首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on a girl with a dicentric chromosome 14 [45,XX,inv(9)(p11q13),dic(14;14)(p11.1;p11.1)] with paternal uniparental disomy (UPD) for chromosome 14. Clinical findings include severe hypotonia, thoracic dystrophy, diastasis recti, swallowing difficulties with aspiration, developmental delay, and multiple minor anomalies. UPD for chromosome 14 has been documented with paternal UPD much less commonly than with maternal UPD. There have been ten cases of paternal UPD for chromosome 14 and one case of segmental paternal isodisomy of chromosome 14. Many of the findings are nonspecific, but the radiographic rib findings (referred to as the "coat-hanger" sign) are characteristic for this condition. UPD 14 studies should be performed in children thought to have Jeune asphyxiating thoracic dystrophy or other related osteochondrodysplasias when the diagnosis is in question. Our patient and the previously reported cases support a discrete recognizable phenotype for paternal UPD for chromosome 14.  相似文献   

2.
The clinical presentation of prenatal and postnatal growth deficiency, triangular face, relative macrocephaly, and body asymmetry is frequently diagnosed as Russell-Silver syndrome (RSS). Maternal uniparental disomy (UPD) of chromosome 7 was reported previously in a small subset of individuals with RSS phenotype or primordial growth retardation. The primary purpose of this study was to identify RSS patients with UPD7 and determine whether or not they present phenotypic findings that distinguish them from RSS patients without UPD7. UPD7 testing was performed in 40 patients with unexplained growth retardation, including 21 patients with a diagnosis of RSS. In addition, a subset of patients was screened with markers spanning chromosome 7 to detect potential microdeletions or segmental uniparental disomy. Two of the RSS cases were identified to have maternal UPD7; no cases with deletion or partial UPD were detected. Together with previously published studies, UPD7 was identified in 11/120 (9%) of individuals with classical RSS phenotype. Our patients with UPD7 and those previously published had a classical RSS phenotype and were not clinically distinguishable from other children diagnosed with RSS.  相似文献   

3.
An imprinted locus associated with transient neonatal diabetes mellitus   总被引:10,自引:0,他引:10  
Recently, we reported the localization of a gene for transient neonatal diabetes mellitus (TNDM), a rare form of childhood diabetes, to an approximately 5.4 Mb region of chromosome 6q24. We have also shown that TNDM is associated with both paternal uniparental disomy (UPD) of chromosome 6 and paternal duplications of the critical region. The sequencing of P1-derived artificial chromosome clones from within the region of interest has allowed us to further localize the gene and to investigate the methylation status of the region. The gene is now known to reside in a 300-400 kb region of 6q24 which contains several CpG islands. At one island we have demonstrated differential DNA methylation between patients with paternal UPD of chromosome 6 and normal controls. In addition, two patients with TNDM, in whom neither paternal UPD of chromosome 6 nor duplication of 6q24 have been found, show a DNA methylation pattern identical to that of patients with paternal UPD of chromosome 6. Control individuals show a hemizygous methylation pattern. These results show that TNDM can be associated with a methylation change and identify a novel methylation imprint on chromosome 6 associated with TNDM.  相似文献   

4.
Uniparental disomy (UPD) is the inheritance of both chromosomal homologs from one parent. Depending on the chromosome involved and the parental origin, UPD may result in phenotypic abnormalities due to aberrant methylation patterns or unmasking recessive conditions in isodisomic regions. UPD primarily originates from somatic rescue of a single meiotically-derived aneuploidy, most commonly a trisomy. Double UPD is exceedingly rare and triple UPD has not been previously described. Here, we report two unrelated clinical cases with UPD of multiple chromosomes; an 8-month-old male with maternal isodisomy of chromosome 7 and paternal isodisomy of chromosome 9, and a 4-week-old female with mixed paternal UPD for chromosomes 4, 10, and 14. These cases also demonstrate that although extremely rare, the detection of AOH on two or more chromosomes may warrant additional clinical and laboratory investigation such as methylation and STR marker analysis, especially when involving chromosomes known to be associated with imprinting disorders.  相似文献   

5.
Uniparental disomy (UPD) is defined by the inheritance of both copies of a chromosome pair from one single parent. Although 23 cases of paternal UPD6 have been reported earlier, the occurrence of trisomy 6 rescue with paternal UPD6 has not been previously reported. The phenotype of paternal UPD6 results from biallelic expression of the maternally imprinted, paternally expressed ZAC and HYMAI genes, and includes transient neonatal diabetes mellitus (TNDM), intra-uterine growth restriction (IUGR), macroglossia, and minor anomalies. Trisomy rescue has been proposed as a pathogenic mechanism leading to UPD of other chromosomes. We report on the first case of a prenatally diagnosed infant with UPD6 and describe the clinical, cytogenetic, molecular, and novel placental findings in a female infant with paternal UPD6. Low-level trisomy 6 and paternal UPD6 were prenatally diagnosed through amniocentesis. After birth trisomy 6 was documented in the placenta but was not found in three different cell lines from the infant. The placenta was small with a peculiar pattern of vascular proliferation. Our results of trisomy 6 cells predominantly present in the placenta and only in low levels in the amniotic fluid suggest that the distribution and proportion of trisomic and diploid UPD cells contribute to the variability of fetal and placental phenotypes.  相似文献   

6.
Over the past few years, regions of genomic imprinting have been identified on a small number of chromosomes through a search for the etiology of various disorders. Distinct phenotypes have been associated with both maternal and paternal uniparental disomy (UPD) for chromosome 14. This observation indicates that there are imprinted genes present on chromosome 14, although none have been identified to date. In order to focus the search for imprinted genes on chromosome 14, we analyzed cases of maternal and paternal UPD 14 and compared them with cases of chromosome 14 deletions. Cases of paternal UPD were compared with maternal deletions and maternal UPD compared with paternal deletions. The paternal UPD anomalies seen in maternal deletion cases allowed us to associate the following features and chromosomal regions: Hirsute forehead: del(14)(q12q13. 3) and del(14)(q32); blepharophimosis: del(14)(q32); small thorax: del(14)(q11.2q13); and joint contractures: del(14)(q11.2q13) and del(14)(q31). Comparison of maternal UPD and paternal deletion cases revealed fleshy nasal tip to be most often associated with del(14)(q32), scoliosis with del(14) (q23q24.2), and del(14)(q32. 11qter) and small size at birth to be associated with del(14)(q11q13) and del(14)(q32). Our study, in conjunction with a prior study of UPD 14 and partial trisomy 14 cases, and what is known of imprinting in regions of mouse chromosomes homologous to human chromosome 14, leads us to conclude that 14q23-q32 is likely an area where imprinted genes may reside.  相似文献   

7.
The association of maternal uniparental disomy for chromosome 7 and postnatal growth failure has been reported in four cases and suggests the presence of genomic imprinting of one or more growth related genes on chromosome 7. However, in the reported cases, the possibility of homozygosity for a recessive mutation could not be excluded as the cause of the growth failure as in all cases isodisomy rather than heterodisomy for chromosome 7 was present. We report a case of prenatal and postnatal growth retardation associated with a prenatal diagnosis of mosaicism for trisomy 7 confined to the placenta. DNA typing of polymorphic markers on chromosome 7 has established that the zygote originated as a trisomy 7 with two maternal and one paternal chromosomes 7 with subsequent loss of the paternal chromosome resulting in a disomic child with maternal heterodisomy for chromosome 7. The growth failure seen in this child with heterodisomy 7 lends strong support to the hypothesis of imprinted gene(s) on chromosome 7.  相似文献   

8.
Uniparental disomy (UPD) is a rare genetic abnormality. During a whole genome linkage study we identified a case of paternal uniparental isodisomy 3 serendipitously. This is the first ascertained human paternal UPD for chromosome 3 (UPD3pat). The finding of this paternal UPD case of the entire chromosome 3 with no apparent phenotypic disorders suggests that there are no paternal imprinted genes causing rare genetic disorders on chromosome 3.  相似文献   

9.
We report a case of segmental uniparental maternal hetero- and isodisomy involving the whole of chromosome 6 (mat-hUPD6 and mat-iUPD6) and a cullin 7 (CUL7) gene mutation in a Japanese patient with 3M syndrome. 3M syndrome is a rare autosomal recessive disorder characterized by severe pre- and postnatal growth retardation that was recently reported to involve mutations in the CUL7 or obscurin-like 1 (OBSL1) genes. We encountered a patient with severe growth retardation, an inverted triangular gloomy face, an inverted triangle-shaped head, slender long bones, inguinal hernia, hydrocele testis, mild ventricular enlargement, and mild mental retardation. Sequence analysis of the CUL7 gene of the patient revealed a homozygous missense mutation, c.2975G>C. Genotype analysis using a single nucleotide polymorphism array revealed two mat-hUPD and two mat-iUPD regions involving the whole of chromosome 6 and encompassing CUL7. 3M syndrome caused by complete paternal iUPD of chromosome 6 involving a CUL7 mutation has been reported, but there have been no reports describing 3M syndrome with maternal UPD of chromosome 6. Our results represent a combination of iUPDs and hUPDs from maternal chromosome 6 involving a CUL7 mutation causing 3M syndrome.  相似文献   

10.
Uniparental disomy (UPD) of a number of different chromosomes has been found in association with abnormal phenotypes. A growing body of evidence for an imprinting effect involving chromosome 14 has been accumulating. We report on a case of paternal UPD of chromosome 14 studied in late gestation due to polyhydramnios and a ventral wall hernia. A prenatal karyotype documented a balanced Robertsonian 14:14 translocation. The baby was born prematurely with hairy forehead, retrognathia, mild puckering of the lips and finger contractures. Hypotonia has persisted since birth and at age one year, a tracheostomy for laryngomalacia and gastrostomy for feeding remain necessary. Absence of maternal VNTR polymorphisms and homozygosity of paternal polymorphisms using chromosome 14 specific probes at D14S22 and D14S13 loci indicated paternal uniparental isodisomy (pUPID). Parental chromosomes were normal. We also report on a case of maternal UPD in a normal patient with a balanced Robertsonian 14:14 translocation and a history of multiple miscarriages. Five previous reports of chromosome 14 UPD suggest that an adverse developmental effect may be more severe whenever the UPD is paternal in origin. This is the second reported patient with paternal UPD and the fifth reported with maternal UPD, and only few phenotypic similarities are apparent. Examination of these chromosome 14 UPD cases of maternal and paternal origin suggests that there are syndromic imprinting effects. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Uniparental disomy of chromosome 7 (UPD7) is associated with abnormal phenotypic effects because of inappropriate expression of imprinted genes on chromosome 7. Based on the differential methylation of the promoter region of the imprinted PEG1/MEST locus at 7q32, we designed a multiplex methylation PCR (mPCR) assay to rapidly distinguish UPD7 from biparental inheritance of chromosome 7. Primers were designed to produce different sized PCR amplicons based on the parent of origin-specific methylation at this locus; electrophoresis of PCR amplicons showed a 189-bp product from the methylated maternal allele and a 109-bp product from the unmethylated paternal allele. This mPCR assay correctly predicted the chromosome 7 imprinting status in normal control and UPD7 samples. Previous assays for UPD7 required genotyping of the proband and parents, or separate maternal- and paternal-specific mPCR reactions. The advantage of this assay is that parental samples are not required and that amplification of both alleles in the same reaction is simpler and provides an internal control. This multiplex mPCR assay will be useful in screening for UPD7 in patients with Silver-Russell syndrome (SRS; also Russell-Sliver syndrome, RSS), primordial growth retardation, and in patients with supernumerary marker chromosomes or chromosome rearrangements of chromosome 7 origin.  相似文献   

12.
With uniparental disomy (UPD), the presence in a diploid genome of a chromosome pair derived from one genitor carries two main types of developmental risk: the inheritance of a recessive trait or the occurrence of an imprinting disorder. When the uniparentally derived pair carries two homozygous sequences (isodisomy) with a duplicated mutant, this 'reduction to homozygosity' determines a recessive phenotype solely inherited from one heterozygote. Thus far, some 40 examples of such recessive trait transmission have been reported in the medical literature and, among the current 32 known types of UPDs, UPD of chromosomes 1, 2, and 7 have contributed to the larger contingent of these conditions. Being at variance with the traditional mode of transmission, they constitute a group of 'Mendelian outlaws'. Several imprinted chromosome domains and loci have been, for a large part, identified through different UPDs. Thus, disomies for paternal 6, maternal 7, paternal 11, paternal and maternal 14 and 15, maternal 20 (and paternal 20q) and possibly maternal 16 cause as many syndromes, as at the biological level the loss or duplication of monoparentally expressed allele sequences constitutes 'imprinting rights infringements'. The above pitfalls represent the price to pay when, instead of a Mendelian even segregation and independent assortment of the chromosomes, the fertilized product with a nondisjunctional meiotic error undergoes correction (for unknown or fortuitous reasons) through a mitotic adjustment as a means to restore euploidy, thereby resulting in UPD. Happily enough, UPDs leading to the healthy rescue from some chromosomal mishaps also exist.  相似文献   

13.
Uniparental disomy (UPD) describes the inheritance of two homologous chromosomes from a single parent. Disease phenotypes associated with UPD and chromosomal imprinting, rather than with mutations, include Beckwith-Wiedemann syndrome (paternal UPD11p), Angelman syndrome (paternal UPD15), Prader-Willi syndrome (maternal UPD15), and transient neonatal diabetes (paternal UPD6). Here we report on the first case of paternal uniparental isodisomy of chromosome 14 with a mosaicism for a supernumerary marker chromosome 14. The patient demonstrated a small thorax with a 'coat hanger' shape of the ribs, kyphoscoliosis, hypoplasia of the maxilla and mandible, a broad nasal bridge with anteverted nares, contractures of the wrists with ulnar deviation bilaterally, diastasis recti, and marked muscle hypotonia. Vertical skin creases under the chin and stippled epiphyses of the humeri were features not previously described in patients with paternal UPD14. This case illustrates that as with the finding of an isochromosome, a supernumerary marker chromosome can be an important clue to the presence of UPD14.  相似文献   

14.
Paternal uniparental disomy (UPD) for chromosome 15 (UPD15), which is found in approximately 2% of Angelman syndrome (AS) patients, is much less frequent than maternal UPD15, which is found in 25% of Prader-Willi syndrome patients. Such a difference cannot be easily accounted for if 'gamete complementation' is the main mechanism leading to UPD. If we assume that non-disjunction of chromosome 15 in male meiosis is relatively rare, then the gain or loss of the paternal chromosome involved in paternal and maternal UPD15, respectively, may be more likely to result from a post-zygotic rather than a meiotic event. To test this hypothesis, the origin of the extra chromosome 15 was determined in 21 AS patients with paternal UPD15 with a paternal origin of the trisomy. Only 4 of 21 paternal UPD15 cases could be clearly attributed to a meiotic error. Furthermore, significant non-random X-chromosome inactivation (XCI) observed in maternal UPD15 patients (p < 0.001) provides indirect evidence that a post-zygotic error is also typically involved in loss of the paternal chromosome. The mean maternal and paternal ages of 33.4 and 39.4 years, respectively, for paternal UPD15 cases are increased as compared with normal controls. This may be simply the consequence of an age association with maternal non-disjunction leading to nullisomy for chromosome 15 in the oocyte, although the higher paternal age in paternal UPD15 as compared with maternal UPD15 cases is suggestive that paternal age may also play a role in the origin of paternal UPD15.  相似文献   

15.
Parental origin specific congenital anomalies have been noted in patients with uniparental disomy of the long arm of human chromosome 14 (UPD14). This suggests the presence of imprinted genes, consistent with observations of imprinting in the region of syntenic homology in the mouse. It is not known whether the distinct defects reported for paternal and maternal UPD14 are the result of biallelic expression or absence of expression of imprinted genes. Furthermore, identification of the genes responsible would be facilitated by a higher resolution map of the imprinted region(s) involved. Subjects with partial trisomy for chromosome 14 (Ts14) have been reported and hence also have an alteration in the dosage of their parental chromosomes. In this study, we have carried out genotype-phenotype correlations considering the parental origin of the extra chromosome in previously reported cases of maternal and paternal partial Ts14. The analysis has provided evidence of a correlation between distal maternal Ts14 and anomalies including low birth weight, short philtrum, and small hands. The clinical features found in the maternal and paternal trisomies are compared with those associated with maternal and paternal UPD14 and their significance is discussed in relation to genomic imprinting on chromosome 14.  相似文献   

16.
Uniparental disomy (UPD) is a rare genetic aberration characterized by the uni- rather than biparental inheritance of a pair of homologous chromosomes. Among the various adverse clinical effects that UPD can have in humans, abnormalities of the male reproductive system have been described in UPD of the chromosomes 7, 11, 14 and 15. Given the considerable rate of sex chromosomal aneuploidy in human gametes and zygotes, we postulated that paternal uniparental disomy of the sex chromosomes might be a cause of otherwise unexplained male infertility. With a set of highly polymorphic DNA markers the parental origin of the X chromosome in 41 men with severe idiopathic infertility was determined. In all patients the X chromosome was derived from the mother, indicating regular biparental inheritance of the sex chromosomes. We thus obtained no evidence that paternal uniparental disomy of the X and Y chromosomes is a mechanism underlying idiopathic male infertility.  相似文献   

17.
Most instances of maternal uniparental disomy (UPD) start as trisomies and, similar to the latter, show a significant increase of mean maternal age at delivery. To investigate the incidence of UPD in offspring of older mothers, we investigated two groups of patients: 1) 50 patients with unclassified developmental defects born to mothers 35 years or older at delivery were tested for UPD for all autosomes by means of microsatellite marker analysis; 2) The incidence of UPD versus other etiologies in correlation, with maternal age below versus 35 years and above at delivery was studied in patients investigated in our laboratory for maternal UPD 15 (Prader-Willi syndrome, PWS), paternal UPD 15 (Angelman syndrome, AS), and maternal UPD 7 (Silver-Russell syndrome, SRS). In group 1, four patients of 50 showed UPD for an autosome that clarified the etiology of their developmental problems: a 27-year-old woman with growth retardation and early puberty disclosed maternal heterodisomy 14; a 15-year-old girl revealed paternal isodisomy 15; a 6-year-old boy with suspected Smith-Lemli-Opitz syndrome was shown to have maternal heterodisomy 16 with additional mosaic partial trisomy 16(pter-p13); a 16-month-old girl with intrauterine growth retardation and a dysmorphic pattern revealed maternal heterodisomy 7. In group 2 the offspring of older mothers showed a clear increase of UPD compared with the mothers below 35 years at delivery. The binomial distribution gave P-values of 1.9 x 10(-10), 2.6 x 10(-4), and 0.01 for PWS, AS, and SRS, respectively. The correlation between increase of paternal UPD 15 with advanced maternal age might be explained by maternal non-disjunction leading to hypohaploid gamete (nullisomy) for chromosome 15 with subsequent or concomitant duplication of the paternal homologue (paternal isodisomy). The three UPD 15 AS cases with mothers older than 35 years at delivery revealed isodisomy, whereas the three cases from younger mothers showed heterodisomy. This study confirms the hypothesis that uniparental disomy is a not negligible cause of congenital developmental anomalies in children of older mothers.  相似文献   

18.
19.
We have diagnosed a boy with cystic fibrosis (CF) due to paternal UPD presenting with overweight and developmental delay, not typical features to CF patients. Two previously reported patients with paternal UPD(7) did not present overgrowth. The discrepancy between the phenotype of this boy and the other two patients raises the question of imprinted genes or homozygotization of a disease-causing gene in paternal UPD7.  相似文献   

20.
Chromosome 14 demonstrates imprinting with differing phenotypes for both maternal and paternal uniparental disomy (UPD). Although only 11 cases of paternal uniparental disomy 14 (patUPD14) have been reported, a distinct clinically recognizable syndrome has emerged. The major features are polyhydramnios, small thorax, mildly short limbs, abdominal wall defects, and characteristic face with short palpebral fissures, broad flat nasal bridge, prominent philtrum, and small ears. Radiographically, the chest is bell-shaped and the ribs are distinctive with caudal bowing anteriorly and cranial bowing posteriorly. Several affected infants have died from respiratory failure. The survivors have short stature and mental retardation. The initial cases were all recognized because of translocations involving chromosome 14. Subsequently, several patients with a similar phenotype and normal chromosomes have been reported, including two with mixed iso- and hetero-disomy as well as one with segmental UPD14. Our patient is the first with pure paternal isodisomy 14 in the absence of a translocation. We present additional clinical information, review the literature, and discuss mechanisms that may explain paternal isodisomy 14 in our chromosomally normal patient. Paternal UPD14 with normal karyotype may be more common than previously suspected and may be overlooked unless recognition of the clinical phenotype prompts investigation for UPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号