitatory synaptic inputs in myenteric ganglia of the guinea-pig distal colon were identified using combined electrophysiological recording, application of selective antagonists, marker dye filling via the recording microelectrode, and immunohistochemical characterisation. Fast synaptic inputs were recorded from all major subtypes of uniaxonal neurons including Dogiel type I neurons, filamentous interneurons, circular muscle motor neurons and longitudinal muscle motor neurons. Fast excitatory postsynaptic potentials were completely blocked by the nicotinic receptor antagonists hexamethonium or mecamylamine in 62% of neurons tested and were partially inhibited in the remaining neurons. The P2 purine receptor antagonist, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid, reduced the amplitudes of fast excitatory postsynaptic potentials in 20% of myenteric neurons. The 5-hydroxytryptamine(3) receptor antagonist granisetron reduced the amplitude of fast excitatory postsynaptic potentials in only one of 15 neurons tested. In five of five neurons tested, the combination of a nicotinic antagonist, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid, granisetron and 6-cyano-7-nitroquinoxaline-2,3-dione did not completely block the fast excitatory postsynaptic potentials. Immunohistochemical studies of the neurons that had been identified electrophysiologically and morphologically imply that P2X(2) receptors may mediate fast transmission in some neurons, and that other P2X receptor subtypes may also be involved in fast synaptic transmission to myenteric neurons of the guinea-pig distal colon. Neurons with nicotinic and pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid-sensitive fast excitatory postsynaptic potentials were present in both ascending and descending pathways in the distal colon. Thus, neither cholinergic nor mixed cholinergic/purinergic synaptic responses are confined to a particular class of neuron. The results indicate that acetylcholine and ATP are the major fast excitatory neurotransmitters in guinea-pig distal colon myenteric ganglia.  相似文献   

12.
Variability is increasingly recognized as a characteristic feature of cellular, synaptic, and network properties. While studies have traditionally focused on mean values, significant effects can result from changes in variance. This study has examined cellular and synaptic variability in the lamprey spinal cord and its modulation by the neuropeptide substance P. Cellular and synaptic variability differed in different types of cell and synapse. Substance P reduced the variability of subthreshold locomotor-related depolarizations and spiking in motor neurons during network activity. These effects were associated with a reduction in the variability of spiking in glutamatergic excitatory network interneurons and with a reduction in the variance of excitatory interneuron-evoked excitatory postsynaptic potentials (EPSPs). Substance P also reduced the variance of postsynpatic potentials (PSPs) from crossing inhibitory and excitatory interneurons, but it increased the variance of inhibitory postsynpatic potentials (IPSPs) from ipsilateral inhibitory interneurons. The effects on the variance of different PSPs could occur with or without changes in the PSP amplitude. The reduction in the variance of excitatory interneuron-evoked EPSPs was protein kinase A, calcium, and N-methyl-d-aspartate (NMDA) dependent. The NMDA dependence suggested that substance P was acting postsynaptically. This was supported by the reduced variability of postsynaptic responses to glutamate by substance P. However, ultrastructural analyses suggested that there may also be a presynaptic component to the modulation, because substance P reduced the variability of synaptic vesicle diameters in putative glutamatergic terminals. These results suggest that cellular and synaptic variability can be targeted for modulation, making it an additional source of spinal cord plasticity.  相似文献   

13.
1. Intracellular records were obtained from giant interneurones in the isolated spinal cord of the sea lamprey. The cells had a mean resting potential of about 75 mV and action potentials with overshoots of about 35 mV. Their input resistances, measured by passing polarizing currents through the recording pipette, were in the range 3-7 MOmega.2. Iontophoretic ejection of gamma-aminobutyric acid (GABA) from a micropipette placed near the surface of a cell resulted in a slight hyperpolarization, accompanied by a marked reduction in input resistance. The reversal point for the potential change was about 5 mV greater than the resting membrane potential.3. Iontophoretic application of L-glutamate to the cells produced a depolarization with a decrease in input resistance much smaller than that accompanying a GABA potential of similar amplitude. The action potential amplitude was reduced by L-glutamate application. The reversal potential could not be determined accurately but appeared to be near zero membrane potential.4. Glutamate application produced, in addition, a burst of inhibitory synaptic potentials in the cell, presumably by depolarizing either inhibitory presynaptic nerve terminals or nearby inhibitory cell bodies.5. Acetylcholine (ACh) produced no detectable change in membrane resistance or potential.6. Application of the three drugs to first-order sensory cells in the spinal cord had no effect on their membrane properties.  相似文献   

14.
Embryos spinalized at the 3rd to 6th postotic myotome and immobilized in 10(-4) M tubocurarine can respond to a brief skin stimulus with motor root activity suitable for swimming. Embryos spinalized at the more caudal levels give shorter episodes of fictive swimming. We have previously described the synaptic inputs to motoneurons during fictive swimming in intact embryos (23). In the present paper we look to see if similar synaptic inputs are present in spinal embryos and are therefore spinal in origin. All motoneuron firing during fictive swimming is associated with a tonic depolarization that falls away slowly once firing stops, is increased by hyperpolarizing current, and is reduced by depolarizing current. A slow depolarizing potential evoked by lower levels of skin stimulation has similar properties and rate of fall. In 1-2 mM PDA, an excitatory amino acid antagonist, only a small remnant of the depolarization remains, and motoneuron firing stops. The NMDA antagonist 50 microM APV reduces the depolarization less but also blocks firing. Motoneurons fire one spike per swimming cycle, in phase with nearby motor root discharge. Spikes are preceded by a depolarizing prepotential. This increases with hyperpolarizing current, which can block the spike to reveal an underlying depolarizing potential. In phase with motor root discharge on the opposite side of the body, motoneurons receive a midcycle inhibitory postsynaptic potential, which increases with depolarizing current, decreases with hyperpolarizing current, and is blocked by 10(-6) M strychnine. Strychnine, 5 X 10(-7) M, leads first to broadening of motor root bursts then to loss of the alternating swimming pattern of activity, which is replaced by synchronous bursts on both sides of the body. We conclude that the synaptic inputs to motoneurons during fictive swimming in spinal embryos are very similar in properties and pharmacology to those in intact embryos. These inputs, including the tonic depolarization always associated with motoneuron firing during swimming, must be at least partly spinal in origin.  相似文献   

15.
Short-lasting application (10 min) of tachykinin neuropeptides evokes long-lasting (>24 h) modulation of N-methyl-D-aspartate (NMDA)-evoked locomotor network activity in the lamprey spinal cord. In this study, the net effects of the tachykinin substance P on the isolated spinal cord have been examined by recording from motor neurons in the absence of NMDA and ongoing network activity. Brief bath application of substance P (30 s to 2 min) induced irregular membrane potential oscillations in motor neurons. These oscillations consisted of depolarizing and hyperpolarizing phases and were associated with phasic ventral-root activity. The oscillations were blocked by the tachykinin antagonist spantide II. They were also blocked by tetrodotoxin (TTX), suggesting that they were not dependent on intrinsic membrane properties of the motor neurons but were synaptically mediated. Substance P could also have a direct effect, however, because a membrane potential depolarization persisted in the presence of TTX. Protein kinase agonists and antagonists were used to investigate the intracellular pathways through which substance P acted. The oscillations were blocked by the selective protein kinase C (PKC) antagonist chelerythrine. However, the TTX-resistant membrane potential depolarization was not significantly affected by blocking PKC. The protein kinase A and G antagonist H8 did not affect either the oscillations or the direct TTX-resistant membrane potential depolarization. The glutamate receptor antagonist kynurenic acid abolished the substance-P-evoked oscillations, suggesting that they were dependent on glutamate release. The oscillations were abolished or reduced by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxalene-2,3-dione but were only reduced by the NMDA receptor antagonist D-AP5. The oscillations were thus mediated by glutamatergic inputs with a greater dependence on non-NMDA receptors. Blocking glycinergic inputs with strychnine resulted in large depolarizing plateaus and bursts of spikes. The glutamatergic and glycinergic inputs underlying the oscillations are apparently evoked through direct and indirect excitatory effects on inhibitory and excitatory premotor interneurons. Substance P thus has a distributed excitatory effect in the spinal cord. While it can activate premotor networks, this activation alone is not able to evoke a coordinated behaviorally relevant motor output.  相似文献   

16.
1. In deeply barbiturate-anesthetized animals. NH4+ decreases spinal excitatory synaptic transmission by neuronal depolarization and subsequent block of conduction of action potentials into presynaptic terminals of low-threshold (presumably Ia-) afferents. Because barbiturates by themselves depress excitatory synaptic transmission and may have modified the effects of NH4+, this study examines the effect of NH4+ on excitatory synaptic transmission in the unanesthetized animal. 2. The effects of NH4+ on monosynaptic and polysynaptic excitatory reflexes as well as di- and polysynaptic inhibition were investigated in the spinal cord of the decerebrate and unanesthetized cat in vivo. 3. The monosynaptic excitatory reflex (MSR) elicited by muscle nerve stimulation and polysynaptic excitatory reflexes elicited by muscle (MSR-PSR) or cutaneous nerve stimulation (Cut-PSR) were recorded from the ventral roots L7 or S1. The P-wave was recorded from the cord dorsum. Di- and polysynaptic inhibition was elicited by muscle nerve stimulation and measured as decrease of the MSR. 4. Intravenous infusion of ammonium acetate (AA) decreased MSR and the monosynaptic motoneuron pool excitatory postsynaptic potential (EPSP) recorded from the ventral root (VR-EPSP). Decrease of MSR and VR-EPSP was accompanied by an increase of the intraspinal conduction time in presynaptic terminals. The maximal decrease of the MSR was preceded by a period of transient increase of the MSR and reflex discharges from previously subthreshold VR-EPSPs. 5. The effects of NH4+ on MSR and VR-EPSP are consistent with those in barbiturate-anesthetized animals and suggest that NH4+ also decreases monosynaptic excitation in unanesthetized animals by depolarization and subsequent conduction block for action potentials in presynaptic terminals. 6. Decrease of the MSR was accompanied by a decrease of the P-wave, indicating that NH4+ simultaneously decreases mono- and oligosynaptic excitatory synaptic transmission as well as presynaptic inhibition. 7. Decrease of the MSR was accompanied by increases of MSR-PSR and Cut-PSR and decreases of di- and polysynaptic postsynaptic inhibition. 8. The neuronal circuits underlying MSR-PSR and Cut-PSR include presynaptic inhibition of group I and II afferents as well as postsynaptic inhibition of motoneurons. It is suggested that increases of MSR-PSR and Cut-PSR are contributed to by decreases of pre- and postsynaptic inhibition and neuronal depolarization by NH4+. These effects increase afferent input to motoneurons, permit uncontrolled discharge of motoneurons, and initiate reflex discharges by previously subthreshold excitatory postsynaptic potentials.  相似文献   

17.
Parker D  Gilbey T 《Neuroscience》2007,145(1):142-152
Functional properties in the spinal cord change during development to adapt motor outputs to differing behavioral requirements. Here, we have examined whether there are also developmental differences in spinal cord plasticity by comparing the neuromodulatory effects of substance P in the larval lamprey spinal cord with its previously characterized effects in premigratory adults. The premigratory adult effects of substance P were all significantly reduced in larvae. As the adult effects of substance P depend on the N-methyl-d-aspartate (NMDA)-dependent potentiation of glutamatergic synaptic transmission, we examined if the developmental differences in neuromodulation were associated with differences in synaptic properties. We found that the amplitude, rise time, and half-width of excitatory postsynaptic potentials (EPSPs) from excitatory network interneurons were all significantly reduced in larvae compared with adults. These differences were associated with a reduction in the NMDA component of larval EPSPs, an effect that could have contributed to the reduced modulatory effects of substance P in larvae. In contrast to glutamatergic inputs, the amplitude, rise time, and half-width of inhibitory postsynaptic potentials (IPSPs) from ipsilateral inhibitory interneurons were all significantly increased in larvae compared with adults. Substance P also potentiated larval IPSP amplitudes, an effect not seen in adults. This increase in inhibition contributed to the reduced effects of substance P in larvae, as premigratory adult-like modulation could be evoked when inhibition was blocked with strychnine. These results suggest that opposite developmental changes in excitatory and inhibitory synaptic transmission and their modulation are associated with developmental differences in spinal cord neuromodulation.  相似文献   

18.
Application of 5-hydroxytryptamine (5-HT) to the lamprey spinal cord in vitro reversibly depressed the chemical component of excitatory post-synaptic potentials recorded intracellularly in motoneurons and evoked by stimulation of single reticulospinal Müller cells. The depression could be produced either by local application of small volumes of 10 mM 5-HT to the surface of the spinal cord or by bath-application of 1 or 10 microM 5-HT. No effect on the input resistance of the postsynaptic cells or their sensitivity to glutamate, the suspected transmitter at this synapse, could be detected, suggesting the possibility of a presynaptic action of 5-HT at this synapse in the lamprey.  相似文献   

19.
Prominent arginine-vasopressin (AVP) binding and AVP V(1) type receptors are expressed early in the developing rat spinal cord. We sought to characterize their influence on neural excitability by using patch-clamp techniques to record AVP-induced responses from a population of motoneurons and interneurons in neonatal (5-18 days) rat spinal cord slices. Data were obtained from 58 thoracolumbar (T(7)-L(5)) motoneurons and 166 local interneurons. A majority (>90%) of neurons responded to bath applied AVP (10 nM to 3 microM) and (Phe(2), Orn(8))-vasotocin, a V(1) receptor agonist, but not V(2) or oxytocin receptor agonists. In voltage-clamp, postsynaptic responses in motoneurons were characterized by slowly rising, prolonged (7-10 min) and tetrodotoxin-resistant inward currents associated with a 25% reduction in a membrane potassium conductance that reversed near -100 mV. In interneurons, net AVP-induced inward currents displayed three patterns: decreasing membrane conductance with reversal near -100 mV, i.e., similar to that in motoneurons (24 cells); increasing conductance with reversal near -40 mV (21 cells); small reduction in conductance with no reversal within the current range tested (41 cells). A presynaptic component recorded in most neurons was evident as an increase in the frequency but not amplitude (in motoneurons) of inhibitory and excitatory postsynaptic currents (IPSCs and EPSCs), in large part due to AVP-induced firing in inhibitory (mainly glycinergic) and excitatory (glutamatergic) neurons synapsing on the recorded cells. An increase in frequency but not amplitude of miniature IPSCs and EPSCs also indicated an AVP enhancement of neurotransmitter release from axon terminals of inhibitory and excitatory interneurons. These observations provide support for a broad presynaptic and postsynaptic distribution of AVP V(1) type receptors and indicate that their activation can enhance the excitability of a majority of neurons in neonatal ventral spinal cord.  相似文献   

20.
Frog vestibular organs are endowed with a prominent cholinergic efferent innervation whose stimulation results in several different effects, thereby suggesting diversity in the expression of postsynaptic acetylcholine (ACh) receptors. The application of ACh can mimic efferent stimulation in producing both an inhibition and a facilitation of afferent discharge which are thought to be mediated by at least two distinct ACh receptors present on vestibular hair cells, i.e., alpha9-containing nicotinic receptors (alpha9nAChR) and muscarinic receptors (mAChR), respectively. Using patch-clamp and multiunit vestibular afferent recordings, we demonstrate the presence of an additional excitatory hair cell nicotinic ACh receptor pharmacologically distinct from both alpha9nAChR and mAChR. In order of increasing potency, this distinct receptor was activated by ACh, carbachol, and particularly by the selective nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium (DMPP). This DMPP-sensitive nicotinic receptor (RDMPP) was antagonized by the classic nicotinic antagonist d-tubocurarine, but refractory to strychnine, atropine, and propylbenzilylcholine mustard, at concentrations that completely block alpha9nAChR and/or mAChR. Activation of RDMPP on application of ACh or DMPP to a subpopulation of isolated posterior semicircular canal (SCC) hair cells resulted in a large depolarization (18.0 +/- 1.2 mV). The current underlying this depolarization was typically small (80.1 +/- 21.6 pA) and showed an inward rectification starting around -45 mV. Given their respective EC50s (47 nM vs. 20 microM), RDMPP was nearly 400 times more sensitive to ACh than alpha9nAChR and thus responded to concentrations of ACh considered too low to be effective at stimulating alpha9nAChR. Despite this remarkable sensitivity, exogenous ACh readily stimulated the mAChR in the intact posterior SCC preparation but failed to activate RDMPP unless the acetylcholinesterase inhibitor physostigmine was present, or high concentrations of ACh were used (>3 mM). In frog, RDMPP most likely underlies the rapid excitatory response seen during efferent stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号