首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the effect of pramipexole (PPX), a selective dopamine (DA) D(3)/D(2) agonist, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced damage to the nigrostriatal dopamine system in young (8-week-old) and aged (12-month-old) mice. Co-administration of PPX and MPTP to young or aged mice, followed by 2 or 14 days of additional PPX treatment, significantly attenuated MPTP-induced striatal DA loss. Pramipexole treatment also significantly attenuated the loss of tyrosine hydroxylase immunoreactive neurons (TH-IR) within the substantia nigra pars compacta (SNc) in both young and aged animals. Effects of PPX administration on dopaminergic cell survival were confirmed in Nissl-stained sections and by quantitation of retrogradely labeled Fluorogold-positive SNc neurons. Protective effects of PPX on striatal DA levels and SNc DA neuron survival were similar in young and aged animals, although the magnitude of these effects was significantly less in aged animals. These findings support the early initiation of PPX therapy in Parkinson's disease patients.  相似文献   

2.
The neuroprotective effects of lowering body temperature have been well documented in various models of neuronal injury. The present study investigated the effects a lower ambient or core body temperature would have on damage to striatal dopamine (DA) neurons produced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mice received systemic MPTP treatment at two different temperatures, 4°C and 22°C. MPTP-treated mice maintained at 4°C demonstrated (1) a greater hypothermic response, (2) a significant reduction in striatal DA content and tyrosine hydroxylase (TH) activity, and (3) significantly greater striatal 1-methyl-4-phenylpyridinium (MPP+) levels, as compared to mice dosed with MPTP at room temperature. Parallel studies with methamphetamine (METH) were conducted since temperature appears to play a pivotal role in the mediation of damage to DA neurons by this CNS stimulant in rodents. As previously reported, METH-induced hyperthermia and the subsequent loss of striatal DA content were attenuated in animals dosed at 4°C. We also evaluated the effects a hypothermic state induced by pharmacological agents would have on striatal neurochemistry and MPP+ levels following MPTP treatment. Concurrent administration of MK-801 or 8-OHDPAT increased the striatal MPP+ levels following MPTP treatment. However, only 8-OHDPAT potentiated the MPTP-induced decrements of striatal DA content and TH activity; MK-801 did not affect MPTP decreases in these striatal markers of dopaminergic damage. Altogether, these findings indicate that temperature has a profound effect on striatal MPP+ levels and MPTP-induced damage to DA neurons in mice.  相似文献   

3.
《Neurological research》2013,35(6):644-657
Abstract

The angiotensin -converting enzyme (ACE) inhibitor perindopril has been shown to exert benefical effects on the dopaminergic system. Here, we investigated the effects of perindopril on the dopaminergic system in mice after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment, in comparison with a Ca2+ antagonist, amlodipine. Administration of perindopril showed dose-dependent neuroprotective effects against MPTP-induced striatal dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) depletion. However, administration of amlodipine showed no significant effects on striatal dopamine depletion after MPTP treatment. In our immunohistochemical studies with antibodies against tyrosine hydroxylase (TH), microtubule-associated protein 2a, b (MAP2), dopamine transporter (DAT), parvalbumin (PV), glial fibrillary acidic protein (GFAP) and Cu/Zn-superoxide dismutase (Cu/Zn-SOD), the administration of perindopril significantly attenuated MPTP-induced substantia nigra and striatal damage. This drug also blocked the increases in GFAP-positive astrocytes in the striatum and substantia nigra after MPTP treatment. Furthermore, the administration of perindopril showed a protective effect against the intense Cu/Zn-SOD immunoreactivity in the neurons and glial cells in both the striatum and substantia nigra after MPTP treatment. These results indicated that the ACE inhibitor perindopril can protect against MPTP-induced striatal dopamine and DOPAC depletion in mice. The protective effect may be, at least in part, caused by the reduction of free radicals caused by MPTP. The present study also demonstrated that perindopril is effective against MPTP-induced neurodegeneration of the nigro-striatal dopaminergic pathway. Furthermore, our results provided further evidence that free radical scavengers may be effective in the treatment of neurodegenerative diseases such as Parkinson's disease.  相似文献   

4.
An extensive literature suggests that melatonin may protect from the degenerative effects of central neurotoxins by acting as a free radical scavenger. The purpose of this study was to determine if melatonin would protect male C57BL6 mice from the toxicity of methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to nigral dopamine (DA) neurons. Melatonin was initially dissolved in dimethyl sulfoxide (DMSO), diluted to 16 microg/ml and then provided in the drinking water for 4 weeks. Control mice drank the same final concentration of the DMSO diluent. One week before the termination of the experiment, randomly selected mice from the melatonin-treated and the DMSO-treated groups received two, three or four doses of 2.5 mg/kg MPTP free base administered subcutaneously at 2-h intervals. Additional DMSO-treated and melatonin-treated mice did not receive MPTP. Following tissue collection, melatonin concentration was measured in blood plasma collected from each animal and found to be 20-fold higher in melatonin-treated compared to DMSO-treated mice. Tyrosine hydroxylase (TH) activity and the levels of DA and dihydroxyphenylacetic acid (DOPAC) were not different in striata collected from melatonin-treated versus DMSO-treated mice which did not receive MPTP. Treatment with MPTP significantly reduced striatal TH activity, DA and DOPAC, but there were no significant differences in the reductions in any of these parameters observed in the melatonin-treated versus the DMSO-treated control mice that received the same total dosage of MPTP. These results show that the long-term administration of a high pharmacological dose of melatonin was ineffective in protecting nigral dopaminergic neurons from the neurotoxic effects of MPTP.  相似文献   

5.
We administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to adult, male cats to model Parkinson's disease (PD), and utilized proton magnetic resonance imaging (MRI) and spectroscopy (MRS) at a field strength of 1.5 T to identify metabolic degenerative changes in the striatum in vivo. Neurologic status and somatosensory-evoked potentials in vivo, as well as postmortem striatal histopathological and immunohistochemical parameters, were examined. Nine cats were equally divided into three groups and treated daily for 10 days as follows: saline, MPTP, and pargyline (a monoamine oxidase inhibitor) plus MPTP. The MPTP-treated cats displayed bradykinesia, head tremor, and reduced oculovestibular reflex activity. MRI showed a diffuse increase of the T2-weighted signal in the striatum of two MPTP-treated cats. Analysis of the MRS spectra indicated significantly lower N-acetylaspartate/creatine (CR) and glutamine-glutamate complex/CR ratios than the control baseline. Two MPTP-treated cats had low choline-containing compounds/CR ratio, whereas a lactate peak was present in all MPTP-treated cats. In the striatum of the MPTP-treated cats, there was a significant decline of tyrosine hydroxylase immunoreactivity and histological evidence for a diffuse cytotoxic reaction. Pretreatment with pargyline attenuated the MPTP-induced clinical signs, MRI and MRS changes, and the histopathological and immunoreactivity alterations. We conclude that proton MRI/MRS is a sensitive, noninvasive measure of neural toxicity and biochemical alteration of the striatum in a feline model of PD.  相似文献   

6.
Striatal neurons which are immunoreactive (ir) to aromatic L-amino-acid decarboxylase (AADC) or tyrosine hydrodroxylase (TH) may play a role in the decarboxylation of L-DOPA to dopamine (DA) in advanced stages of Parkinson's disease (PD). However, the functional significance of these neurons and the mechanisms responsible for their induction remain to be clarified. In this study, rats were subjected to different types of dopaminergic or serotonergic denervation and L-DOPA injection to study the effects on these neurons. AADC-ir neurons were found in both normal and DA-denervated striata, and no significant differences in their number and distribution were induced following different types of denervation or L-DOPA administration. TH-ir neurons were only found in DA-denervated striata. However, TH-ir neurons did not appear in those areas with maximal DA depletion, but rather were observed near spared or partially lesioned DA terminals. The population of AADC-ir neurons may make a significant contribution to the effects of exogenous L-DOPA in advanced stages of PD. In addition, TH-ir neurons may contribute to these effects, since we have detected AADC-ir in TH-ir neurons using confocal laser scanning microscopy. Finally, neither L-DOPA therapy nor serotonergic denervation induces significant changes in the number or distribution of these neurons.  相似文献   

7.
Epidemiological studies have found a negative association between cigarette smoking and Parkinson's disease (PD). In order to analyze the putative neuroprotective effect of cigarette smoke and nicotine, one of its major constituents, we examined their effects in an animal model of PD provoked by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. Two groups of mice were chronically exposed to cigarette smoke (a low exposure subgroup and a high exposure subgroup; 5 exposures per day at 2-h intervals), two other groups received nicotine treatment (two doses tested 0.2 and 2 mg/kg, 5 injections i.p. per day at 2-h intervals) and one group placebo. On day 8 after the beginning of the treatment, 4 injections of MPTP hydrochloride (15 mg/kg, i.p., at 2-h intervals) or saline were administered to these animals. Nicotine and cotinine plasmatic concentration was quantified by the HPLC method, and degeneration of the nigrostriatal system was assessed by tyrosine hydroxylase (TH) immunohistochemistry. The loss of dopaminergic neurons induced by MPTP in the substantia nigra was significantly less severe in the chronic nicotine treatment groups (at 0.2 and 2 mg/kg) and the low exposure to cigarette smoke group than in the high exposure to cigarette smoke subgroup and the placebo treated subgroup. In contrast, no preservation of TH immunostaining of nerve terminals was observed in the striatum in any group. This suggests that nicotine and low exposure to cigarette smoke may have a neuroprotective effect on the dopaminergic nigrostriatal system by an as yet unknown mechanism.  相似文献   

8.
Summary. The degeneration of nigral dopaminergic neurons in Parkinson’s disease is believed to be associated with a glial reaction and inflammatory changes. In turn, local factors may induce changes in vascularization and contribute to neuronal vulnerability. Among these factors, Vascular Endothelial Growth Factor (VEGF) is released in adults under pathological conditions and is thought to induce angiogenesis.In order to determine whether changes in brain vasculature are observed in the affected brain regions in parkinsonism, we quantitatively analysed the VEGF-expressing cells and blood vessels in the substantia nigra of monkeys rendered parkinsonian by MPTP injection and compared the results with those obtained in control monkeys.Using stereological methods, we observed an increase in the number of VEGF-expressing neurons and an increase of the number of blood vessels and their volume occupying the substantia nigra pars compacta of monkeys rendered parkinsonian by chronic MPTP intoxication. These changes in vascularization may therefore modify the neuronal availability of blood nutrients, blood cells or toxic substances and neuronal susceptibility to parkinsonism.  相似文献   

9.
Summary Four experiments were performed to investigate whether or not co-administration of NMDA-antagonists potentiate the effect of an ineffective dose of L-Dopa on motor activity in hypoactive MPTP-treated mice. Motor activity was measured in an automated system recording both locomotion (horizontal) and rearing (vertical) activity. L-Dopa alone, at doses of 10 and 20 mg/kg, but not 5 mg/kg, expressed an anti-akinesia effect in MPTP-treated mice. The non-competitive NMDA-antagonist MK-801 (0.03, 0.1, and 0.3mg/kg) increased by itself both locomotion (0.1 and 0.3 mg/kg) and rearing (0.03 mg/kg) in control (saline-treated) mice whereas no effect was seen in the MPTP-treated mice. Combined with 5 mg/kg L-Dopa, MK-801 (0.1 mg/kg) increased locomotion in MPTP-treated mice. There was no interaction seen between L-Dopa and MK 801 in the control mice. CGP40116 and CGP40117, the active D- and the inactive L-stereoisomer of the competitive NMDA-inhibitor CGP 37849, respectively, were also administered together with 5 mg/kg L-Dopa. Both doses (0.003 and 0.03 mg/kg) of CGP 40116 in contrast to CGP 40117, produced anti-akinesia effect in MPTP-treated mice. CGP 40116 (0.0001 to 0.1 mg/kg) together with 5 mg/kg L-Dopa did not affect behaviour in control mice but produced (0.01 mg/kg CGP 40116 and 5 mg/kg L-Dopa) in the MPTP-treated mice an anti-akinesia effect. Our findings indicate that the non-competitive NMDA-antagonist MK-801, at doses with reported side-effects, only increase locomotion while rearing remained unaltered in MPTP-treated mice when combined with 5 mg/kg L-Dopa. Only the active stereoisomer CGP 40116 in contrast to CGP 40117, at doses far below reported side-effects, dose-dependently modulated the anti-akinesia effect of a subthreshold dose of L-Dopa. Such data thus support the notion that this behavioural modulation was regulated via NMDA-receptors. The synergism between L-Dopa and the competitive NMDA-antagonist CGP40116 has a potential in treatment of Parkinson's disease to reduce the side-effects of doses of L-Dopa that are used today.  相似文献   

10.
Arai A  Kannari K  Shen H  Maeda T  Suda T  Matsunaga M 《Brain research》2003,972(1-2):229-234
We investigated the effect of amantadine on L-DOPA-derived extracellular dopamine (DA) levels and aromatic L-amino acid decarboxylase (AADC) activity in the striatum of rats with nigrostriatal dopaminergic denervation by 6-hydroxydopamine (6-OHDA). Pretreatment with 30 mg/kg amantadine increased the cumulative amount of extracellular DA in the striatum of 6-OHDA-lesioned rats treated with 10 mg/kg benserazide and 50 mg/kg L-DOPA to 250% of that without amantadine (P<0.01). Under pretreatment with 10 mg/kg benserazide, AADC activity after 30 mg/kg amantadine administration was reduced to 43% of controls (P<0.01). Amantadine-induced increase in L-DOPA-derived extracellular DA provides the basis for the clinical usefulness of amantadine in combination with L-DOPA. However, the effect of amantadine on L-DOPA-derived extracellular DA may not be caused by changes in AADC activity.  相似文献   

11.
The herbicide paraquat is an environmental factor that could be involved in the etiology of Parkinson's disease. We have previously shown that paraquat penetrates through the blood-brain barrier and is taken up by neural cells. In this study, we examined the in vivo toxic mechanism of paraquat to dopamine neurons. GBR-12909, a selective dopamine transporter inhibitor, reduced paraquat uptake into the striatal tissue including dopaminergic terminals. The subchronic treatment with systemic paraquat significantly decreased brain dopamine content in the striatum and slightly in the midbrain and cortex, and was accompanied by the diminished level of its acidic metabolites in rats. When paraquat was administered through a microdialysis probe, a transitory increase in the extracellular levels of glutamate, followed by long-lasting elevations of the extracellular levels of NO(x)(-) (NO(2)(-) plus NO(3)(-)) and dopamine were detected in the striatum of freely moving rats. This dopamine overflow lasted for more than 24 h after the paraquat treatment. Dopamine overflow was inhibited by N(G)-nitro-L-arginine methyl ester, dizocilpine, 6,7-dinitroquinoxaline-2,3-dione and L-deprenyl. The toxic mechanism of paraquat involves glutamate induced activation of non-NMDA receptors, resulting in activation of NMDA receptor-channels. The influx of Ca(2+) into cells stimulates nitric oxide synthase. Released NO would diffuse to dopaminergic terminals and further induce mitochondrial dysfunction by the formation of peroxynitrite, resulting in continuous and long-lasting dopamine overflow. The constant exposure to low levels of paraquat may lead to the vulnerability of dopaminergic terminals in humans, and might potentiate neurodegeneration caused by the exposure of other substances, such as endogenous dopaminergic toxins.  相似文献   

12.
The aim of this study was to investigate the role of retained acupuncture (RA) in neurotoxin-induced Parkinson’s disease (PD) mice. Male C57BL/6 mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce the PD model. The mice were divided into four groups, namely, (1) normal; (2) MPTP + retained acupuncture (RA); (3) MPTP + electroacupuncture (EA); (4) MPTP + sham acupuncture (SA). After mice being manipulated with/without acupuncture at acupoints (Daling, PC 7), groups 2–4 were injected with MPTP (15 mg/kg/d). The mice were evaluated for behavioral changes, in terms of time of landing, after acupuncture treatment. The animals were sacrificed and their brains assayed for dopamine and its metabolites and tyrosine hydroxylase (TH) expression by using HPLC and immunohistochemistry/Western blotting, respectively. [123I] IBZM-SPECT imaging between SA and RA groups were compared. The results showed that the time of landing of the three groups with treatment was significant longer than group 1 (normal) (4.33 ± 0.15 s). Nonetheless, group 2 (RA) (7.13 ± 0.20 s) had a shorter time of landing than group 4 (SA) (7.89 ± 0.46 s). The number of TH (+) neurons and the expression of TH proteins were significantly higher in the RA group than in the SA/EA groups. RA also increased the uptake of [123I] IBZM into the triatum compared to the SA group. We conclude that RA possibly attenuates neuronal damage in MPTP-induced PD mice, which suggests RA may be useful as a complementary strategy when treating human PD.  相似文献   

13.
The absence of any compelling basis for a heritable basis of idiopathic Parkinson’s disease (PD) has focused attention on environmental exposures as causative agents. While the herbicide paraquat has repeatedly been implicated, its impact on dopamine systems following systemic exposures is equivocal. The restricted focus on paraquat also ignores the extensive geographical overlap of its use with other agrichemicals known to adversely impact dopamine systems, including ethylenebisdithiocarbamate fungicides such as maneb. The present study sought to determine whether combined exposures to paraquat and maneb would produce additive effects and support a multiple-hit environmental contribution to PD. C57BL/6 mice were exposed to either paraquat (5–10 mg/kg) or maneb (15–30 mg/kg) i.p. alone or in combination once a week for 4 weeks. Sustained decreases in motor activity immediately following injections were consistently observed only with combined exposures, with activity levels returning to control values 24 h later. Concurrently, levels of dopamine and metabolites and dopamine turnover were increased immediately post-injection only by combined exposures, and returned to control levels or below within 48 h. Reductions in tyrosine hydroxylase immunoreactivity, measured 3 days after the last injection, resulted only from combined exposure and were detected in dorsal striatum, but not in the nucleus accumbens. The fact that combined exposures resulted in potentiated effects that appear to target nigrostriatal dopamine systems suggests that these combinations may be important environmental risk factors for Parkinsonism. These findings also raise questions about the adequacy of current risk assessment guidelines for these chemicals which are based on effect levels derived from exposures to single agents.  相似文献   

14.
Three hundred patients with Parkinson's disease taking dopamine agonists were surveyed for the presence of compulsions. Fifty-eight reported active compulsions which had developed after initiation of dopamine agonists. These included 25 with sexual compulsions and 28 with self-described compulsive gambling, of whom 17 met criteria for pathologic gambling. Males were over-represented. Patients with any compulsion and those with pathologic gambling were about 6 years younger than those without compulsions. These behavioral problems were not associated with an individual dopamine agonist, nor dose or duration, nor concomitant levodopa. Follow-up of the pathologic gamblers 1 year after intervention, which was cessation of the dopamine agonist in most cases, found ongoing but controlled gambling in five and complete cessation within 4 months in the remainder.  相似文献   

15.
Calbindin-D 28kD is a calcium binding protein reported to protect neurons from degeneration by buffering intracellular calcium. It is expressed in midbrain dopaminergic neurons reported to be relatively resistant to degeneration in Parkinson's disease and certain of its animal models. Lesions of the nigrostriatal pathway produced in rats following injection of 6-hydroxydopamine result in a neurochemical profile similar to that seen in patients with Parkinson's disease. In the present study, brains were processed to exhibit tyrosine hydroxylase- and calbindin-D 28kD immunoreactivities in sections through the ventral mesencephalon at 3, 7, 10, 14 and 21 days after 6-hydroxydopamine had been injected into the medial forebrain bundle. Numbers of ventral mesencephalic calbindin-D 28kD immunoreactive neurons were significantly reduced ipsilateral to the lesions at 3 days post-lesion and, following slight recovery, remained significantly depleted through post-lesion day 21. The densities of calbindin-D 28kD and tyrosine hydroxylase immunoreactive neurons were different only at the 3 day post-lesion time point, when the apparent loss of calbindin-D 28 kD immunoreactive profiles was significantly greater. A lesion-induced increase in the proportion of neurons exhibiting both calbindin-D 28kD and tyrosine hydroxylase immunoreactivities, expected if calbindin-D 28kD is neuroprotective, was observed in the substantia nigra, pars compacta, but not in the ventral tegmental area. It is concluded that, while the observed losses of tyrosine hydroxylase and calbindin-D 28kD immunoreactivities do not necessarily reflect neuronal degeneration, they are not consistent with CB confering a neuroprotective advantage in the ventral tegmental area following 6-OHDA lesions as administered in this study.  相似文献   

16.
BackgroundOthello’s syndrome (OS) is a delusion of infidelity. We describe seven cases of OS in Parkinson’s disease (iPD) patients using dopamine agonists.MethodsWe searched the Mayo Clinic Medical Records System to identify all patients with OS. Clinical data abstracted include sex, age of onset of iPD, age of onset of OS, medications, effect of discontinuing the dopamine agonist, neuroimaging, and comorbidities.ResultsSeven non-demented iPD patients with dopamine agonist implementation time locked to the development and resolution of OS are reported. The average age of iPD onset was 46.6 years (Standard deviation: 5.0 years), and OS onset was 53.7 years (7.1 years). All seven patients had significant marital conflict as a result of the delusions. Conclusions: OS can be associated with dopamine agonist use and can lead to serious consequences. Dopamine agonist cessation eliminates the delusion of infidelity and should be the first treatment option.  相似文献   

17.
Using tissue culture models of oxidative stress caused by serum deprivation or MPTP/MPP+ toxicity, the present study establishes that the antioxidants epigallocatechin gallate, lazaroids U74389G and U83836E, reservatrol, MnTBAP, MCI 186, trolox, and melatonin protect 68-100% of dopamine (DA) neurons from cell death. In contrast, the nitric oxide inhibitor LY83583, the caspase inhibitors Z-VAD-FMK, Ac-DQMD-CHO and Z-DEVD-FMK, and the CDK-5 inhibitor, roscovotine were not neuroprotective, although death was often delayed by 1 day in vitro. We conclude that antioxidants are more effective at preventing cell death in vitro than are inhibitors at later stages in the death cascade.  相似文献   

18.
Studies with cerebrospinal fluid from subjects with Parkinson's disease suggest that purine abnormalities may be present in this disorder. The effects of purines on dopamine metabolism have not been characterized, though adenosine is known to inhibit dopaminergic neurotransmission. In this study, dopamine, its precursor 3,4-dihydroxyphenylalanine (DOPA), and its degradation products 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) were measured in rat pheochromocytoma PC12 cells following 24-h incubation with 5, 50, and 500 microM adenosine, adenine, guanosine, guanine, hypoxanthine, xanthine, and uric acid. Incubation with adenosine increased DOPA, DOPAC, and HVA, while adenine treatment decreased DOPA. Guanosine (500 microM) decreased DOPA, dopamine, and DOPAC, while lower concentrations increased DOPAC and HVA. Incubation with guanine decreased dopamine, and xanthine decreased dopamine and DOPAC. Hypoxanthine and uric acid exerted minimal effects. These results indicate that purines exert a variety of effects on dopamine metabolism. The influence of purine metabolism on the dopaminergic deficit in the Parkinsonian brain merits further investigation.  相似文献   

19.
Human neural stem cell transplantation in the MPTP-lesioned mouse   总被引:8,自引:0,他引:8  
Human neural stem cells have exhibited a remarkable versatility to respond to environmental signals. Their characterization in models of neurotoxic injury may provide insight into human disease treatment paradigms. This study investigates the survival and migration of transplanted human stem cells and tyrosine hydroxylase immunoreactivity in the parkinsonian 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model, using antisera recognizing human nuclear protein (hNuc) and tyrosine hydroxylase (TH). Our results indicate long-term (up to 90 days) survival of human stem cell xenograft in the MPTP-lesioned mouse and the presence of hNuc-immunoreactive cells at sites distal to the transplant core. Few TH-positive cells are identified in the striatum by immunoperoxidase staining and using immunofluorescent double labeling, infrequent TH-immunoreactive, transplanted cells are identified.  相似文献   

20.
In order to analyze the putative neuroprotective role of nicotine and cotinine in parkinsonian syndromes, these two compounds were administered in male C57Bl6 mice for 4 weeks. On day 8, four injections of 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP) were administered. MPTP intoxication induced a 50% loss of dopaminergic neurons in the substantia nigra and a 45% reduction in dopaminergic fibers in the striatum. Administration of cotinine did not affect MPTP toxicity in the nigrostriatal system but chronic nicotine treatment showed a slight protection (15%) of nigrostriatal dopaminergic neurons against MPTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号