首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human mesial temporal lobe epilepsy (MTLE) features subregion‐specific hippocampal neurodegeneration and reactive astrogliosis, including up‐regulation of the glial fibrillary acidic protein (GFAP) and down‐regulation of glutamine synthetase (GS). However, the regional astrocytic expression pattern of GFAP and GS upon MTLE‐associated neurodegeneration still remains elusive. We assessed GFAP and GS expression in strict correlation with the local neuronal number in cortical and hippocampal surgical specimens from 16 MTLE patients using immunohistochemistry, stereology and high‐resolution image analysis for digital pathology and whole‐slide imaging. In the cortex, GS‐positive (GS+) astrocytes are dominant in all neuronal layers, with a neuron to GS+ cell ratio of 2:1. GFAP‐positive (GFAP+) cells are widely spaced, with a GS+ to GFAP+ cell ratio of 3:1–5:1. White matter astrocytes, on the contrary, express mainly GFAP and, to a lesser extent, GS. In the hippocampus, the neuron to GS+ cell ratio is approximately 1:1. Hippocampal degeneration is associated with a reduction of GS+ astrocytes, which is proportional to the degree of neuronal loss and primarily present in the hilus. Up‐regulation of GFAP as a classical hallmark of reactive astrogliosis does not follow the GS‐pattern and is prominent in the CA1. Reactive alterations were proportional to the neuronal loss in the neuronal somatic layers (stratum pyramidale and hilus), while observed to a lesser extent in the axonal/dendritic layers (stratum radiatum, molecular layer). We conclude that astrocytic GS is expressed in the neuronal somatic layers and, upon neurodegeneration, is down‐regulated proportionally to the degree of neuronal loss.  相似文献   

2.
It has been suggested that astrocytic glutamate release or perturbed glutamate metabolism contributes to the proneness to epileptic seizures. Here we investigated whether astrocytic contents of the major glutamate degrading enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) decreases on moving from the latent phase (prior to seizures) to the chronic phase (after onset of seizures) in the kainate (KA) model of temporal lobe epilepsy. Western blotting and immunogold analysis of hippocampal formation indicated similar levels of GDH in the latent and chronic phases of KA injected rats and in corresponding controls. In contrast, the level of GS was increased in the latent phase compared with controls, as assessed by Western blots of whole hippocampal formation and subregions. The increase in GS paralleled that of glial fibrillary acidic protein (GFAP). Compared with the latent phase, the chronic phase revealed a lower level of GS (approaching control levels) but an unchanged GFAP content. The decrease in GS from latent to chronic phase was significant in whole hippocampal formation, dentate gyrus and CA3. It is concluded that kainate treated rats show an initial increase in GS, pari passu with the increase in GFAP, and a secondary decrease in GS that is not accompanied by a similar loss of GFAP. In a situation where glutamate catabolism is in high demand the secondary reduction in GS level may be sufficient to contribute to the seizure proneness that develops between the latent and chronic phases.  相似文献   

3.
BACKGROUND: Blood supply to the hippocampus is not provided by the middle cerebral artery. However, previous studies have shown that delayed neuronal death in the hippocampus may occur following focal cerebral ischemia induced by middle cerebral artery occlusion.
OBJECTIVE: To observe the relationship between reactive changes in hippocampal astrocytes and delayed neuronal death in the hippocampal CA1 region following middle cerebral artery occlusion.
DESIGN, TIME AND SETTING: The immunohistochemical, randomized, controlled animal study was performed at the Laboratory of Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, from July to November 2007.
MATERIALS: Rabbit anti-glial fibrillary acidic protein (GFAP) (Neomarkers, USA), goat anti-rabbit IgG (Sigma, USA) and ApoAlert apoptosis detection kit (Biosciences Clontech, USA) were used in this study. METHODS: A total of 42 healthy adult male Wistar rats, aged 3–5 months, were randomly divided into a sham operation group (n = 6) and a cerebral ischemia/reperfusion group (n = 36). In the cerebral ischemia/reperfusion group, cerebral ischemia/reperfusion models were created by middle cerebral artery occlusion. In the sham operation group, the thread was only inserted into the initial region of the internal carotid artery, and middle cerebral artery occlusion was not induced. Rats in the cerebral ischemia/reperfusion group were assigned to a delayed neuronal death (+) subgroup and a delayed neuronal death (–) subgroup, according to the occurrence of delayed neuronal death in the ischemic side of the hippocampal CA1 region following cerebral ischemia.
MAIN OUTCOME MEASURES: Delayed neuronal death in the hippocampal CA1 region was measured by Nissl staining. GFAP expression and delayed neuronal death changes were measured in the rat hippocampal CA1 region at the ischemic hemisphere by double staining for GFAP and TUNEL.
RESULTS: After 3 days of ischemia/reperfusion, astrocytes with abnormal morphology were detected in the rat hippocampal CA1 region in the delayed neuronal death (+) subgroup. No significant difference in GFAP expression was found in the rat hippocampal CA1 region at the ischemic hemisphere in the sham operation group, delayed neuronal death (+) subgroup and delayed neuronal death (–) subgroup (P 〉 0.05). After 7 days of ischemia/reperfusion, many GFAP-positive cells, which possessed a large cell body and an increased number of processes, were activated in the rat hippocampal CA1 region at the ischemic hemisphere. GFAP expression in the hippocampal CA1 region was greater in the delayed neuronal death (+) subgroup and delayed neuronal death (–) subgroup compared with the sham operation group (P 〈 0.01). Moreover, GFAP expression was significantly greater in the delayed neuronal death (–) subgroup than in the delayed neuronal death (+) subgroup (P 〈 0.01). After 30 days of ischemia/reperfusion, GFAP-positive cells were present in scar-like structures in the rat hippocampal CA1 region at the ischemic hemisphere. GFAP expression was significantly greater in the delayed neuronal death (+) subgroup and delayed neuronal death (–) subgroup compared with the sham operation group (P 〈 0.05). GFAP expression was significantly lower in the delayed neuronal death (–) subgroup than in the delayed neuronal death (+) subgroup (P 〈 0.05). The delayed neuronal death rates were 42% (5/12), 33% (4/12) and 33% (4/12) at 3, 7 and 30 days, respectively, followingischemia/reperfusion. No significant differences were detected at various time points (χ2 = 0.341, P 〉 0.05).
CONCLUSION: The activation of astrocytes was poor in the hippocampal CA1 region during the early stages of ischemia, which is an important reason for delayed neuronal death. Glial scar formation aggravated delayed neuronal death during the advanced ischemic stage.  相似文献   

4.
Antibodies to glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) were used to determine the effect of s.c. capsaicin (after 75 min) on astroglial cells in the rat arcuate nucleus-median eminence (ARC-ME). Compared to vehicle, capsaicin significantly increased GFAP and GS immunoreactivity in the ARC-ME. Co-localization of GFAP and GS was observed in the ARC-ME complex. Since GS is primarily responsible for glutamate-glutamine metabolism, the increase in total immunostaining for GFAP-and GS- staining suggests a functional adjustment to cope with some of the capsaicin-induced effects. Together with the involvement of nitric oxide synthase in the ARC-ME response to capsaicin, these observations indicate activity-dependent plasticity of the neuron-glia network in response to this stressful/noxious stimulus.  相似文献   

5.
Glutamine synthetase (GS) supposedly inactivates the excitatory neurotransmitter glutamate. By using immunocytochemistry for GS, we recently demonstrated a layer-specific, perisynaptic distribution of GS-immunoreactive astrocytes and their processes in perfusion-fixed rat hippocampi. Highest levels of immunoreactivity were found in well defined termination zones of glutamatergic hippocampal afferents. In the present study we analysed the developmental aspect of this neuron – glia interaction by using hippocampal slice cultures lacking all extrinsic afferents. Under these conditions, no layer-specific distribution of astrocytic GS immunoreactivity could be demonstrated. This suggests that the laminated distribution of GS immunoreactivity is formed in parallel with the segregated termination of hippocampal afferents. Thus, there is no predetermined pattern of GS-containing astrocytes playing a role in the segregation of extrinsic fibres. The ultrastructural localization of GS immunoreactivity in fine astrocytic processes around asymmetric, probably glutamatergic excitatory spine synapses confirms earlier in situ findings, which suggests that this arrangement is a global phenomenon of glutamatergic systems.  相似文献   

6.
The effect of short-term portacaval anastomosis (PCA) on the expression of specific astroglial markers [glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS)] in the rat cerebellum was examined to determine the influences of PCA on astroglial cells. The results suggest that PCA directly interferes with astroglial cytoskeleton, as indicated by the irregular distribution and reduced expression of GFAP observed after 1 month. PCA also decreased GS immunoreactivity in the Bergmann glial processes of the molecular layer, as well as in astrocytes of the granule cell layer. It might also modulate glutamatergic nervous activity as GS expression was reduced in 1 month post-PCA brains. Moreover, the GFAP and GS levels in PCA-exposed rats were lower than in control rats. This might contribute to the appearance of encephalopathy by increasing extracellular glutamate and/or ammonia concentrations. These results show that short-term PCA interferes with astroglial protein expression, with both GFAP and GS levels falling in astroglial cells.  相似文献   

7.
To understand components shaping the neuronal environment we studied the astroglial cells in the zebrafish brain using immunocytochemistry for structural and junctional markers, electron microscopy including freeze fracturing, and probed for the water channel protein aquaporin‐4. Glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) showed largely overlapping immunoreactivity: GFAP in the main glial processes and GS in main processes and smaller branches. Claudin‐3 immunoreactivity was spread in astroglial cells along their major processes. The ventricular lining was immunoreactive for the tight‐junction associated protein ZO‐1, in the telencephalon located on the dorsal, lateral, and medial surface due to the everting morphogenesis. In the tectum, subpial glial endfeet were also positive for ZO‐1. Correspondingly, electron microscopy revealed junctional complexes between subpial glial endfeet. However, in freeze‐fracture analysis tight junctional strands were not found between astroglial membranes, either in the optic tectum or in the telencephalon. Occurrence of aquaporin‐4, the major astrocytic water channel in mammals, was demonstrated by polymerase chain reaction (PCR) analysis and immunocytochemistry in tectum and telencephalon. Localization of aquaporin‐4 was not polarized but distributed along the entire radial extent of the cell. Interestingly, their membranes were devoid of the orthogonal arrays of particles formed by aquaporin‐4 in mammals. Finally, we investigated astroglial cells in proliferative areas. Brain lipid basic protein, a marker of early glial differentiation but not GS, were present in some proliferation zones, whereas cells lining the ventricle were positive for both markers. Thus, astroglial cells in the zebrafish differ in many aspects from mammalian astrocytes. J. Comp. Neurol. 518:4277–4287, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Summary To investigate the roles imposed on astrocytes for glutamate metabolism, a specific inhibitor of glutamine synthetase (GS), methionine sulfoximine (MSO), was repeatedly administered to rats and histopathological changes were correlated with glycogen accumulation and the immunocytochemistry of GS and glial fibrillary acidic protein (GFAP). Prolonged MSO-loading (every 12 h up to three times, 100–150 mg/kg body weight) brought about the appearance of astrocytes with swollen, watery nuclei reminiscent of Alzheimer II glia chiefly in the neocortex, hippocampus and lateral thalamus after 24 h. Concomitantly, profound accumulation of glycogen ensued in the superficial three layers of the neocortex, hippocampus and pyriform cortex. GS immunoreactivity appeared enhanced in the cortex, hippocampus and lateral thalamus with parallel increase in GFAP immunoreactivity after prolonged treatment. Oligodendrocytes in the diencephalon and brain stem also normally contained GS immunoreactivity. Some animals developed necrotic lesions in the dorsolateral neocortex. The area of glycogen accumulation coincided with the known distribution ofN-methyld-aspartate (NMDA) glutamate receptors and, thus, GS may play important roles in NMDA receptor-mediated glutamate metabolism. The Alzheimer II type changes, however, did not correlate with NMDA-receptor distribution. These results indicate certain regionalizations in the roles of astrocytes and oligodendrocytes in glutamate and ammonia metabolisms.Supported by the grants-in-aid from the Ministry of Education, Science and Culture (Projects 63480214 and 63870063 to T. Yamamoto), and from the Ministry of Health (for Neurodegenerative disorders to T. Yamamoto), Japan  相似文献   

9.
Apoptosis of dentate granular cells in the hippocampal formation during bacterial meningitis may be mediated by glutamate toxicity. For this reason, we studied the relationship between glutamine synthetase activity and regional neuronal apoptosis in rabbits with experimental pneumococcal meningitis. The duration of meningitis was 24 h, and the treatment was started 16 h after infection. Significant increases of glutamine synthetase protein concentration (P < 0.05) were found in the frontal cortex of rabbits with meningitis (n = 7) and rabbits with meningitis receiving ceftriaxone treatment (n = 12) as compared to the control animals (n = 14). No significant differences were seen in the hippocampal formation. The enzymatic activity of glutamine synthetase also was elevated in the frontal cortex (P < 0.05), but not in the hippocampal formation of rabbits with meningitis. After intravenous administration of L-methionine sulfoximine (specific inhibitor of glutamine synthetase) in rabbits with meningitis treated with ceftriaxone (n = 10), the concentration of neuron-specific enolase in CSF (P = 0.025) and the density of apoptotic neurons in the dentate gyrus quantified with the in-situ tailing reaction (P = 0.043) were higher than in meningitic animals receiving only ceftriaxone (n = 10). In conclusion, the inability of hippocampal glutamine synthetase to metabolize excess amounts of glutamate may contribute to neuronal apoptosis in the hippocampal formation during meningitis.  相似文献   

10.
Glutamine synthetase (GS) content was investigated using immunohistochemical methods in the hippocampus, cerebellum and spinal cord of rats after long‐term portocaval anastomosis (PCA). Six months after surgery, GS content was increased in several areas of each region and decreased in others, compared with controls. In the hippocampus, the CA1–CA3 pyramidal subfields and the dentate molecular layer had a high level of GS expression; PCA reduced GS content in other hippocampal regions, such as the dentate hilus. In the cerebellum, PCA significantly increased GS immunoreactivity in the Bergmann glial processes of the molecular layer and decreased GS immunoreactivity in astrocytes of the granule cell layer. In the spinal cord, GS immunoreactivity increased in the dorsal horn and decreased in the ventral horn. Blood vessels located in zones with GS‐immunopositive perineuronal astrocytes in PCA‐exposed brains were surrounded by strongly GS‐immunostained perivascular processes. These results suggest that PCA exposure had a differential effect on GS expression in different regions of the central nervous system. The increased immunoreactivity of GS‐positive cells in PCA‐exposed brains correlates with glutamatergic areas, which may contribute to protecting neurons against extracellular glutamate and/or ammonia excess.  相似文献   

11.
We report an autopsy case of tuberous sclerosis complex (TSC) in a 20-week gestational age female fetus. The brain showed lesions suggestive of early cortical tubers and subependymal hamartomatous nodules. The large cells within these nodular clusters were variably immunoreactive for glial fibrillary acidic protein (GFAP) and vimentin and negative for synaptophysin and neurofilament. Subependymal radial glia expressed both vimentin and GFAP, but subpial radial glia either did not express these markers (in contrast to an age-matched control) or were absent. Tuberin expression was noted in heterotopic neurons in the white matter and brain cells consistent with Cajal Retzius cells in the neocortical molecular layer, very weakly in superficial cortical neurons, neurons in the basal ganglia, Purkinje cells and external granular cells of cerebellum, cranial nerve nuclei neurons, occasional germinal matrix cells, ependymal cells, choroid plexus epithelium, and pituitary gland neuroendocrine cells; it was not seen within the cells of subependymal nodules. The pattern of tuberin immunoreactivity was similar to that which we have observed in older TSC patients. Proliferating cell labeling indexes were comparable in the germinal matrix of the TSC patient and an age-matched control. Abnormal subpial radial glia may be responsible for some of the neuronal migration abnormalities that appear to result in neocortical tubers. Received: 30 September 1996 / Revised, accepted: 13 December 1996  相似文献   

12.
Glial fibrillary acidic protein (GFAP) is considered to be a highly specific marker for glia. Here, we report on the expression of GFAP in neurons in the human hippocampus. Intriguingly, this neuronal GFAP is coded by out-of-frame splice variants and its expression is associated with Alzheimer pathology. We identified three novel GFAP splice forms: Delta 135 nt, Delta exon 6 and Delta 164 nt. Neuronal GFAP is mainly observed in the pyramidal neurons of the hippocampus of Alzheimer and Down syndrome patients and aged controls, but not in neurons of patients suffering from hippocampal sclerosis. Apparently, the hippocampal neurons in patients with Alzheimer's disease pathology are capable of expressing glia-specific genes.  相似文献   

13.
The age-related change in glial fibrillary acidic protein (GFAP) immunoreactivity was analyzed in young (3 months) and old (24 months) adult rat cochlear nuclei (CN). Quantitative analyses show a significant increase with age, in the number of GFAP positive astrocytes and processes in the old adult when compared with the young adult rat. There was also a differential distribution of GFAP immunoreactivity in the young adult CN where it predominates in the granular cell region, whereas in old rats, the GFAP immunoreactivity distribution was homogeneous in all parts of the nucleus. There was no change in the total number of neurons between these two stages in any part of the nucleus except for the antero-ventral CN, where a decrease in neuronal number was observed in the aged rats. The increase in GFAP immunoreactivity was related to an increase of both GFAP positive astrocyte number and processes. The increase of GFAP positive astrocytes may be due either to an alteration of auditory nerve fibers, changing the trophic interactions with post-synaptic cells, or to intrinsic alterations of CN neurons and local circuits reflecting aging of the CN.  相似文献   

14.
In adult hippocampal neurogenesis, new neurons appear to originate from a cell with astrocytic properties expressing glial fibrillary acidic protein (GFAP). Also, new astrocytes are generated in the adult dentate gyrus. Whereas the putative astrocyte-like progenitor cells are consistently S-100beta-negative, many new astrocytes are S-100beta-positive. Thus, it is unclear whether the GFAP-positive progenitor cells are astrocytes in a general sense or rather neural progenitor cells with certain astrocytic characteristics. We therefore investigated the development of GFAP-expressing cells in the context of adult hippocampal neurogenesis. Proliferating cells could be either GFAP-positive or doublecortin-positive (DCX), but never both, indicating two independent populations of dividing cells in the glial and neuronal lineages. Two distinct populations of cells with astroglial properties were detected-one expressing GFAP, the other co-expressing GFAP and S-100beta. We never found S-100beta-cells to be in S-phase. No overlap between neuronal and glial markers was seen at any time point. Thus, astrogenesis occurred in parallel and to some degree independent of adult neurogenesis. The uninterrupted GFAP expression in this lineage, and neuronal markers in the other lineage, argue against a late common precursor for neurogenesis and gliogenesis in the adult hippocampus. Very few newly generated microglia and no new oligodendrocytes were detected. Environmental enrichment and voluntary wheel running-two experimental paradigms with robust stimulatory effects on adult hippocampal neurogenesis-affected hippocampal astrogenesis differentially: Running, but not enrichment, strongly induced net astrogenesis (GFAP/S-100beta), but also GFAP-positive S-100beta-negative cells, which thus appear to be a transiently amplifiable intermediate population within the glial lineage.  相似文献   

15.
The levels of glial fibrillary acidic protein mRNA were analysed by in situ hybridization during the first 6 h in experimental models of status epilepticus in the rat. Two different models of status epilepticus were studied: one is produced by the administration of pilocarpine to lithium-treated rats and the other by the intracerebroventricular administration of kainate. Results obtained in the present study showed a very rapid (as early as 1.5 h in periventricular zones of hypothalamus, cerebral cortex, and hippocampal area) up-regulation of GFAP mRNA levels following the pharmacological induction of seizures. Several other areas showed a GFAP activation starting at 3 h such as septum, habenular nuclei, corpus callosum, and cingulum. The comparison of the results obtained in the two models of status epilepticus revealed interesting differences in some brain areas, such as cerebellum and striatum, which can be related to the specific neurotransmitter receptors and neurochemical pathways stimulated by the drugs. Interestingly, some brain areas whose neurons are strongly activated by pilocarpine and kainate (amygdala and CA3 hippocampal field) and that undergo neuronal degeneration did not show the early GFAP response. An interesting spatial feature was observed in several brain regions examined (striatum, septum, and hypothalamus): the response first appeared in the periventricular zones and then diffused to the rest of the brain area. In general GFAP responses in the periventricular zones were early and intense. © 1996 Wiley-Liss, Inc.  相似文献   

16.
目的观察大鼠大脑缺血再灌注后海马CA1区胶质纤维酸性蛋白(GFAP)的表达与迟发性神经元死亡的关系。方法采用大鼠大脑中动脉阻塞再灌注模型(MCAO),将大鼠随机分为MCAO后3d、7d、30d组及假手术组,应用免疫荧光与TUNEL染色法分别观察脑缺血再灌注后不同时间点缺血侧海马CA1区GFAP表达情况和迟发性神经元死亡(DND)的变化。结果(1)3d组海马DND阳性(DND 组)的MCAO大鼠、海马DND阴性(DND-组)的MCAO大鼠与假手术组大鼠比较,缺血侧海马CA1区GFAP染色的平均光密度无显著性差异(P>0.05),但GFAP阳性细胞的形态发生变化;(2)7d组大鼠缺血侧海马CA1区GFAP阳性细胞大量活化增殖,表现为胞体变大,突起增多;DND( )、DND(-)组海马CA1区GFAP染色的平均光密度较假手术组增高(P<0.01),且DND(-)组的GFAP平均光密度较DND( )组明显增高(P<0.01);(3)30d组大鼠缺血侧海马CA1区GFAP表达呈瘢痕样改变,DND( )、DND(-)组与假手术组比较其GFAP染色的平均光密度明显增高(P<0.05),且DND( )组的GFAP平均光密度较DND(-)组明显增高(P<0.05)。结论大鼠MCAO后星形胶质细胞反应性变化的差异可能与海马CA1区迟发性神经元死亡的发生有关。  相似文献   

17.
Zhao X  Ahram A  Berman RF  Muizelaar JP  Lyeth BG 《Glia》2003,44(2):140-152
Neuronal-glial interactions are important for normal brain function and contribute to the maintenance of the brain's extracellular environment. Damage to glial cells following traumatic brain injury (TBI) could therefore be an important contributing factor to brain dysfunction and neuronal injury. We examined the early fate of astrocytes and neurons after TBI in rats. A total of 27 rats were euthanized at 0.5, 1, 2, 4, or 24 h after moderate lateral fluid percussion TBI or after sham TBI. Ipsilateral and contralateral hippocampi were examined in coronal sections from -2.12 to -4.80 mm relative to bregma. Adjacent sections were processed with markers for either astrocytes or degenerating neurons. Astrocytes were visualized using glial fibrillary acidic protein (GFAP) or glutamine synthetase immunohistochemistry. Neuronal degeneration was visualized using Fluoro-Jade (FJ) histofluorescence. At 30 min, there was a significant loss of GFAP immunoreactivity in ipsilateral hippocampal CA3 with some loss of normal astrocyte morphology in the remaining cells. The number of normal staining astrocytes decreased progressively over time with extensive astrocyte loss at 24 h. At 4 h, lightly stained FJ-positive neurons were scattered in the ipsilateral CA3. The intensity and number of FJ-positive neurons progressively increased over time with moderate numbers of degenerating neurons in the ipsilateral hippocampal CA3 evident at 24 h. We conclude that astrocyte loss occurs in the hippocampus early after TBI. The data suggest that loss of supporting glial cell may contribute to subsequent neuronal degeneration.  相似文献   

18.
In patients with therapy-refractory temporal lobe epilepsy (TLE), alterations of glutamate receptors have been proposed as a mechanism for enhanced excitability. Using commercially available monoclonal antibodies specific for the N-methyl-d-aspartate (NMDA) receptor subunit NMDAR1 and for the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit GluR2(4), we have examined the distribution of these polypeptides in human hippocampal tissue that was surgically removed from patients with intractable TLE. Surgical specimens were classified according to the presence of Ammon’s horn sclerosis (AHS) or a focal lesion in the temporal lobe. Cell counts and a densitometric analysis of the immunoreactivity patterns were carried out for all hippocampal subfields. NMDAR1 and GluR2(4) levels were markedly reduced in patients with AHS, primarily in those subfields with substantial neuronal cell loss (in particular CA1, CA4 and CA3), compared to those seen in patients with focal lesions and in control specimens obtained at autopsy. In contrast, the molecular layer of the dentate gyrus (DG-ML) showed significantly higher levels of GluR2(4) immunoreactivity in AHS compared to control tissue, while NMDAR1 showed no significant up-regulation in this sublayer. When the receptor staining intensity was normalized for alterations in neuronal density, no significant alterations could be detected except for an increase in GluR2(4) in the DG-ML of patients with AHS. These changes may reflect synaptic reorganization observed in the DG-ML of specimens from patients with chronic intractable TLE. Received: 25 March 1996 / Revised, accepted: 10 June 1996  相似文献   

19.
The response of astroglial cells in the hippocampus to long-term portacaval anastomosis (PCA), an experimental model of hepatic encephalopathy, was studied in adult male rats and compared with controls. Six months after PCA, the rat hippocampi were processed for glial fibrillary acidic protein (GFAP). GFAP-immunopositive astroglial profiles were observed in all hippocampal layers in PCA rats, but GFAP distribution differed in PCA rats and controls. In PCA rats, cell bodies and cell processes immunostained with GFAP were observed mainly in the CA1-CA3 layers in relation to pyramidal neurons, whereas the number and length of the astroglial processes decreased in the rest of the hippocampal regions. In addition, decreased GFAP immunoreactivity in the perivascular processes was observed in PCA rats compared with controls. These results show that long-term PCA elicited different responses in GFAP expression in different hippocampal regions, which might suggest a regional variation in glial sensitivity.  相似文献   

20.
This report concerns an investigation on ubiquitin immunoreactivity in the neuronal perikarya of hippocampal granular cells in Guamanian amyotrophic lateral sclerosis (G-ALS) and Guamanian parkinsonism-dementia complex (G-PDC). Specimens from two non-Guamanian cases of ALS with dementia (ALS-D) were included for comparison. Histologically normal hippocampi from five adults served as controls. Antibodies to ubiquitin and tau protein were used throughout. Most Guamanian patients examined had granular cells with perikaryal ubiquitin immunoreactivity in the dentate gyrus, but in comparison to ALS-D, the frequency of ubiquitin-positive neurons was significantly lower. Tau-positive granular cells were detected in most Guamanian patients, but not in ALS-D. There was a relationship between the numbers of ubiquitin-positive and tau-positive neurons in the dentate granular cell layer of G-ALS and G-PDC patients. This was verified on sections double immunostained for tau protein and ubiquitin. The present findings suggest that the ubiquitin-positive materials observed in the perikarya of the dentate granular cells of patients with G-ALS or with G-PDC seem to be Alzheimer’s neurofibrillary tangles rather than the typical ubiquitin-positive intracytoplasmic neuronal inclusions, characteristic of ALS-D. Our data would indicate that different mechanisms are involved in the geneses of cortical neuronal degeneration and decline in cognitive function in ALS-D, G-ALS and G-PDC. Received: 25 June 1996 / Accepted: 23 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号