首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Based on how the silent information regulator 2 homolog 1 (SIRT1) regulates the cyclic AMP response element binding protein (CREB), which is the molecular switch of long-term memory that maintains cognitive function, it is postulated that the impact of lead (Pb) on SIRT1 is one of the mechanisms leading to Pb-induced cognitive and learning deficits. Hence, the purpose of this study was to investigate the effect of Pb exposure on the expression of SIRT1, and the reversion effect of resveratrol, which is an activator of SIRT1. We examined the effects of maternal rat ingestion of Pb in drinking water during gestation and lactation on the expression of SIRT1 and CREB in the hippocampus of their offspring at postnatal week 3 (PNW3) and 52 (PNW52), and then reexamined these effects in offspring after intragastric administration of resveratrol for 4 weeks. Pb exposure decreased SIRT1 and CREB phosphorylation in a dose-dependent manner in the rat hippocampus at both PNW3 and 52, and resveratrol reversed those losses. These results indicated that SIRT1 might be a novel target to prevent Pb neurotoxicity.  相似文献   

2.
Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNFalpha-induced monocytes to endothelial cells and suppressed the TNFalpha-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNFalpha-induced JAK2-PI3K/Akt-NF-kappaB activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.  相似文献   

3.
4.
1-Bromopropane (1-BP) is neurotoxic in both experimental animals and humans. Previous proteomic analysis of rat hippocampus implicated alteration of protein expression in oxidative stress, suggesting that oxidative stress plays a role in 1-BP-induced neurotoxicity. To understand this role at the protein level, we exposed male F344 rats to 1-BP at 0, 400, or 1000 ppm for 8 h/day for 1 week or 4 weeks by inhalation and quantitated changes in hippocampal protein carbonyl using a protein carbonyl assay, two-dimensional gel electrophoresis (2-DE), immunoblotting, and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-TOF/MS). Hippocampal reactive oxygen species and protein carbonyl were significantly increased, demonstrating 1-BP-associated induction of oxidative stress and protein damage. MALDI-TOF-TOF/MS identified 10 individual proteins with increased carbonyl modification (p < 0.05; fold-change ≥ 1.5). The identified proteins were involved in diverse biological processes including glycolysis, ATP production, tyrosine catabolism, GTP binding, guanine degradation, and neuronal metabolism of dopamine. Hippocampal triosephosphate isomerase (TPI) activity was significantly reduced and negatively correlated with TPI carbonylation (p < 0.001; r = 0.83). Advanced glycation end-product (AGE) levels were significantly elevated both in the hippocampus and plasma, and hippocampal AGEs correlated negatively with TPI activity (p < 0.001; r = 0.71). In conclusion, 1-BP-induced neurotoxicity in the rat hippocampus seems to involve oxidative damage of cellular proteins, decreased TPI activity, and elevated AGEs.  相似文献   

5.
Interleukin (IL)-12 plays a pivotal role in the development of T helper type 1 (Th1)-immune response, which may have therapeutic effects on diseases associated with pathologic Th2 responses such as allergic disorders and asthma. In this study, we investigated the effects of berberine, a benzodioxoloquinolizine alkaloid with anti-microbial and anti-tumor activities, on the production of IL-12 p40, an inducible subunit of IL-12, in mouse macrophages. Berberine-induced IL-12 p40 production and activation of p38 mitogen-activated protein kinase (MAPK) in dose-dependent manners, which were significantly inhibited by p38 MAPK inhibitors and yohimbine, indicating that p38 MAPK and alpha(2)-adrenergic receptor were involved in the induction of IL-12 p40 production in mouse macrophages by berberine. Furthermore, berberine significantly enhanced IL-12 p40 production in mouse macrophages when combined with lipopolysaccharide, a well-known inducer of IL-12 production. These findings may explain some of the known biological effects of berberine and suggests berberine as an immunotherapeutic compound for induction of IL-12, which is potentially applicable for tumors, infectious disease, and airway inflammation.  相似文献   

6.
7.
Recent studies demonstrated that exposure to nanoparticles could enhance the adhesion of endothelial cells and modify the membrane structure of vascular endothelium. The endothelium plays an important role in the regulation of fibrinolysis, and imbalance of the fibrinolysis system potential contributes to the development of thrombosis. Plasminogen activator inhibitor-1 (PAI-1) is the most potent endogenous inhibitor of fibrinolysis and is involved in the pathogenesis of several cardiovascular diseases. The aim of this study was to investigate the alteration of PAI-1 expression in mouse pulmonary microvascular endothelial cells (MPMVEC) exposed to the metal nanoparticles that are known to be reactive, and the potential underlying mechanisms. We compared the alteration of PAI-1 expression in MPMVEC exposed to non-toxic doses of nano-size copper (II) oxide (Nano-CuO) and nano-size titanium dioxide (Nano-TiO2). Our results showed that Nano-CuO caused a dose- and time-dependent increase in PAI-1 expression. Moreover, exposure of MPMVEC to Nano-CuO caused reactive oxygen species (ROS) generation that was abolished by pre-treatment of cells with ROS scavengers or inhibitors, DPI, NAC and catalase. Exposure of MPMVEC to Nano-CuO also caused a dose- and time-dependent increase in p38 phosphorylation by Western blot. These effects were significantly attenuated when MPMVEC were pre-treated with DPI, NAC and catalase. To further investigate the role of p38 phosphorylation in Nano-CuO-induced PAI-1 overexpression, the p38 inhibitor, SB203580, was used to pre-treat cells prior to Nano-CuO exposure. We found that Nano-CuO-induced overexpression of PAI-1 was attenuated by p38 inhibitor pre-treatment. However, Nano-TiO2 did not show the same results. Our results suggest that Nano-CuO caused up-regulation of PAI-1 in endothelial cells is mediated by p38 phosphorylation due to oxidative stress. These findings have important implications for understanding the potential health effects of metal nanoparticle exposure.  相似文献   

8.
6-(Methylsulfinyl)hexyl isothiocyanate (6-MITC) is an active ingredient of Wasabi (Wasabia japonica (Miq.) Matsumura), which is a very popular pungent spice in Japan. To clarify the cellular signaling mechanism underlying the anti-inflammatory action of 6-MITC, we investigated the effects of 6-MITC on the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-activated murine macrophage RAW264 cells. 6-MITC showed a dose-dependent inhibition of LPS-induced nitric oxide (NO), iNOS mRNA and protein. LPS caused the c-Jun phosphorylation (a major component of AP-1) and IkappaB-alpha degradation. 6-MITC suppressed LPS-induced c-Jun phosphorylation, but did not inhibit IkappaB-alpha degradation. Cellular signaling analysis using MAPK-(U0126 for MEK1/2, SB203580 for p38 kinase and SP600125 for JNK) and Jak2-specific (AG490) inhibitors demonstrated that LPS stimulated iNOS expression via activating Jak2-mediated JNK, but not ERK and p38, pathway. 6-MITC suppressed iNOS expression through the inhibition of Jak2-mediated JNK signaling cascade with the attendant to AP-1 activation. In addition, the structure-activity study revealed that the inhibitory potency of methylsulfinyl isothiocyanates (MITCs) depended on the methyl chain length. These findings provide the molecular basis for the first time that 6-MITC is an effective agent to attenuate iNOS production.  相似文献   

9.
Tumor necrosis factor-α (TNF-α) is a mediator of multiple inflammatory diseases. Vascular endothelial growth factor (VEGF) plays a critical role in TNF-α-mediated diseases. We investigated the inhibitory effects of 3,3′,4′,5,5′,7-hexahydroxyflavone (myricetin), an abundant natural flavonoid, on TNF-α-induced VEGF upregulation and the underlying molecular mechanism. Myricetin is a direct inhibitor of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase 1 (MEK1) and inhibits neoplastic cell transformation. We found that myricetin inhibited TNF-α-induced VEGF expression in JB6 P+ mouse epidermal cells by targeting MAPK kinase 4 (MKK4), as well as MEK1. The activation of activator protein-1 by TNF-α was inhibited by myricetin in a dose-dependent manner. The phosphorylation of c-Jun N-terminal kinase (JNK) and ERK was inhibited by myricetin, but not the phosphorylation of their upstream kinases MKK4 and MEK1. TNF-α-induced VEGF expression was inhibited by SP600125 and U0126, which are inhibitors of JNK and MEK, respectively. Myricetin inhibited TNF-α-induced MKK4 activity and bound glutathione S-transferase-MKK4 directly by competing with ATP. Computer modeling suggested that myricetin docks onto the ATP-binding site in MKK4, which is located between the N- and C-lobes of the kinase domain. Overall, our results indicate that myricetin has potent chemopreventive effects against TNF-α-related disease, mainly by targeting MKK4 and MEK1.  相似文献   

10.
The large amount of nitric oxide (NO) produced by inducible NO synthase (iNOS) contributes to cellular injury in inflammatory disease. In the present study, a novel synthetic compound (3E)-4-(2-hydroxyphenyl)but-3-en-2-one (HPB) was found to inhibit lipopolysaccharide (LPS)-induced NO generation, but not through the inhibition of iNOS activity, in RAW 264.7 macrophages. Administration of HPB into mice also inhibited the LPS-induced increase in serum nitrite/nitrate levels. To evaluate the underlying mechanisms of HPB inhibition of NO generation, the expression of the iNOS gene in RAW 264.7 macrophages was examined. HPB abolished the LPS-induced expression of iNOS protein, iNOS mRNA and iNOS promoter activity in a similar concentration-dependent manner. LPS-induced nuclear factor-κB (NF-κB) DNA binding and NF-κB-dependent reporter gene activity were both significantly inhibited by HPB. This effect was mediated through the inhibition of inhibitory factor-κBα (IκBα) phosphorylation and degradation, and of p65 nuclear translocation. HPB had no effect on the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinases (MAPK), and c-Jun NH2-terminal kinase (JNK). However, HPB suppressed the LPS-induced intracellular reactive oxygen species (ROS) production. These results indicate that HPB down-regulates iNOS gene expression probably through the inhibition of LPS-induced intracellular ROS production, which has been implicated in the activation of NF-κB.  相似文献   

11.
Interleukin-6 is a pleiotropic cytokine which plays a crucial role in immune physiology and is tightly controlled by hormonal feedback mechanisms. After menopause or andropause, loss of the normally inhibiting sex steroids (estrogen, testosterone) results in elevated IL6 levels that are further progressively increasing with age. Interestingly, excessive IL6 production promotes tumorigenesis (breast, prostate, lung, colon, ovarian), and accounts for several disease-associated pathologies and phenotypical changes of advanced age, such as osteoporosis, rheumatoid arthritis, multiple myeloma, neurodegenerative diseases and frailty. In this respect, pharmacological modulation of IL6 gene expression levels may have therapeutical benefit in preventing cancer progression, ageing discomforts and restoring immune homeostasis. Although "plant extracts" are used in folk medicine within living memory, it is only since the 20th century that numerous scientific investigations have been performed to discover potential health-protective food compounds or "nutraceuticals" which might prevent cancer and ageing diseases. About 2000 years ago, Hippocrates already highlighted "Let food be your medicine and medicine be your food". Various nutrients in the diet play a crucial role in maintaining an "optimal" immune response, such that deficient or excessive intakes can have negative consequences on the organism's immune status and susceptibility to a variety of pathologies. Over the last few decades, various immune-modulating nutrients have been identified, which interfere with IL6 gene expression. Currently, a broad range of phyto-pharmaceuticals with a claimed hormonal activity, called "phyto-estrogens", is recommended for prevention of various diseases related to a disturbed hormonal balance (i.e. menopausal ailments and/or prostate/breast cancer). In this respect, there is a renewed interest in soy isoflavones (genistein, daidzein, biochanin) as potential superior alternatives to the synthetic selective estrogen receptor modulators (SERMs), which are currently applied in hormone replacement therapy (HRT). As phyto-chemicals integrate hormonal ligand activities and interference with signaling cascades, therapeutic use may not be restricted to hormonal ailments only, but may have applications in cancer chemoprevention and/or NF-kappaB-related inflammatory disorders as well.  相似文献   

12.
Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, an anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-κB inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-κB signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis.  相似文献   

13.
14.
15.
In the present study, we investigated the effects and mechanisms of a novel potent antioxidant, octyl caffeate, on the induction of iNOS expression by lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) in cultured primary rat aortic smooth muscle cells (RASMCs) in vitro and LPS-induced hypotension in vivo. Octyl caffeate (0.1-1.0 microM) exerted a concentration-dependent inhibition of iron-catalyzed lipid peroxidation in rat brain homogenates. Furthermore, octyl caffeate (20, 50, and 100 microM) concentration-dependently diminished the initial rate of superoxide-induced NBT reduction and the enzymatic activity of xanthine oxidase. It also concentration-dependently (1-50 microM) inhibited the NO production, iNOS protein and messenger RNA expressions upon stimulation by LPS (100 microg/mL)/IFN-gamma (100U/mL) in RASMCs. In addition, we found that octyl caffeate did not significantly affect IkappaBalpha degradation stimulated by LPS/IFN-gamma in RASMCs. On the other hand, octyl caffeate (10 and 50 microM) significantly suppressed activation of c-Jun-N-terminal kinase and extracellular signal-regulated kinase. Moreover, octyl caffeate (10mg/kg, i.v.) significantly inhibited the fall in mean arterial pressure stimulated by LPS (7.5mg/kg) in rats. In conclusion, we demonstrate that a novel potent antioxidant, octyl caffeate, significantly ameliorates circulatory failure of endotoxemia in vivo by a mechanism involving suppression of iNOS expression through inactivation of mitogen-activated protein kinases in RASMCs.  相似文献   

16.
17.
Human bronchial cells are one of the first cell types exposed to environmental toxins. Toxins often activate nuclear factor-κB (NF-κB) and protein kinase C (PKC). We evaluated the hypothesis that cigarette smoke condensate (CSC), the particulate fraction of cigarette smoke, activates PKC-α and NF-κB, and concomitantly disrupts the F-actin cytoskeleton, induces apoptosis and alters cell function in BEAS-2B human bronchial epithelial cells. Compared to controls, exposure of BEAS-2B cells to doses of 30 μg/ml CSC significantly activated PKC-α, while CSC doses above 20 μg/ml CSC significantly activated NF-κB. As NF-κB was activated, cell number decreased. CSC treatment of BEAS-2B cells induced a decrease in cell size and an increase in cell surface extensions including filopodia and lamellipodia. CSC treatment of BEAS-2B cells induced F-actin rearrangement such that stress fibers were no longer prominent at the cell periphery and throughout the cells, but relocalized to perinuclear regions. Concurrently, CSC induced an increase in the focal adhesion protein vinculin at the cell periphery. CSC doses above 30 μg/ml induced a significant increase in apoptosis in BEAS-2B cells evidenced by an increase in activated caspase 3, an increase in mitochondrial mass and a decrease in mitochondrial membrane potential. As caspase 3 increased, cell number decreased. CSC doses above 30 μg/ml also induced significant concurrent changes in cell function including decreased cell spreading and motility. CSC initiates a signaling cascade in human bronchial epithelial cells involving PKC-α, NF-κB and caspase 3, and consequently decreases cell spreading and motility. These CSC-induced alterations in cell structure likely prevent cells from performing their normal function thereby contributing to smoke-induced diseases.  相似文献   

18.
The impact of early exposure to endocrine disruptor mixtures on mammary gland development is poorly known. Here, we identify the effects of a conception to weaning exposure of rats to the phytoestrogen genistein (G) and/or the antiandrogen vinclozolin (V) at 1 mg/kg-d, alone or in association. Using several approaches, we found that G- and GV-exposed rats displayed significantly greater epithelial branching and proliferation, wider terminal end buds than controls at PND35, as well as ductal hyperplasia and periductal fibrosis. Focal branching defects were present in V-exposed rats. An increased ER and AR expression was observed in G- and GV- as compared to V-exposed rats at PND35. Surprisingly, a significant number of GV- and to a lesser extent, V-exposed animals displayed abnormal hyperplasic alveolar structures at PND50. Thus, gestational and lactational exposure to low doses of genistein plus vinclozolin may seriously affect peripubertal development of the rat mammary gland.  相似文献   

19.
In the present study, the signal pathways involved in NO formation and iNOS expression in RAW 264.7 macrophages stimulated by LTA were investigated. We also compared the relative inhibitory activities and mechanisms of PMC, a novel potent antioxidant of alpha-tocopherol derivatives, with those of YC-1, an sGC activator, on the induction of iNOS expression by LTA in cultured macrophages in vitro and LTA-induced hypotension in vivo. LTA induced concentration (0.1-50 microg/mL)- and time (4-24 hr)-dependent increases in nitrite (an indicator of NO biosynthesis) in macrophages. Both PMC (50 microM) and YC-1 (10 microM) inhibited NO production, iNOS protein, mRNA expression, and IkappaBalpha degradation upon stimulation by LTA (20 microg/mL) in macrophages. On the other hand, PMC (50 microM) almost completely suppressed JNK/SAPK activation, whereas YC-1 (10 microM) only partially inhibited its activation in LTA-stimulated macrophages. Moreover, PMC (10 mg/kg, i.v.) and YC-1 (5 mg/kg, i.v.) significantly inhibited the fall in MAP stimulated by LTA (10 mg/kg, i.v.) in rats. In conclusion, we demonstrate that YC-1 shows more-potent activity than PMC at abrogating the expression of iNOS in macrophages in vitro and reversing delayed hypotension in rats with endotoxic shock stimulated by LTA. The inhibitory mechanisms of PMC may be due to its antioxidative properties, with a resulting influence on JNK/SAPK and NF-kappaB activations. YC-1 may be mediated by increasing cyclic GMP, followed by, at least partly, inhibition of JNK/SAPK and NF-kappaB activations, thereby leading to inhibition of iNOS expression.  相似文献   

20.
Solar ultraviolet (UV) radiation can cause skin photoaging by inducing secretion of matrix metalloproteinases (MMPs). It has been reported that MMPs, especially MMP-1, -3 and -9, reduce elasticity of the dermis by degrading collagen. Polyphenols are a group of compounds that exist mainly in glycosides in the plants and they may transform to aglycone after hydrolysis. Polyphenols can inhibit MMP expression and elastase activity. In this study, we investigated the effects of Michelia alba extract (MAE) on expression and activity of MMPs in human skin fibroblast cultures after UVB exposure. The results showed that MAE and its hydrolysates (MAH) inhibited collagenase and elastase activities. In addition, MAE exhibited antioxidant activity, elevated hyaluronic acid content and inhibited UVB-induced MMP-1, MMP-3 and MMP-9 expression. In addition, the zymography assay revealed that MAE also inhibited MMP-9 activity. We also found that MAE inhibited UVB-induced ERK and JNK kinase but not p38 kinase expression, suggesting that MAE may regulate the UVB-induced expression of MMP-1, MMP-3 and MMP-9 via the ERK and JNK kinase pathway. MAE could restore total collagen synthesis reduced by UVB. The results also suggest that MAE treatment may prevent UVB-induced extracellular matrix damage by inhibiting the expression of MMP-1, MMP-3 and MMP-9 through the MAP kinase pathway. Our findings imply that MAE is an effective agent against UVB-induced photodamage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号