首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Aim of the study

The root of Panax notoginseng (PN) is commonly used to treat chronic liver disease with its therapeutic abilities to stop haemorrhage in the circulation, while the PN flower (PN-F) is largely unknown in the biological activities on inflammation and mechanisms of its actions. In this study, the pharmacologic effects of PN-F methanol extract on inflammation were investigated to address potential therapeutic or toxic effects in LPS-stimulated mouse macrophage cells, RAW264.7 cells.

Materials and methods

Production of NO, PGE2 and pro-inflammatory cytokines (TNF-α and IL-1β) in supernatant, the expression of iNOS, COX-2 and cytokines, the phosphorylation of MAPK moleduces (ERK1/2, JNK and p38 MAPK), and the activation of NF-κB in PN-F extract were assayed in LPS-stimulated RAW264.7 cells.

Results

PN-F extract significantly inhibited the productions of NO, PGE2, TNF-α and IL-1β on the LPS-stimulated RAW264.7 cells. In addition, PN-F extract suppressed the mRNA and protein expressions of iNOS, COX-2, TNF-α and IL-1β in LPS-stimulated RAW264.7 cells. The molecular mechanism of PN-F extract-mediated attenuation in RAW264.7 cells has close a relationship to suppressing the phosphorylation of MAPK molecules such as ERK1/2, JNK and p38 MAPK, and the translocation of NF-κB p65 subunit into nuclear.

Conclusion

These results indicate that PN-F extract inhibits LPS-induced inflammatory response via the blocking of NF-κB signaling pathway in macrophages, and demonstrated that PN-F extract possesses anti-inflammatory properties in vitro.  相似文献   

3.
4.

Ethnopharmacological relevance

Er-Miao-San (EMS) is a traditional Chinese herbal formulation that contains combinations of Rhizoma Atractylodis (RA) and Cortex Phellodendri (CP). It exhibits analgesic and anti-inflammatory activities and have been used for the treatment of various “Bi Zheng” for thousand years in China. The aims of the present study were to investigate the anti-inflammatory activities of EMS and elucidate the underlying mechanisms with regard to its molecular basis of action for the best combination.

Materials and methods

The anti-inflammatory effects of EMS were studied by using lipopolysaccharide (LPS)-stimulated activation of nitric oxide (NO) and pro-inflammatory cytokine production in mouse RAW264.7 macrophages. Expression of inducible NO synthase (iNOS), mitogen-activated protein kinases (MAPKs) phosphorylation, p65 phosphorylation, inhibitor-κBα (IκBα) degradation, and NF-κB DNA-binding activity were further investigated.

Results

The present study demonstrated that EMS could suppress the production of NO in LPS-stimulated RAW264.7 macrophages. However, CP and RA did not have significant inhibitory effect on them. EMS also inhibited the production of tumor necrosis factor-alpha, interleukin-1 beta and macrophage chemotactic protein-1. Further investigations showed EMS could suppress iNOs expression and p38 phosphorylation. EMS significantly decreased the content of IκBα, reduced the level of phosphorylated p65 and suppressed the NF-κB DNA-binding activity. All these results suggested the inhibitory effects of EMS on the production of inflammatory mediators through the inhibition of the NF-κB pathway.

Conclusions

Our results indicated that EMS inhibited inflammatory events and iNOS expression in LPS-stimulated RAW264.7 cells through the inactivation of the MAPK and NF-κB pathway. This study gives scientific evidence validating the use of EMS in treatment of patients with “Bi Zheng” in clinical practice in traditional Chinese medicine.  相似文献   

5.

Aim of the study

This paper aimed to elucidate the anti-inflammatory effects of EtOAc fraction prepared from Melilotus suaveolens Ledeb ethanol extract with a cellular model of LPS-stimulated RAW 264.7 cell.

Materials and methods

Some key pro-inflammatory cytokines and mediators including IL-1β, IL-6, NO, iNOS, COX-2 and TNF-α, two important anti-inflammatory cytokines and mediators IL-10 and HO-1, I-κB and NF-κB were studied by sandwich ELISA, real-time PCR, western blot analysis and immunocytochemistry. At last a HPLC fingerprint was taken to evaluate the fraction.

Results

The EtOAc fraction could significantly inhibit the production of IL-1β, IL-6, NO, TNF-α, COX-2 in LPS-stimulated cell than that of single LPS-stimulated cell (p < 0.01 or p < 0.05), and the extract could increase the production of IL-10 and HO-1 than that of single LPS intervention cell (p < 0.01 or p < 0.05). Meanwhile, the extract also could inhibit the production of NF-κB compared to single LPS-stimulated cell. All the results showed that the extract had a good anti-inflammatory effect on LPS-stimulated RAW264.7 cell.

Conclusions

Taken together, the anti-inflammatory actions of M. suaveolens Ledeb EtOAc fraction might be due to the down-regulation of IL-1β, IL-6, NO, TNF-α and COX-2 via the suppression of NF-κB activation, and another pathway was up regulating the production of IL-10 and HO-1. Meanwhile, the EtOAc fraction might be further studied to isolate the active anti-inflammatory ingredients besides coumarin.  相似文献   

6.
7.
8.
9.
10.

Ethnopharmacological relevance

The roots of Achyranthes japonica Nakai have been used in traditional herbal medicine for the treatment of edema and arthritis in Korea.

Aim of the study

In this study, we investigated the molecular mechanism responsible for anti-inflammatory effects of the aqueous extract of A. japonica roots (AJ) in LPS-stimulated macrophages.

Materials and methods

Nitric oxide (NO) production and as inducible nitric oxide synthase (iNOS) expression were examined in TG-elicited peritoneal macrophages and RAW 264.7 cells. Cell viability was monitored by MTT assay. Protein and mRNA expressions were determined by Western blotting and RT-PCR, respectively. The activity of NF-κB and Nrf2 were examined by EMSA, immunocytochemistry or reporter assay.

Results

AJ inhibited LPS-induced NO secretion as well as iNOS expression, without affecting cell viability. Furthermore, AJ suppressed LPS-induced NF-κB activation, degradation of IκB-α, phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38. Further study demonstrated that AJ induced heme oxygenase-1 (HO-1) gene expression via nuclear translocation and transactivation of Nrf2. In addition, the inhibitory effects of AJ on iNOS expression were abrogated by small interfering RNA-mediated knock-down of HO-1.

Conclusions

These results suggest that AJ suppresses LPS-induced NO production and iNOS expression in macrophages through the inhibition of IκB/NF-κB and MAPK as well as the Nrf2-mediated HO-1 induction. These findings provide the scientific rationale for anti-inflammatory therapeutic use of A. japonica roots.  相似文献   

11.
12.
13.

Ethnopharmacological relevance

The tuber of Alisma orientale Juzepzuk, a medicinal herb that has been used for the treatment of various disorders in Korea, has an anti-inflammatory effect. Here, we investigated a possible underlying mechanism and a protective effect on acute lung injury (ALI).

Materials and methods

Alisma orientale tuber was extracted in 80% ethanol and dried. The powder of the ethanol extract of Alisma orientale tuber (EEAO) was dissolved in PBS. The effect of EEAO on NF-κB and Nrf2 activities was analyzed with RAW 264.7 cells. The effect of EEAO on lung inflammation was determined by histologic and molecular biological analyses of the lung tissue of C57BL/6 mice that were gavaged once a day with 0.3 or 1.2 g/kg of EEAO for 14 days, prior to an intranasal administration of LPS (0.01 g/kg) for inducing ALI.

Results

EEAO pre-treatment of RAW 264.7 cells suppressed NF-κB activity and the expression of its dependent genes including COX-2, IL-1β and iNOS. Similar treatment enhanced Nrf2 activity and the expression of Nrf2-regulated genes including NQO-1, HO-1 and GCLC. LPS instillation induced acute neutrophilic lung inflammation, which was significantly suppressed by pre-treatment with EEAO. Analysis of the lungs revealed that EEAO pre-treatment induced the expression of Nrf2-regulated genes, with concomitant down-regulation of inflammatory gene expression.

Conclusions

EEAO attenuated lung inflammation in LPS-induced ALI mice, which was associated with differential regulation of NF-κB and Nrf2 activities. We suggest that EEAO can be developed as a potential therapeutics for the treatment of ALI.  相似文献   

14.
15.
16.

Aims of the study

We recently reported the potential antioxidant and anti-inflammatory activities of umbelliferone 6-carboxylic acid (UMC) isolated from the whole plants of Angelica decursiva. In this study, we elucidated the anti-inflammatory mechanisms of UMC in vitro and in vivo.

Methods

The inhibitory effects of UMC on the production of nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α), the expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the activation of nuclear factor kappa B (NF-κB) were evaluated using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The reactive oxygen species (ROS) generation inhibitory activity of UMC was evaluated using t-butyl hydroperoxide (t-BHP)-induced RAW 264.7 cells. Furthermore, the in vivo anti-inflammatory activity of UMC was evaluated using carrageenan induced mouse paw edema model.

Results

UMC dose-dependently inhibited NO and PGE2 production by down-regulating iNOS and COX-2 protein expression in LPS-stimulated RAW 264.7 macrophages. UMC also suppressed the production of the proinflammatory cytokine TNF-α in LPS stimulated RAW 264.7 cells in a concentration dependent manner. In addition, UMC dose-dependently prevented LPS-induced nuclear translocation of NF-κB in RAW 264.7 macrophages. Furthermore, UMC exhibited the inhibitory activity against t-BHP-induced ROS generation in RAW 264.7 cells with an IC50 value of 705.1 μg/ml. Moreover, UMC inhibited λ-carrageenan induced mouse paw edema by 70.40 and 60.20% at doses of 50 and 25 mg/kg body weight, respectively.

Conclusion

The combined results of this study indicate that UMC is an important anti-inflammatory constituent of A. decursiva and its anti-inflammatory effect was due to its ability to inhibit the production of inflammatory mediators via inhibition of NF-κB activation pathway.  相似文献   

17.

Aim of the study

The roots of Dichroa febrifuga Lour. have been used as a traditional antimalarial drug and also used in the treatment of productive cough and unstable fever caused by infection in China and Korea. In this study, we evaluated the anti-inflammatory effect and underlying molecular mechanism of aqueous extract of Dichroa febrifuga (AEDF) in C57BL/6 mouse peritoneal macrophages.

Materials and methods

The effect of AEDF on proinflammatory cytokine (IL-1β and IL-6) production was analyzed by ELISA and real-time RT-PCR. The effects of AEDF on NF-κB/IκB-α/IKK were measured by reporter assay (in RAW 264.7 cells), EMSA, Western blotting and kinase assay. The effects of AEDF on Akt and MAPKs activity were assayed by Western blotting.

Results

AEDF inhibited the production of IL-1β and IL-6, NF-κB activation, IκB-α degradation, and IKK, Akt, ERK1/2 and JNK activities in LPS-stimulated mouse peritoneal macrophages.

Conclusions

These results suggest that AEDF inhibits proinflammatory cytokine (IL-1β and IL-6) production in LPS-stimulated mouse peritoneal macrophages, and that these effects are mediated by the inhibition of the activity of IKK/IκB/NF-κB and the phosphorylation of Akt, ERK1/2, and JNK. Our results provide a molecular basis for understanding the inhibitory effects of Dichroa febrifuga roots on endotoxin-mediated inflammation.  相似文献   

18.
19.
20.

Aim of the study

Lilium lancifolium is commonly used to treat bronchitis, pneumonia, etc. In this study, we investigated the anti-inflammatory effects of methanol extracts of the root of Lilium lancifolium (LL extracts) in LPS-stimulated Raw264.7 cells.

Material and methods

Levels of NO, PGE2 and pro-inflammatory cytokines (IL-6 and TNF-α) in the supernatant fraction were determined using sandwich ELISA. Expression of COX-2 and iNOS, phosphorylation of MAPK subgroups (ERK and JNK), and NF-κB activation in extracts were detected via Western blot and immunocytochemistry assays.

Results

The LL extract significantly inhibited NO, PGE2, IL-6 and TNF-α production in LPS-stimulated cells, and suppressed iNOS and COX-2 expression. A mechanism-based study showed that phosphorylation of ERK1/2 and JNK and translocation of the NF-κB p65 subunit into nuclei were inhibited by the LL extract. Furthermore, interleukin-4 and interleukin-13 production in Con A-induced splenocytes was suppressed.

Conclusion

These results indicate that anti-inflammatory effects of methanol extracts from Lilium lancifolium are due to downregulation of iNOS and COX-2 via suppression of NF-κB activation and nuclear translocation as well as blocking of ERK and JNK signaling in LPS-stimulated Raw264.7 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号