首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism and disposition of acetaminophen (APAP) and a non-hepatotoxic regioisomer, 3'-hydroxyacetanilide (AMAP), were investigated in the mouse using 14C-labeled analogues. Covalent binding of metabolites of both compounds was observed on the order of 1 nmol/mg tissue protein. AMAP binding was much higher than that of APAP at 1 hr, but by 24 hr, AMAP binding was significantly lower than that of APAP. APAP binding peaked at 3 hr and did not decrease significantly thereafter. Despite the high early levels of covalent binding, AMAP was not as effective in causing glutathione depletion as was APAP. This was reflected in the urinary metabolite profiles of the two compounds. Approximately twice as much APAP was cleared through thioether conjugation compared to AMAP, based on an analysis of urinary metabolites. These results and results of other studies suggest that electrophilic metabolites of AMAP are more reactive than those of APAP, and do not diffuse as far from their site of formation, which may spare some critical target proteins from damage.  相似文献   

2.
3'-Hydroxyacetanilide (AMAP) is a nonhepatotoxic regioisomer of acetaminophen (APAP) that nonetheless does form reactive metabolites which bind to hepatic proteins. Because differences in the nature of reactive metabolites formed from AMAP and APAP may explain differences in their propensity to cause hepatotoxicity, characterization of the reactive metabolites of AMAP was undertaken. The naturally occurring sulfhydryl-containing tripeptide glutathione (GSH) was used to trap the reactive metabolites. Four mono-GSH conjugates and one di-GSH conjugate of oxidative AMAP metabolites were characterized by 1H NMR and soft ionization (LSIMS or FAB) mass spectral techniques, as well as by comparison of liquid chromatographic and spectral characteristics with synthetic standards. Two isomeric mono-GSH conjugates of 2-acetamidohydroquinone (2-AcHQ) are formed as well as a bis-GSH conjugate. A mono-GSH conjugate of 3',4'-dihydroxyacetanilide (3-OH-APAP) also was formed. Thus, these GSH conjugates most likely arise by reaction of GSH with 2-acetamido-p-benzoquinone (2-APBQ) and 4-acetamido-o-benzoquinone (4-AOBQ), respectively, as oxidation products of the known AMAP metabolites 2-AcHQ and 3-OH-APAP. Finally, a GSH conjugate of 3'-methoxy-4'-hydroxy-acetanilide (3-OMe-APAP) was detected in bile of mice administered AMAP. This conjugate probably arises by oxidation of 3-OMe-APAP, another known metabolite of AMAP. The presumed oxidation product, N-acetyl-3-methoxy-p-benzoquinone imine (MAPQI), was synthesized and found to react with GSH to give the same GSH conjugate as that detected in bile and in incubations of 3-OMe-APAP with mouse liver microsomes plus GSH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
N-acetyl-meta-aminophenol (AMAP) is generally considered as a non-toxic regioisomer of the well-known hepatotoxicant acetaminophen (APAP). However, so far, AMAP has only been shown to be non-toxic in mice and hamsters. To investigate whether AMAP could also be used as non-toxic analog of APAP in rat and human, the toxicity of APAP and AMAP was tested ex vivo in precision-cut liver slices (PCLS) of mouse, rat and human. Based on ATP content and histomorphology, APAP was more toxic in mouse than in rat and human PCLS. Surprisingly, although AMAP showed a much lower toxicity than APAP in mouse PCLS, AMAP was equally toxic as or even more toxic than APAP at all concentrations tested in both rat and human PCLS. The profile of proteins released into the medium of AMAP-treated rat PCLS was similar to that of APAP, whereas in the medium of mouse PCLS, it was similar to the control. Metabolite profiling indicated that mouse PCLS produced the highest amount of glutathione conjugate of APAP, while no glutathione conjugate of AMAP was detected in all three species. Mouse also produced ten times more hydroquinone metabolites of AMAP, the assumed proximate reactive metabolites, than rat or human. In conclusion, AMAP is toxic in rat and human liver and cannot be used as non-toxic isomer of APAP. The marked species differences in APAP and AMAP toxicity and metabolism underline the importance of using human tissues for better prediction of toxicity in man.  相似文献   

4.
Abstract

Mechanism-based inactivation (MBI) of CYP450 enzymes is a unique form of inhibition in which the enzymatic machinery of the victim is responsible for generation of the reactive metabolite. This precondition sets up a time-dependency for the inactivation process, a hallmark feature that characterizes all MBI. Yet, MBI itself is a complex biochemical phenomenon that operates in different modes, namely, covalent binding to apoprotein, covalent binding of the porphyrin group and also complexation of the catalytic iron. Using lapatinib as a recent example of toxicological interest, we present an example of a mixed-function MBI that can confound clinical drug–drug interactions manifestation. Lapatinib exhibits both covalent binding to the apoprotein and formation of a metabolite-intermediate complex in an enzyme-selective manner (CYP3A4 versus CYP3A5), each with different reactive metabolites. The clinical implication of this effect is also contingent upon genetic polymorphisms of the enzyme involved as well as the co-administration of other substrates, inhibitors or inducers, culminating in drug–drug interactions. This understanding recapitulates the importance of applying isoform-specific mechanistic investigations to develop customized strategies to manage such outcomes.  相似文献   

5.
Toxic effects of acetaminophen (paracetamol, N-acetyl-p-aminophenol, APAP) in monolayer cultures of mouse hepatocytes developed over a period of 18 hr. N-Acetyl-m-aminophenol (AMAP) was approximately 10-fold less toxic than APAP, despite the fact that it bound covalently to a greater extent to hepatocyte macromolecules. AMAP did not deplete glutathione to as great an extent as APAP, indicating that their reactive metabolites may bind to different proteins or that oxidative damage in addition to arylation of proteins may be involved in the development of cell death. The toxicity of 3-methoxy-acetyl-p-aminophenol was similar to that of APAP, whereas the other hydroquinone and quinone metabolites were 8-10 times more cytotoxic than APAP. The potencies of these analogs were in the order: acetyl-m-aminophenol-p-benzoquinoneimine greater than or equal to 2,5-dihydroxyacetanilide greater than or equal to 3-methoxy-p-benzoquinone greater than or equal to N-acetyl-p-benzoquinone imine (NAPQI) greater than or equal to acetyl-m-aminophenol-o-benzoquinone greater than or equal to 3-hydroxy-acetyl-p-aminophenol. The relative toxic potencies of the hydroquinone and quinone metabolites of AMAP were comparable to that of NAPQI, and do not readily explain the marked difference between the cytotoxic effects of AMAP and APAP.  相似文献   

6.
The hypothesis that N-acetyl-m-aminophenol (AMAP), the meta isomer of acetaminophen, will covalently bind to and inhibit human CYP2E1 in a time- and NADPH-dependent manner was investigated. Liquid chromatography/electrospray ionization-mass spectrometry analysis indicated that AMAP metabolites (i.e., AMAP*) selectively and covalently modified CYP2E1 apoprotein in a ratio of 1.4:1 (AMAP*/CYP2E1) in a reconstituted system. The deconvoluted spectra of CYP2E1 apoprotein from incubations containing NADPH and AMAP displayed mass shifts of 167.2 ± 7.1 and 334.4 ± 6.5 Da, suggesting the addition of one and two hydroxylated AMAP metabolites to CYP2E1, respectively. Mass shifts in cytochrome P450 reductase, cytochrome b(5), and heme from these samples were not observed. CYP2E1 inhibition by AMAP increased with time in the presence of NADPH; a reversible inhibition component was also observed. The results support a bioactivation process that involves formation of a hydroquinone metabolite that undergoes further oxidation to a quinone, which reacts with CYP2E1 nucleophilic residues. The data are consistent with evidence from previous studies that identified hydroxylated AMAP glutathione conjugates collected from mice and indicate that cysteine residues are the most likely sites for adduct formation. This study reports the first direct evidence of AMAP-derived hydroquinone metabolites bound to human CYP2E1.  相似文献   

7.
The hydroxamic acid of 3'-hydroxyacetanilide (AMAP) was synthesized to test the hypothesis that different reactive metabolites of AMAP and acetaminophen account for similarities in covalent binding of the two positional isomers to hepatic proteins, but for differences in their ability to cause hepatotoxicity. N-OH-AMAP was found to be a relatively stable hydroxamic acid, but it was not detected as a metabolite of AMAP formed in vitro by mouse liver microsomes or in urine of mice administered AMAP. Therefore, metabolites other than N-OH-AMAP must be responsible for covalent binding observed with AMAP to mouse liver proteins.  相似文献   

8.
Acetaminophen (APAP), a widely used analgesic and antipyretic agent, can cause acute hepatic necrosis in both humans and experimental animals when consumed in large doses. It is generally accepted that N-acetyl-p-benzoquinone imine (NAPQI) is the toxic, reactive intermediate whose formation from APAP is mediated by cytochrome P450. Several forms of P450 in humans, including 2E1, 1A2, 2A6, 3A4, have been shown to catalyze the oxidation of APAP to NAPQI. We now present evidence which demonstrates that human cytochrome P450 2D6 (CYP2D6) is also involved in the bioactivation of APAP. The formation of NAPQI from APAP by cDNA-expressed CYP2D6 was examined. K(m) and V(max) values were 1.76 mM and 3.02 nmol/min/nmol of P450, respectively, such that the efficiency of CYP2D6 in the conversion of APAP to NAPQI is approximately one-third of that of CYP2E1. The contribution of CYP2D6 to the total formation of NAPQI from APAP (1 mM) in human liver was investigated using quinidine (1 microm) as a CYP2D6-specific inhibitor, and varied from 4.5 to 22.4% among 10 livers, with an average at 12.6%. The correlation between the contribution of CYP2D6 to NAPQI formation in human liver microsomes and the CYP2D6 activity probed by the O-demethylation of dextromethorphan was studied, and found to be strong (r(2) = 0.85), and significant (P <.0001). Our findings indicate that CYP2D6, one of the major P450 isoforms in humans and also one of the pharmacogenetically important isoforms, may contribute significantly to the formation of the cytotoxic metabolite NAPQI, especially in CYP2D6 ultra-rapid and extensive metabolizers and at toxic doses of APAP when plasma APAP concentrations reach 2 mM or more.  相似文献   

9.
Drug-induced liver injury (DILI) results in the termination of drug development or withdrawal of a drug from the market. The establishment of a predictive, high-throughput preclinical test system to evaluate potential clinical DILI is therefore required. Here, we established a high content analysis (HCA) assay in human hepatocyte cell lines such as the HepaRG with normal expression levels of CYP enzymes and HepG2 with extremely low expression levels of CYP enzymes. Clinical DILI or non-DILI compounds were evaluated for reactive oxygen species (ROS) production, glutathione (GSH) consumption, and mitochondrial membrane potential (MMP) attenuation. A proportion of DILI compounds induced ROS generation, GSH depletion, and MMP dysfunction, which was consistent with reported mechanisms of DILI of these compounds. In particular, DILI compounds that deplete GSH via reactive metabolites exhibited a more marked decrease in intracellular GSH or increase in ROS production in HepaRG cells than in HepG2 cells. Comparison of the two cell lines with different levels of CYP expression might help clarify the contribution of metabolism to hepatocyte toxicity. These results suggest that the HCA assay in HepaRG and HepG2 cells might help improve the accuracy of evaluating clinical DILI potential during drug screening.  相似文献   

10.
1. Investigated were the effects of a new oral antidiabetic drug, troglitazone, and its three metabolites and antidiabetic drug candidates pioglitazone and rosiglitazone on xenobiotic oxidations catalyzed by nine recombinant human cytochrome P450 (P450 or CYP) enzymes and by human liver microsomes. 2. Troglitazone (5 muM) significantly inhibited CYP2C8-dependent paclitaxel 6alpha- hydroxylation and CYP2C9-dependent S-warfarin 7-hydroxylation. On the other hand, pioglitazone and rosiglitazone (50 muM) only slightly inhibited these xenobiotic oxidation activities catalyzed by CYP2C enzymes. 3. The inhibitory potential of troglitazone (50% inhibition concentration, IC50) was ~5 muM for drug oxidations catalyzed by CYP2C9 and CYP2C8 and C20 muM for activities catalyzed by CYP2C19 and CYP3A4 respectively. For the three metabolites of troglitazone tested, a quinone-type metabolite (M3) was the most potent inhibitor for CYP2C enzymes, followed by a sulphate conjugate (M1); effects of a glucuronide (M2) were very weak. The inhibitory effects of the parent drug were more potent than those of metabolites. Troglitazone and M3 inhibited P450 activities mainly through a competitive manner with Ki=0.2-1.7 muM and 1.4-8.8 muM respectively. 4. In three human liver microsomes, troglitazone and its metabolites also inhibited paclitaxel 6alpha-hydroxylation, S-warfarin 7-hydroxylation, S-mephenytoin 4'-hydroxylation, and testosterone 6beta-hydroxylation with similar IC50, as observed for the recombinant P450 enzyme systems. 5. These results suggest that xenobiotic oxidations by P450 enzymes are more substantially affected by troglitazone and its metabolites than pioglitazone or rosiglitazone, and that drug interactions may be of much importance to understand the basis for the pharmacological and toxicological actions of this new oral antidiabetic drug.  相似文献   

11.
Drug-induced liver injury (DILI) is not only a major concern for all patients requiring drug therapy, but also for the pharmaceutical industry. Many new in vitro assays and pre-clinical animal models are being developed to help screen compounds for the potential to cause DILI. This study demonstrates that mechanistic, mathematical modeling offers a method for interpreting and extrapolating results. The DILIsym? model (version 1A), a mathematical representation of DILI, was combined with in vitro data for the model hepatotoxicant methapyrilene (MP) to carry out an in vitro to in vivo extrapolation. In addition, simulations comparing DILI responses across species illustrated how modeling can aid in selecting the most appropriate pre-clinical species for safety testing results relevant to humans. The parameter inputs used to predict DILI for MP were restricted to in vitro inputs solely related to ADME (absorption, distribution, metabolism, elimination) processes. MP toxicity was correctly predicted to occur in rats, but was not apparent in the simulations for humans and mice (consistent with literature). When the hepatotoxicity of MP and acetaminophen (APAP) was compared across rats, mice, and humans at an equivalent dose, the species most susceptible to APAP was not susceptible to MP, and vice versa. Furthermore, consideration of variability in simulated population samples (SimPops?) provided confidence in the predictions and allowed examination of the biological parameters most predictive of outcome. Differences in model sensitivity to the parameters were related to species differences, but the severity of DILI for each drug/species combination was also an important factor.  相似文献   

12.
Oxidative metabolism of carbamazepine results in covalent binding of its reactive metabolite to liver microsomal proteins, which has been proposed as an important event in pathogenesis of the hypersensitivity reactions to this drug. Although the proposed reactive metabolites are produced by cytochrome P450 enzymes (P450 or CYP), the impact of the formation of unstable metabolites on the enzyme itself has not been elucidated. The present study examines the alteration of P450 enzyme activities during the metabolism of carbamazepine. Liver microsomes from rats and humans were preincubated with carbamazepine in the presence of NADPH, and subsequently assayed for monooxygenase activities representing several P450s. No evidence was obtained for inactivation of CYP2C11, CYP3A, CYP1A1/2 or CYP2B1/2 in rat liver microsomes during the carbamazepine metabolism, whereas the CYP2D enzyme was inactivated in a manner related to the preincubation time. Interestingly, under the same protocol human liver microsomes did not exhibit inactivation of CYP2D6, as well as there being no CYP2C8, CYP2C9 or CYP3A4 inactivation, whereas CYP1A2 was inactivated. Reduced glutathione could not protect against the observed inactivation of the P450s. These results suggest that CYP2D enzyme(s) in rats and CYP1A2 in humans biotransform carbamazepine into reactive metabolites, resulting in inactivation of the enzyme themselves, and raise the possibility that the P450 isoforms participate in toxicity induced by the drug in both animal species.  相似文献   

13.
Cytochrome P450s (CYPs), UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) are the most important enzymes for metabolic clearance. Characterization of phase I and phase II metabolism of a given drug in cellular models is therefore important for an adequate interpretation of the role of drug metabolism in toxicity. We investigated phase I (CYP) and phase II (UGT and SULT) metabolism of three drugs related to drug-induced liver injury (DILI), namely acetaminophen (APAP), diclofenac (DF) and tolcapone (TC), in cryopreserved primary human hepatocytes from 5 donors in suspension and monolayer. The general phase II substrate 7-hydroxycoumarin (7-HC) was included for comparison. Our results show that the decrease in CYP, UGT and SULT activity after plating is substrate dependent. As a consequence the phase I/phase II metabolism ratio is significantly affected, with a shift in monolayer towards phase I metabolism for TC and towards phase II metabolism for APAP and DF. Inter-donor variability in drug metabolism is significant, especially in sulfation of 7-HC or APAP. As CYP, UGT and SULT metabolism may lead to bioactivation and/or detoxification of drugs, a changed ratio in phase I/phase II metabolism may have important consequences for metabolism-related toxicity.  相似文献   

14.
Increased expression of CYP2E1 may represent the main factor contributing to oxidative stress‐mediated liver damage in drug‐induced liver injury (DILI). However, the regulation mechanism of CYP2E1 expression is poorly described. The present study was aimed to investigate the role of CYP2E1 in acetaminophen (APAP)‐ or tripterygium glycosides (TG)‐induced hepatotoxicity as well as the regulation of CYP2E1 and miR‐378a‐3p expression by APAP or TG. Rats were randomly divided and treated with APAP, TG, chlormethiazole (CMZ), APAP + CMZ and TG + CMZ, respectively, for 4 weeks. Then, blood and liver samples were collected. Serum and hepatic biochemical parameters were measured using commercial kits. Liver histopathology was tested by H&E staining. Expression levels of CYP2E1 mRNA and miR‐378a‐3p were detected by qRT‐PCR. CYP2E1 protein expression was determined by Western blot. Our results showed that CMZ effectively restored the hepatic histopathological changes, oxidative stress biomarkers and TNF‐α levels induced by APAP or TG. CYP2E1 mRNA and/or protein expression levels were dramatically increased after chronic APAP or TG treatment, while this induction was significantly reversed by CMZ co‐treatment. Of note, miR‐378a‐3p expression levels were significantly suppressed after APAP, TG and/or CMZ treatment. These results suggested that CYP2E1 were highly induced after chronic APAP or TG treatment, which in turn play an important role in APAP‐ or TG‐induced hepatotoxicity. These inductions of CYP2E1 expression were probably carried out by inhibition of miR‐378a‐3p. Our findings might provide a new molecular basis for DILI.  相似文献   

15.
1. Investigated were the effects of a new oral antidiabetic drug, troglitazone, and its three metabolites and antidiabetic drug candidates pioglitazone and rosiglitazone on xenobiotic oxidations catalyzed by nine recombinant human cytochrome P450 (P450 or CYP) enzymes and by human liver microsomes. 2. Troglitazone (5 microM) significantly inhibited CYP2C8-dependent paclitaxel 6alpha-hydroxylation and CYP2C9-dependent S-warfarin 7-hydroxylation. On the other hand, pioglitazone and rosiglitazone (50 microM) only slightly inhibited these xenobiotic oxidation activities catalyzed by CYP2C enzymes. 3. The inhibitory potential of troglitazone (50% inhibition concentration, IC50) was approximately 5 microM for drug oxidations catalyzed by CYP2C9 and CYP2C8 and approximately 20 microM for activities catalyzed by CYP2C19 and CYP3A4 respectively. For the three metabolites of troglitazone tested, a quinone-type metabolite (M3) was the most potent inhibitor for CYP2C enzymes, followed by a sulphate conjugate (M1); effects of a glucuronide (M2) were very weak. The inhibitory effects of the parent drug were more potent than those of metabolites. Troglitazone and M3 inhibited P450 activities mainly through a competitive manner with Ki = 0.2-1.7 microM and 1.4-8.8 microM respectively. 4. In three human liver microsomes, troglitazone and its metabolites also inhibited paclitaxel 6alpha-hydroxylation, S-warfarin 7-hydroxylation, S-mephenytoin 4'-hydroxylation, and testosterone 6beta-hydroxylation with similar IC50, as observed for the recombinant P450 enzyme systems. 5. These results suggest that xenobiotic oxidations by P450 enzymes are more substantially affected by troglitazone and its metabolites than pioglitazone or rosiglitazone, and that drug interactions may be of much importance to understand the basis for the pharmacological and toxicological actions of this new oral antidiabetic drug.  相似文献   

16.
Dichloromethane (DCM) is metabolically converted to carbon monoxide mostly by CYP2E1 in liver, resulting in elevation of blood carboxyhemoglobin (COHb) levels. We investigated the effects of a subtoxic dose of acetaminophen (APAP) on the metabolic elimination of DCM and COHb elevation in adult female rats. APAP, at 500 mg/kg i.p., was not hepatotoxic as measured by a lack of change in serum aspartate aminotransferase, alanine aminotransferase, and sorbitol dehydrogenase activities. In rats pretreated with APAP at this dose, the COHb elevation resulting from administration of DCM (3 mmol/kg i.p.) was enhanced significantly. Also blood DCM levels were reduced, and its disappearance from blood appeared to be increased. Hepatic CYP2E1-mediated activities measured with chlorzoxazone, p-nitrophenol, and p-nitroanisole as substrates were all induced markedly in microsomes of rats treated with APAP. Aminopyrine N-demethylase activity was also increased slightly, but significantly. Western blot analysis showed that APAP treatment induced the expression of CYP2E1 and CYP3A proteins. Neither hepatic glutathione contents nor glutathione S-transferase activity was changed by the dose of APAP used. The results indicate that, contrary to the well known hepatotoxic effects of this drug at large doses, a subtoxic dose of APAP may induce CYP2E1, and to a lesser degree, CYP3A expression. This is the first report that APAP can increase cytochrome P450 (P450)-mediated hepatic metabolism and the resulting toxicity of a xenobiotic in the whole animal. The pharmacological/toxicological significance of induction of P450s by a subtoxic dose of APAP is discussed.  相似文献   

17.
Oxidative metabolism of the insect repellent N,N-diethyl-m-toluamide (DEET) by pooled human liver microsomes (HLM), rat liver microsomes (RLM), and mouse liver microsomes (MLM) was investigated. DEET is metabolized by cytochromes P450 (P450s) leading to the production of a ring methyl oxidation product, N,N-diethyl-m-hydroxymethylbenzamide (BALC), and an N-deethylated product, N-ethyl-m-toluamide (ET). Both the affinities and intrinsic clearance of HLM for ring hydroxylation are greater than those for N-deethylation. Pooled HLM show significantly lower affinities (K(m)) than RLM for metabolism of DEET to either of the primary metabolites (BALC and ET). Among 15 cDNA-expressed P450 enzymes examined, CYP1A2, 2B6, 2D6*1 (Val(374)), and 2E1 metabolized DEET to the BALC metabolite, whereas CYP3A4, 3A5, 2A6, and 2C19 produced the ET metabolite. CYP2B6 is the principal cytochrome P450 involved in the metabolism of DEET to its major BALC metabolite, whereas CYP2C19 had the greatest activity for the formation of the ET metabolite. Use of phenotyped HLMs demonstrated that individuals with high levels of CYP2B6, 3A4, 2C19, and 2A6 have the greatest potential to metabolize DEET. Mice treated with DEET demonstrated induced levels of the CYP2B family, increased hydroxylation, and a 2.4-fold increase in the metabolism of chlorpyrifos to chlorpyrifos-oxon, a potent anticholinesterase. Preincubation of human CYP2B6 with chlorpyrifos completely inhibited the metabolism of DEET. Preincubation of human or rodent microsomes with chlorpyrifos, permethrin, and pyridostigmine bromide alone or in combination can lead to either stimulation or inhibition of DEET metabolism.  相似文献   

18.
Posaconazole is an antifungal with a wide-spectrum of activity against common and emerging fungal pathogens. In this randomised, open-label, two-way crossover study, the potential for drug interactions with posaconazole via the cytochrome P450 (CYP450) enzyme pathway was evaluated. Thirteen subjects received posaconazole tablets (2×100 mg) once daily for 10 days or no treatment; following a 14-day washout period, subjects were crossed over to the alternate treatment. The inhibition spectra of posaconazole were examined using a cocktail of the following probe substrates: caffeine (CYP1A2), tolbutamide (CYP2C8/9), dextromethorphan (CYP2D6 and total CYP3A4), chlorzoxazone (CYP2E1), and midazolam (hepatic CYP3A4). Except for midazolam, which was intravenously infused on Day 10, the cocktail probes were administered simultaneously on Day 9 during both treatment periods. Blood and urine samples were collected at specified times to quantitate probe substrates and/or metabolites. Based on insignificant differences in mean probe ratios, posaconazole did not inhibit CYP1A2, 2C8/9, 2D6, or 2E1. However, the midazolam AUC(tf) was higher in the posaconazole than no-treatment group (93.4 ng h/ml versus 51.4 ng h/ml, P<0.01), indicating inhibition of hepatic CYP3A4. Drug interactions mediated by various CYP450 are common with the currently available triazole antifungals, however these results suggest that posaconazole may have an improved and more narrow drug interaction profile (CYP3A4 only) compared with other triazoles.  相似文献   

19.
Effects of dimethylsulfoxide (DMSO) on metabolism and toxicity of acetaminophen (APAP) were examined using male mice. A dose of DMSO (1 ml/kg, i.p.) inhibited the induction of APAP hepatotoxicity almost completely as indicated by changes in serum hepatotoxic parameters. Quantification of major APAP metabolites in plasma showed that APAP-glutathione (GSH), a conjugate generated via metabolic activation of APAP, was reduced significantly while APAP-sulfate and APAP-glucuronide, detoxified metabolites both produced directly from the parent drug, were increased in mice pretreated with DMSO. However, microsomal CYP2E1 activity measured with p-nitrophenol and p-nitroanisole as substrates was increased by DMSO treatment. Generation of APAP-GSH in microsomes from control mice was inhibited by DMSO in a dose-dependent manner. Lineweaver-Burk plot analysis indicated that the inhibition pattern produced by DMSO was competitive in nature. A 10000 g supernatant was reconstituted with the cytosolic fraction and microsomes from DMSO- or saline-treated animals. APAP-GSH production was increased significantly when the cytosolic fraction from saline-treated mice and/or microsomes from DMSO-treated mice were used. The results indicate that DMSO induces the enzyme activity responsible for oxidative metabolism of APAP, but its direct inhibitory effect on the enzymatic interaction with this drug decreases the overall production of a reactive metabolite, resulting in reduction of the hepatotoxicity. It is suggested that DMSO effects on metabolism of a xenobiotic would vary depending on its potential to inhibit the interaction of enzyme(s) and the xenobiotic.  相似文献   

20.
Oxycodone is an opioid analgesic with several pharmacologically active metabolites and relatively narrow therapeutic index. Cytochrome P450 (CYP) 3A4 and CYP2D6 play major roles in the metabolism of oxycodone and its metabolites. Thus, inhibition and induction of these enzymes may result in substantial changes in the exposure of both oxycodone and its metabolites. In this study, a physiologically based pharmacokinetic (PBPK) model was built using GastroPlus™ software for oxycodone, two primary metabolites (noroxycodone, oxymorphone) and one secondary metabolite (noroxymorphone). The model was built based on literature and in house in vitro and in silico data. The model was refined and verified against literature clinical data after oxycodone administration in the absence of drug–drug interactions (DDI). The model was further challenged with simulations of oxycodone DDI with CYP3A4 inhibitors ketoconazole and itraconazole, CYP3A4 inducer rifampicin and CYP2D6 inhibitor quinidine. The magnitude of DDI (AUC ratio) was predicted within 1.5-fold error for oxycodone, within 1.8-fold and 1.3–4.5-fold error for the primary metabolites noroxycodone and oxymorphone, respectively, and within 1.4–4.5-fold error for the secondary metabolite noroxymorphone, when compared to the mean observed AUC ratios. This work demonstrated the capability of PBPK model to simulate DDI of the administered compounds and the formed metabolites of both DDI victim and perpetrator. However, the predictions for the formed metabolites tend to be associated with higher uncertainty than the predictions for the administered compound. The oxycodone model provides a tool for forecasting oxycodone DDI with other CYP3A4 and CYP2D6 DDI perpetrators that may be co-administered with oxycodone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号