首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Xi G  Hua Y  Keep RF  Duong HK  Hoff JT 《Brain research》2001,895(1-2):153-159
BACKGROUND: Our recent studies have shown that prior intracerebral injection of a low dose of thrombin attenuates the brain edema formation that results from either an intracerebral hematoma, an intracerebral injection of a large dose of thrombin or cerebral ischemia. The aim of the current study is to investigate whether thrombin-induced tolerance (thrombin preconditioning; TPC) is associated with activation of p44/42 mitogen activated protein (MAP) kinases. METHODS: This study contained three parts. In the first, rats received an intracerebral infusion of either saline or one unit thrombin (the TPC dose) into the right caudate nucleus. After 1, 3 and 7 days, the rats will be killed and brains used to detect p44/42 MAP kinases activation using Western blot analysis and immunohistochemistry. In the second and third parts, rats received intracerebral infusions of either vehicle, one unit thrombin (TPC) or one unit thrombin and 5 nmol PD 098059. These rats were either killed to detect kinases activation after 24 h or received a second intracerebral infusion of five-unit thrombin 7 days later with brain edema being assessed after a further 24 h. RESULTS: Western blot analysis demonstrated that p44/42 MAP kinases were activated in the ipsilateral basal ganglia after the intracerebral infusion of thrombin one unit. Cells immunoreactive for activated p44/42 MAP kinases were found in the ipsilateral basal ganglia and ipsilateral cortex. PD 098059, a MAP kinase kinase inhibitor, abolished thrombin-induced activation of p44/42 MAP kinases. TPC suppressed thrombin-induced brain edema while PD 098059 blocked this protective effect. The water contents in the ipsilateral basal ganglia 24 h after infusion of thrombin five units were 82.6+/-0.8%, 79.2+/-0.4% and 81.8+/-1.9% in the control, TPC alone and TPC plus PD 098059 groups, respectively. CONCLUSION: Thrombin can activate p44/42 MAP kinases within the brain and the protective effects of thrombin preconditioning on brain edema formation are related to this activation.  相似文献   

3.
BACKGROUND AND PURPOSE: Edema formation after intracerebral hemorrhage has been linked to thrombin toxicity induced by the clot. However, thrombin at low concentrations actually protects neurons and astrocytes in culture from hypoglycemic and ischemic cell death. It is also known that a brief episode of brain ischemia increases neuronal tolerance to a subsequent severe ischemic episode. The objective of this study was to investigate whether pretreatment of the brain with low-dose thrombin induces tolerance to a subsequent large dose of thrombin injected into brain parenchyma. METHODS: The rat brain was preconditioned with 1 U thrombin by direct infusion into the right caudate nucleus. After thrombin pretreatment, the effects of a large dose (5 U) of thrombin on brain edema formation were studied at different intervals. We examined whether heat-shock protein (HSP) 27, HSP32, and HSP70 were induced by Western blot analysis, immunocytochemistry, and immunofluorescent double staining. RESULTS: Thrombin pretreatment significantly attenuated the brain edema that normally follows the infusion of a large dose of thrombin (79.2+/-0.4 versus 84.0+/-0.3; P<0.01). This effect was abolished by the thrombin inhibitor hirudin. Time course studies showed that the maximal effect of thrombin preconditioning (TPC) on brain edema formation was 7 days after pretreatment. This time course corresponded to marked upregulation of HSP27 in the ipsilateral brain. TPC also induced HSP32, but this effect occurred earlier than the effect on edema formation. TPC had no effect on HSP70. Immunocytochemistry and immunofluorescent double labeling showed that HSP27 and HSP32 were expressed in astrocytes after TPC. CONCLUSIONS: OFF phenomenon of thrombin-induced tolerance of the brain to edema formation may be related to HSP27 induction.  相似文献   

4.
The effects of thrombin preconditioning on focal cerebral ischemia in rats   总被引:20,自引:0,他引:20  
Masada T  Xi G  Hua Y  Keep RF 《Brain research》2000,867(1-2):173-179
Our previous studies have shown that prior intracerebral infusion of a low dose of thrombin (thrombin preconditioning; TPC) reduces the brain edema that follows a subsequent intracerebral infusion of a high dose of thrombin or an intracerebral hemorrhage. In vitro studies have also demonstrated that low concentrations of thrombin protect neurons and astrocytes from hypoglycemia and oxidative stress-induced damage. This study, therefore, examines the hypothesis that TPC would offer protection from ischemic brain damage in vivo. This was a blinded design study. The rat brain was preconditioned with 1 U thrombin by direct infusion into the left caudate nucleus. Seven days after thrombin pretreatment, permanent middle cerebral artery occlusion (MCAO) was induced. Twenty-four hours post-ischemia, neurological deficit was evaluated and infarction volume, brain water and ion contents were measured. Compared to saline-treated rats, thrombin pretreatment significantly attenuated brain infarction in cortex (90+/-33 vs. 273+/-22 mm(3); P<0.05) and basal ganglia (56+/-17 vs. 119+/-12 mm(3); P<0.05) that followed 24 h of permanent MCAO. TPC also reduced the brain edema in cortex and basal ganglia by 50 and 53% (P<0.05). Neurological deficit was improved in thrombin pretreatment group (P<0.05). These effects of TPC were, in part, prevented by co-injection of hirudin, a thrombin inhibitor, indicating that the protection was indeed thrombin mediated. Cerebral TPC significantly reduces ischemic brain damage, perhaps by activation of the thrombin receptor. This finding provides a new mechanism by which to study ischemic tolerance.  相似文献   

5.
Thrombin and iron are two major players in intracerebral hemorrhage-induced brain injury and our recent study found that thrombin contributes to hydrocephalus development in a rat model of intraventricular hemorrhage (IVH). This study investigated the role of red blood cell (RBC) lysis and iron in hydrocephalus after IVH. There were three parts to this study. First, male Sprague-Dawley rats received an injection of saline, packed, or lysed RBCs into the right lateral ventricle. Second, rats had an intraventricular injection of iron or saline. Third, the rats received intraventricular injection of lysed RBCs mixed with deferoxamine (0.5 mg in 5 μL saline) or saline. All rats underwent magnetic resonance imaging at 24 hours and were then euthanized for brain edema measurement, western blot analysis, or brain histology. We found that intraventricular injection of lysed RBCs, but not packed RBCs, resulted in ventricular enlargement and marked increases in brain heme oxygenase-1 and ferritin at 24 hours. Intraventricular injection of iron also resulted in ventricular enlargement and ventricular wall damage 24 hours later. Coinjection of deferoxamine reduced lysed RBC-induced ventricular enlargement (P<0.01). These results suggest that iron, a degradation product of hemoglobin, has an important role in hydrocephalus development after IVH.  相似文献   

6.
Thrombin-receptor activation and thrombin-induced brain tolerance.   总被引:18,自引:0,他引:18  
The authors previously found that pretreatment with a low dose of thrombin attenuates the brain edema induced by a large dose of thrombin or an intracerebral hemorrhage, and reduces infarct volume after focal cerebral ischemia (i.e., thrombin preconditioning). This study investigated whether thrombin preconditioning is caused by activation of the thrombin receptor, also called protease-activated receptor. In the in vivo studies, thrombin-induced brain tolerance was eliminated by RPPGF (Arg-Pro-Pro-Gly-Phe), a thrombin-receptor antagonist. Pretreatment with a thrombin-receptor agonist reduced the amount of edema induced by a large dose of thrombin infused into the ipsilateral basal ganglia 7 days later (81.3 +/- 0.7% vs. 82.6 +/- 0.8% in the control, P < 0.05). In the in vitro study, low doses of thrombin (1 or 2 U/mL) did not induce cell death. However, doses greater than 5 U/mL resulted in dose-dependent lactate dehydrogenase release (P < 0.01). Thrombin and thrombin receptor-activating peptide preconditioning reduced lactate dehydrogenase release induced by a high dose of thrombin (10 and 20 U/mL), whereas RPPGF blocked the effect of thrombin preconditioning in vitro. Western blots indicated that p44/42 mitogen-activated protein kinases were activated after thrombin preconditioning. Finally, inhibition of p44/42 mitogen-activated protein kinases activation by PD98059 abolished the thrombin-preconditioning effect. Results indicate that thrombin-induced brain tolerance is in part achieved through activation of the thrombin receptor. Activation of the thrombin receptor in the brain may be neuroprotective. The protective effect of thrombin preconditioning is achieved through the p44/42 mitogen-activated protein kinase signal-transduction pathway.  相似文献   

7.
Since Src kinase inhibitors decrease brain injury produced by intracerebral hemorrhage (ICH) and thrombin is activated following ICH, this study determined whether Src kinase inhibitors decrease thrombin-induced brain injury. Thrombin injections into adult rat striatum produced focal infarction and motor deficits. The Src kinase inhibitor PP2 decreased thrombin-induced Src activation, infarction in striatum and motor deficits in vivo. Thrombin applied to cultured post-mitotic striatal neurons caused: injury to axons and dendrites; many TUNEL positive neuronal nuclei; and re-entry into the cell cycle as manifested by cyclin D1 expression, induction of several other cell cycle genes and cyclin-dependent kinase 4 activation. PP2 dose-dependently attenuated thrombin-induced injury to the cultured neurons; and attenuated thrombin-induced neuronal cell cycle re-entry. These results are consistent with the hypotheses that Src kinase inhibitors decrease injury produced by ICH by decreasing thrombin activation of Src kinases and, at least in part, by decreasing Src induced cell cycle re-entry.  相似文献   

8.
Hypoxia preconditioning in the brain   总被引:10,自引:0,他引:10  
  相似文献   

9.
红细胞在实验性脑出血后脑水肿形成中的作用   总被引:3,自引:0,他引:3  
目的研究红细胞在脑出血后脑水肿形成中的作用。方法向大鼠尾状核分别注入浓缩红细胞(PRBC)、溶解红细胞(LRBC)及不同浓度的大鼠血红蛋白(Hb),并比较鼠脑不同部位脑水肿形成的特点。结果红细胞对脑水肿的影响要在脑出血后第3d,其水肿的严重程度与Hb的浓度呈正相关。结论红细胞对脑出血后脑水肿形成的影响主要在脑出血后第3d,可能与红细胞溶解释放血红蛋白有关。  相似文献   

10.
凝血酶是一种丝氨酸蛋白酶,其主要作用是参与机体的凝血、抗凝、血栓形成和纤溶等过程。早先的研究显示在脑出血中凝血酶可以引起血脑屏障的破坏、促进脑水肿的形成,导致神经元死亡,但是新近研究显示凝血酶除了上述作用外,还有促进神经再生、血管再生及脑组织重塑等作用。  相似文献   

11.
More than 80 years after iron accumulation was initially described in the substantia nigra (SN) of Parkinson's disease (PD) patients, the mechanisms responsible for this phenomenon are still unknown. Similarly, how iron is delivered to its major recipients in the cell – mitochondria and the respiratory complexes – has yet to be elucidated. Here, we report a novel transferrin/transferrin receptor 2 (Tf/TfR2)-mediated iron transport pathway in mitochondria of SN dopamine neurons. We found that TfR2 has a previously uncharacterized mitochondrial targeting sequence that is sufficient to import the protein into these organelles. Importantly, the Tf/TfR2 pathway can deliver Tf bound iron to mitochondria and to the respiratory complex I as well. The pathway is redox-sensitive and oxidation of Tf thiols to disulfides induces release from Tf of highly reactive ferrous iron, which contributes to free radical production. In the rotenone model of PD, Tf accumulates in dopamine neurons, with much of it accumulating in the mitochondria. This is associated with iron deposition in SN, similar to what occurs in PD. In the human SN, TfR2 is also found in mitochondria of dopamine neurons, and in PD there is a dramatic increase of oxidized Tf in SN. Thus, we have discovered a novel mitochondrial iron transport system that goes awry in PD, and which may provide a new target for therapeutic intervention.  相似文献   

12.
Tolerance to cerebral ischemia is achieved by preconditioning sublethal stresses, such as ischemia or hypoxia, paradigms in which the decrease of O2 availability may constitute an early signal inducing tolerance. In accordance with this concept, this study shows that hypoxia induces tolerance against focal permanent ischemia in adult mice. Normobaric hypoxia (8% O2 of 1-hour, 3-hour, or 6-hour duration), performed 24 hours before ischemia, reduces infarct volume by approximately 30% when compared with controls. To elucidate the mechanisms underlying this neuroprotection, the authors investigated the effects of preconditioning on cerebral expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and its target genes, erythropoietin and vascular endothelial growth factor (VEGF). Hypoxia, whatever its duration (1 hour, 3 hours, 6 hours), rapidly increases the nuclear content of HIF-1alpha as well as the mRNA levels of erythropoietin and VEGF. Furthermore, erythropoietin and VEGF are upregulated at the protein level 24 hours after 6 hours of hypoxia. The authors' findings show that (1) hypoxia elicits a delayed, short-lasting (<72 hours) tolerance to focal permanent ischemia in the adult mouse brain; (2) HIF-1 target genes could contribute to the establishment of tolerance; and (3) this model might be a useful paradigm to further study the mechanisms of ischemic tolerance, to identify new therapeutic targets for stroke.  相似文献   

13.
The serine protease thrombin has shown direct neuroprotective and neurotoxic effects on brain tissue in cerebral ischemia. Previous data suggested that thrombin-induced protection in vivo can be achieved by preconditioning rather than by acute treatment. In the current work, we used a model of mild ischemia to investigate the effects of preischemic intracerebral thrombin injection on neural damage. By intracerebral injection of endothelin-1 in freely moving animals, we achieved middle cerebral artery occlusion (MCAO), and 7 days postischemia we performed histological quantification of the infarct areas. Thrombin was injected as a preconditioning stimulus intracerebrally 7 days or 2 and 3 days before ischemia. For acute treatment, thrombin was injected 20 min before MCAO. Thrombin induced significant neuroprotection when given 7 days before endothelin-1-induced MCAO but was deleterious when given 2 and 3 days before the insult. The deleterious effect was not seen when thrombin was given acutely before ischemia. Our data demonstrate that preconditioning with thrombin can protect against damage or worsen ischemic damage. Its effect depended on the time interval between thrombin injection and insult. A low dose of thrombin did not induce a major deleterious effect in the acute phase of the infarct development after mild transient ischemia.  相似文献   

14.
Effects of hypothermia on thrombin-induced brain edema formation   总被引:25,自引:0,他引:25  
Recent studies have shown that thrombin plays an important role in brain edema formation after intracerebral hemorrhage (ICH). The possible mechanisms of thrombin-induced brain edema formation include blood-brain barrier (BBB) disruption and inflammatory response involving polymorphonuclear (PMN) leukocyte. Animal experiments have revealed that moderate therapeutic hypothermia improves pathological and functional outcome in various models of brain injury. In this study, we examined the effect of hypothermia on thrombin-induced brain edema formation. Effects of hypothermia on BBB permeability and the accumulation of PMN leukocytes were also determined to clarify the protective mechanism of hypothermia in this model. Anesthetized adult rats received an injection of 10 Units of thrombin into the basal ganglia. Animals were separated into the normothermic and hypothermic groups, which were housed in a room maintained at 25 degrees C and in a cold room maintained at 5 degrees C, respectively, for 24 h after the thrombin injection. The brain temperature in rats housed in a cold room reduced temporarily to approximately 30 degrees C and then gradually recovered to 35 degrees C by the end of the observation. Brain water content in the basal ganglia was significantly reduced in rats treated with hypothermia compared to the normothermic rats (84.3+/-0.2 vs. 82.4+/-0.1%; P<0.01). The decrease of brain water content was accompanied with a significant reduction in BBB permeability to Evan's blue dye and in accumulation of PMN leukocytes. This study indicates that hypothermic treatment significantly reduces thrombin-induced brain edema formation in the rat. Inhibition of thrombin-induced BBB breakdown and inflammatory response by hypothermia appear to contribute to brain protection in this model. Hypothermic treatment may provide an approach to potentially reduce ongoing edema after ICH.  相似文献   

15.
大鼠脑出血后脑组织转铁蛋白表达的实验研究   总被引:2,自引:0,他引:2  
目的 探讨大鼠自发性脑出血 (ICH)后不同时间脑组织中转铁蛋白 (Tf)的表达及其规律。方法 采用立体定向技术注入自体不凝血建立实验性大鼠ICH模型 ,在不同时间断头取脑 ,免疫组化染色检测脑组织中Tf阳性细胞的表达并与对照组比较。结果 ICH后 6h血肿周围及同侧大脑皮质Tf阳性细胞的表达增高 ,72h达高峰 ,然后下降 ,但第 7d时仍高于对照组 (P <0 0 5 )。结论 ICH后血肿周围和同侧大脑皮质Tf阳性细胞表达增高 ,推测Tf可能参与了ICH后神经元的保护并减轻迟发性脑水肿  相似文献   

16.
Wu J  Hua Y  Keep RF  Schallert T  Hoff JT  Xi G 《Brain research》2002,953(1-2):45-52
Intracerebral infusion of lysed erythrocytes causes brain edema without inducing ischemic cerebral blood flow. Reports have indicated that oxidative damage contributes to secondary brain injury in stroke. In the present study, we investigated whether erythrocyte lysis after intracerebral hemorrhage (ICH) might result in oxidative brain damage. This study had four parts. Male Sprague-Dawley rats received an infusion of autologous lysed erythrocytes into the right striatum. Control rats only had a needle insertion. Neurological deficits, brain water and ion contents were determined in the first part. In the second part, hemoxygenase-1 (HO-1), manganese superoxide dismutase (Mn-SOD), copper/zinc SOD (CuZn-SOD) and protein carbonyl levels were determined by Western blot analysis. In the third part, immunohistochemistry was performed for HO-1. DNA damage was examined using DNA polymerase I-mediated biotin-dATP nick-translation (PANT) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) in the fourth part. Infusion of lysed RBCs induced marked edema in the ipsilateral striatum and profound neurological deficits. Western blot analysis and immunohistochemistry indicated that HO-1 was upregulated 24 h after infusion of lysed red blood cells. Both Mn-SOD and CuZn-SOD contents decreased, protein carbonyl levels increased in the ipsilateral striatum, and there was the appearance of PANT- and TUNEL-positive cells suggesting oxidative mechanisms in the erythrocyte-induced brain injury. In conclusion, oxidative stress caused by components of the lysed erythrocytes contributes to the brain injury after ICH.  相似文献   

17.
18.
Nestin expression after experimental intracerebral hemorrhage   总被引:12,自引:0,他引:12  
Nakamura T  Xi G  Hua Y  Hoff JT  Keep RF 《Brain research》2003,981(1-2):108-117
The current study examines nestin expression after intracerebral hemorrhage (ICH), the role of different blood components in nestin upregulation, and the possibility that low doses of thrombin that induce tolerance to brain injury (thrombin preconditioning) might also induce nestin expression. Adult male Sprague-Dawley rats received an intracaudate injection of either whole blood, thrombin (1 or 5 U) or red blood cells (RBCs). Animals were sacrificed for single and double labeling immunohistochemistry to identify which cells express nestin, and for Western blotting to quantify nestin expression. By immunohistochemistry, nestin immunoreactivity was present in large numbers of astrocytes, surrounding the hematoma from day 3 to 1 week after ICH. After 2 weeks, nestin immunoreactivity was co-localized with a neuronal marker (neuronal specific enolase). By Western blot analysis, nestin was strongly expressed at day 3 (P<0.01) and 1 week (P<0.01), and expression persisted for at least 1 month (P<0.05). Intracerebral injection of thrombin or lysed RBCs resulted in a marked increase in nestin expression. Interestingly, injection of a low dose of thrombin that induces brain tolerance also upregulated nestin. The ICH-induced nestin expression in astrocytes may reflect an early response of these cells to injury, while the delayed expression in neurons might be a part of the adaptative response to injury perhaps leading to recovery of function. Nestin induction by a low dose of thrombin suggests that specific receptor-mediated pathways are involved in inducing nestin expression and that nestin may play a role in thrombin preconditioning.  相似文献   

19.
Traumatic brain injury (TBI) induces brain edema via water and glycerol transport channels, called aquaporins (AQPs). The passage of glycerol across brain cellular compartments has been shown during edema. Using a modified impact/head acceleration rodent model of diffuse TBI, we assessed the role of hypoxia inducible factor (HIF)-1alpha in regulating AQP9 expression and glycerol accumulation during the edema formation. Adult (400-425 g) male Sprague-Dawley rats received a closed head injury with a weight drop (450 g, 2-m height) and were allowed to survive up to 48 hours. Some rat groups were administered 2-methoxyestradiol (2ME2, a HIF-1alpha inhibitor) 30 minutes after injury and were euthanized at 4 and 24 hours after injury. Brain edema was measured directly by water content, and glycerol concentration was determined by the Cayman Glycerol Assay. HIF-1alpha and AQP9 protein levels were assessed by Western immunoblotting. This study demonstrated a significant (P<0·05) increase in brain water content at 4-48 hours following impact. Cerebral glycerol was significantly (P<0.05) up-regulated at as early as 1 hour and remained at high levels for up to 48 hours. Similarly, significant (P<0.05) increases in HIF-1alpha and AQP9 protein levels were found at 1 hour and up to 48 hours after injury. Compared to untreated but injured rats, inhibition of HIF-1alpha by 2ME2 significantly (P<0.05) reduced the TBI-induced AQP9 up-regulation. This reduction was temporally associated with significant (P<0.05) decreases in both edema and glycerol accumulation. The data suggested an associated induction of HIF-1alpha, AQP9, and extracellular glycerol accumulation in edema formation following diffuse TBI. The implication of HIF-1alpha and AQP9 underlying TBI-induced edema formation offers possibilities for novel TBI therapies.  相似文献   

20.
To achieve an efficient delivery targeting to post-ischemic cerebral vascular endothelium, PEG-liposome conjugated with transferrin (Tf) (Tf-PEG-liposome) was intravenously administered to the rats after 90 min of transient middle cerebral occlusion. The expression of Tf receptor (TfR) in the cerebral endothelium increased with a peak at 1 day after the reperfusion and returned to the control level by 6 days. The Tf-PEG fluorescence was marginally detectable in sham control brain, but remarkably increased with a peak at 2 days, showing about 70% of TfR positive vascular endothelium double-labeled with Tf-PEG. These results indicate that the Tf-PEG-liposome could be utilized as an efficient drug delivery tool to the brain after stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号