首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated white matter integrity in young children with autism using diffusion tensor imaging (DTI). Twenty-two children with autism, mean age 3:2 years, and 32 controls, mean age 3:4 years, participated in the study. Tract-based spatial statistics (TBSS) revealed white matter abnormalities in several distinct clusters within the genu and body of the corpus callosum (CC), left superior longitudinal fasciculus (SLF) and right and left cingulum (Cg). TBSS-VOIs analysis was performed in the clusters where differences in fractional anisotropy (FA) were detected to investigate the relationship between changes in FA and diffusivity indices. In all VOIs, increase in FA was caused by a decrease in radial diffusivity (Dr), while no changes in axial diffusivity (Da) or mean diffusivity (MD) were observed. Tractography analysis was applied to further study the CC, SLF, and Cg. Witelson parcellation scheme was used for the CC. Significant increase in FA was seen in children with autism in the mid-body of the CC as well as in the left Cg. It is suggested that such abnormal white matter integrity in young children with autism may adversely affect connectivity between different brain regions and may be linked to some of the behavioral impairments apparent in autism.  相似文献   

2.
Increased brain volume in autism appears to be driven mainly by an unexplained white matter enlargement, and we have reported a similar phenomenon in developmental language disorder (DLD). Localization of this enlargement would strongly guide research into its cause, tissue basis, and functional implications. We utilized a white matter parcellation technique that divides cerebral white matter into an outer zone containing the radiate compartment and an inner zone containing sagittal and bridging system compartments. In both high-functioning autism and DLD, enlargement localized to the radiate white matter (all lobes in autism, all but parietal in DLD), whereas inner zone white matter compartments showed no volume differences from controls. Furthermore, in both autism and DLD, later or longer-myelinating regions showed greater volume increases over controls. Neither group showed cerebral cortex, corpus callosum, or internal capsule volume differences from control. Radiate white matter myelinates later than deep white matter; this pattern of enlargement thus is consistent with striking postnatal head circumference percentile increases reported in autism. These findings suggest an ongoing postnatal process in both autism and DLD that is probably intrinsic to white matter, that primarily affects intrahemispheric and corticocortical connections, and that places these two disorders on the same spectrum.  相似文献   

3.
Background and purpose Brain tumors may dislocate, infiltrate, or disrupt the adjacent fiber tracts. We examined (1) microstructural changes of white matter (WM) adjacent to supratentorial low grade tumors in children and (2) WM tracts of the affected hemisphere using diffusion tensor imaging (DTI). We hypothesized that the structural integrity of the adjacent WM tracts would be preserved in these slow-growing tumors. Materials and methods DTI was performed in 11 children with low grade tumors diagnosed by magnetic resonance imaging (MRI). Regions of interest were placed in the tumor, in WM adjacent to tumor, and on the normal contralateral side. Fractional anisotropy (FA), trace, and eigenvalues were measured. Color-coded maps and tractography were used to grade the WM tracts: Grade one was normal tract size and color hue; grade two was reduced tract size but preserved color hue; and grade three was loss of color hue or failure to track on tractography. Grades one and two were subcategorized as “a” or “b,” depending on the absence or presence of tract displacement. Results There were no significant differences in FA, trace, and eigenvalues between WM adjacent to tumor and the contralateral side. One patient had grade 1a changes, six grade 1b, and four grade 2b. Conclusion We found preserved microstructural integrity of WM adjacent to low grade tumors in children. Color vector maps and tractography demonstrated displacement of the WM tracts in all but one patient. Our findings could be useful for neurosurgical planning to minimize injury to the WM tracts and improve preoperative risk analysis.  相似文献   

4.
5.
OBJECTIVE: Patients with schizophrenia have visual-processing deficits. This study examines visual white matter integrity as a potential mechanism for these deficits. METHOD: Diffusion tensor imaging was used to examine white matter integrity at four levels of the visual system in 17 patients with schizophrenia and 21 comparison subjects. The levels examined were the optic radiations, the striate cortex, the inferior parietal lobule, and the fusiform gyrus. RESULTS: Schizophrenia patients showed a significant decrease in fractional anisotropy in the optic radiations but not in any other region. CONCLUSIONS: This finding indicates that white matter integrity is more impaired at initial input, rather than at higher levels of the visual system, and supports the hypothesis that visual-processing deficits occur at the early stages of processing.  相似文献   

6.

Background

A combined protocol of voxel-based morphometry (VBM) and diffusion-weighted imaging (DWI) was applied to investigate the neurodevelopment of gray and white matter in autism.

Methods

Twenty children with autism (mean age = 7 ± 2.75 years old; age range: 4-14; 2 girls) and 22 matched normally developing children (mean age = 7.68 ± 2.03 years old; age range: 4-11; 2 girls) underwent magnetic resonance imaging (MRI). VBM was employed by applying the Template-o-Matic toolbox (TOM), a new approach which constructs the age-matched customized template for tissue segmentation. Also, the apparent diffusion coefficients (ADC) of water molecules were obtained from the analysis of DWI. Regions of interests (ROIs), standardized at 5 pixels, were placed in cortical lobes and corpus callosum on the non-diffusion weighted echo-planar images (b = 0) and were then automatically transferred to the corresponding maps to obtain the ADC values.

Results

Compared to normal children, individuals with autism had significantly: (1) increased white matter volumes in the right inferior frontal gyrus, the right fusiform gyrus, the left precentral and supplementary motor area and the left hippocampus, (2) increased gray matter volumes in the inferior temporal gyri bilaterally, the right inferior parietal cortex, the right superior occipital lobe and the left superior parietal lobule, and (3) decreased gray matter volumes in the right inferior frontal gyrus and the left supplementary motor area. Abnormally increased ADC values in the bilateral frontal cortex and in the left side of the genu of the corpus callosum were also reported in autism. Finally, age correlated negatively with lobar and callosal ADC measurements in individuals with autism, but not in children with normal development.

Conclusions

These findings suggest cerebral dysconnectivity in the early phases of autism coupled with an altered white matter maturation trajectory during childhood potentially taking place in the frontal and parietal lobes, which may represent a neurodevelopmental marker of the disorder, possibly accounting for the cognitive and social deficits.  相似文献   

7.
IntroductionPoor sleep quality has been linked to reduced neural connectivity through decreased white matter (WM) structural integrity. WM tract development has been shown to continue throughout adolescence with studies reporting positive correlations between diffusion-derived estimates of structural integrity and reduced sleep quality in adult samples. Few studies have investigated this relationship exclusively within a sample of young adolescents.MethodsN = 51 participants aged 12 years (M = 151.5 months, SD = 4 months) completed a self-report questionnaire which included the Pittsburgh Sleep Quality Index (PSQI) and underwent Diffusion Tensor Imaging (DTI) as part of their baseline assessment in the Longitudinal Adolescent Brain Study (LABS) being undertaken in Queensland, Australia. Fractional anisotropy (FA) were extracted using Tract-Based Spatial Statistics (TBSS) to investigate associations between sleep quality and WM integrity across the brain.ResultsSignificant correlations were found between the posterior limb of the internal capsule and the PSQI total sleep quality and sleep latency scores. There was also a significant difference in sleep duration between male and female participants.ConclusionThese findings provide an important insight of the impact that sleep may have on early adolescent WM development. Ongoing longitudinal assessment of sleep on WM development across adolescence is likely to provide further important information about how WM maturation relates to variations in sleep quality as circadian rhythm changes occur during middle and late adolescence.  相似文献   

8.
We used diffusion tensor imaging to investigate fractional anisotropy (FA), a measure of fiber tract integrity, in attention-deficit hyperactivity disorder (ADHD). Using a tract-based atlasing approach on six-direction diffusion tensor imaging data, we examined FA within the cingulum, corpus callosum, corticospinal tract, fornix, optic radiations, superior longitudinal fasciculus, uncinate fasciculus, and the superior and inferior occipitofrontal fasciculi in an all-male sample of 17 children and adolescents with ADHD and 16 age-matched controls. ADHD patients had significantly lower FA in the corticospinal tract (P=0.02) and the superior longitudinal fasciculus (P=0.017) compared with controls. Results support that disruptions in motor and attentional networks may contribute toward ADHD pathophysiology. Future research may clarify how ADHD subtype and psychiatric comorbidities affect diffusion measures.  相似文献   

9.
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease leading to gray matter atrophy and brain network reconfiguration as a response to increasing tissue damage. We evaluated whether white matter network reconfiguration appears subsequently to gray matter damage, or whether the gray matter degenerates following alterations in white matter networks. MRI data from 83 patients with clinically isolated syndrome and early relapsing–remitting MS were acquired at two time points with a follow‐up after 1 year. White matter network integrity was assessed based on probabilistic tractography performed on diffusion‐weighted data using graph theoretical analyses. We evaluated gray matter integrity by computing cortical thickness and deep gray matter volume in 94 regions at both time points. The thickness of middle temporal cortex and the volume of deep gray matter regions including thalamus, caudate, putamen, and brain stem showed significant atrophy between baseline and follow‐up. White matter network dynamics, as defined by modularity and distance measure changes over time, were predicted by deep gray matter volume of the atrophying anatomical structures. Initial white matter network properties, on the other hand, did not predict atrophy. Furthermore, gray matter integrity at baseline significantly predicted physical disability at 1‐year follow‐up. In a sub‐analysis, deep gray matter volume was significantly related to cognitive performance at baseline. Hence, we postulate that atrophy of deep gray matter structures drives the adaptation of white matter networks. Moreover, deep gray matter volumes are highly predictive for disability progression and cognitive performance.  相似文献   

10.
Cognitive development is known to involve improvements in accuracy, capacity, and processing speed. Less is known about the role of performance consistency, and there has been virtually no empirical examination of the neural underpinnings of within-person variability in development. In a sample of 92 healthy children and adolescents aged 8-19 years, we aimed to characterize age-related changes in trial-to-trial intraindividual variability (IIV) of reaction time (RT) and to test whether IIV is related to white matter (WM) integrity as indexed by diffusion tensor imaging. IIV was quantified as the SD of correct RTs in a speeded arrow flanker task, and Tract-Based Spatial Statistics was used to test relationships with diffusion characteristics. Large age-related reductions in IIV in both simple congruent trials and more complex incongruent trials were found. Independently of sex, age, and median RT (mRT), lower IIV was associated with higher fractional anisotropy and lower overall diffusivity. Effects were seen for IIV in one or both trial types in the corticospinal tract, the left superior longitudinal fasciculus, the uncinate fasciculus, the forceps minor, and in the genu and splenium of the corpus callosum. There were no significant associations between mRT and any of the diffusion indices. The findings support the proposition that developmental reductions in IIV reflect maturation of WM connectivity and highlight the importance of considering within-person variability in theories of cognitive development and its neurobiological foundation.  相似文献   

11.
12.
目的 探索精神分裂症患者及其健康同胞是否具有相似的脑白质完整性受损.从而为该异常是否为精神分裂症的易感性生物学特征提供依据.方法 利用基于像素的全脑分析方法比较精神分裂症患者30例及其健康同胞30名和正常对照30名的脑白质密度,将组间有差异的区域作为感兴趣区,利用纤维追踪技术重建穿过这些区域的白质纤维柬,比较三组之间纤维束的各向异性值(FA).结果 精神分裂症患者组及其同胞组左侧前额叶的各向异性低于正常对照组[(0.296±0.030),(0.302±0.030),(0.326±0.026),P<0.05],两组的胼胝体膝部的各向异性也低于正常对照组[(0.560±0.031),(0.568 ±0.025),(0.581 ±0.028),P<0.05],但患者组与同胞组之间的上述差异均无统计学意义(P>0.05).结论 左侧前额叶和胼胝体膝部白质完整性受损可能是精神分裂症的易感性生物学特征.  相似文献   

13.
Evidence for white matter abnormalities in patients with schizophrenia is increasing. Decreased fractional anisotropy (FA) in interhemispheric commissural fibers as well as long-ranging fronto-parietal association fibers belongs to the most frequent findings. The present study used tract-based spatial statistics to investigate white matter integrity in 35 patients with schizophrenia and 35 healthy volunteers. We found that patients exhibited significantly decreased FA relative to healthy subjects in the corpus callosum, the cerebral peduncle, the left inferior fronto-occipital fasciculus, the anterior thalamic radiation, the right posterior corona radiata, the middle cerebellar peduncle, and the right superior longitudinal fasciculus. Increased FA was detectable in the inferior sections of the corticopontine-cerebellar circuit. Present data indicate extended cortical-subcortical alterations of white matter integrity in schizophrenia using advanced data analysis strategies. They corroborate preceding findings of white matter structural deficits in mainly long-ranging association fibers and provide first evidence for neuroplastic changes in terms of an increased directionality in more inferior fiber tracts.  相似文献   

14.
Twin studies provide valuable insights into the analysis of genetic and environmental factors influencing human brain development. However, these findings may not generalize to singletons due to differences in pre‐ and postnatal environments. One would expect the effect of these differences to be greater during the early years of life. To address this concern, we compare longitudinal diffusion data of white matter regions for 26 singletons and 76 twins (monozygotic and dizygotic) from birth to 2 years of age. We use nonlinear mixed effect modeling where the temporal changes in the diffusion parameters are described by the Gompertz function. The Gompertz function describes growth trajectory in terms of intuitive parameters: asymptote, delay, and speed. We analyzed fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) for 21 regions of interest (ROIs). These ROIs included areas in the association, projection, and commissural fiber tracts. We did not find any differences in the diffusion parameters between monozygotic and dizygotic twins. In addition, FA and RD showed no developmental differences between singletons and twins for the regions analyzed. However, the delay parameter of the Gompertz function of AD for the anterior limb of the internal capsule and anterior corona radiata was significantly different between singletons and twins. Further analysis indicated that the differences are small, and twins “catch up” by the first few months of life. These results suggest that the effects of differences of pre‐ and postnatal environments between twins and singletons are minimal on white matter development and disappear early in life. Hum Brain Mapp 38:1009–1024, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Several studies have suggested that white matter integrity is disrupted in some brain regions in patients with schizophrenia. The purpose of this study was to assess the white matter integrity of the cingulum, uncinate fasciculus, fornix, and corpus callosum using diffusion tensor imaging (DTI). Participants comprised 39 patients with schizophrenia (19 males and 20 females) and 40 age-matched normal controls (20 males and 20 females). We quantitatively assessed the fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of the anterior cingulum, body of the cingulum, uncinate fasciculus, fornix, and corpus callosum on a tract-specific basis using diffusion tensor tractography (DTT). Group differences in FA and ADC between the patients and normal controls were sought. Additional exploratory analyses of the relationship between the FA or ADC and four clinical parameters (i.e., illness duration, positive symptom scores, negative symptom scores, and medication dosage) were performed. Results were analyzed in gender-combined and gender-separated group comparisons. FA was significantly lower on both sides of the anterior cingulum, uncinate fasciculus, and fornix in the schizophrenia patients irrespective of gender group separation. In the gender-combined analyses, significantly higher ADC values were demonstrated in the schizophrenia patients in both sides of the anterior cingulum, body of the cingulum and uncinate fasciculus, the left fornix, and the corpus callosum, compared with those of the normal controls. In the gender-separated analyses, the male patients showed higher ADC in the left anterior cingulum, the bilateral cingulum bodies, and the bilateral uncinate fasciculi. The female patients showed higher ADC in the right anterior cingulum, the left fornix, and the bilateral uncinate fasciculus. In correlation analyses, a significant negative correlation was found between illness duration and ADC in the right anterior cingulum in the gender-combined analyses. The gender-separated analyses found that the male patients had a significant negative correlation between negative symptom scores and FA in the right fornix, a positive correlation between illness duration and FA in the right anterior cingulum, and a negative correlation between illness duration and FA in the left uncinate fasciculus. Our DTI study showed that the integrity of white matter is disrupted in patients with schizophrenia. The results of our sub-analyses suggest that changes in FA and ADC may be related to negative symptom scores or illness duration.  相似文献   

16.
BACKGROUND: Research suggests that brain frontal white matter (WM) might be qualitatively altered in adolescents with early onset schizophrenia (EOS). Diffusion tensor imaging provides a relatively new approach for quantifying possible connectivity of WM in vivo. METHODS: Diffusion tensor imaging was used to examine the WM integrity of frontal regions at seven levels from 25 mm above to 5 mm below the anterior commissure-posterior commissure (AC-PC) plane. Three other regions were examined: the occipital region at the AC-PC plane and the genu and splenium of the corpus callosum. Fractional anisotropy was compared between 12 adolescents (nine male, 3 female) with EOS (onset of psychotic symptoms by age 18 years) and nine age-similar healthy comparison subjects (six male, 3 female). RESULTS: Adolescents with EOS had significantly reduced fractional anisotropy in the frontal WM at the AC-PC plane in both hemispheres and in the occipital WM at the AC-PC plane in the right hemisphere. CONCLUSIONS: These preliminary data support a hypothesis that alterations in brain WM integrity occur in adolescents with EOS. Abnormalities found in this study were similar to those reported in adults with chronic schizophrenia. Additional studies are needed to assess whether there is progression of WM abnormalities in schizophrenia.  相似文献   

17.
The axons in the parahippocampal white matter (PWM) region that includes the perforant pathway relay multimodal sensory information, important for memory function, from the entorhinal cortex to the hippocampus. Previous work suggests that the integrity of the PWM shows changes in individuals with amnestic mild cognitive impairment and is further compromised as Alzheimer's disease progresses. The present study was undertaken to determine the effects of healthy aging on macro- and micro-structural alterations in the PWM. The study characterized in vivo white matter changes in the parahippocampal region that includes the perforant pathway in cognitively healthy young (YNG, n=21) compared to cognitively healthy older (OLD, n=21) individuals using volumetry, diffusion tensor imaging (DTI) and tractography. Results demonstrated a significant reduction in PWM volume in old participants, with further indications of reduced integrity of remaining white matter fibers. In logistic regressions, PWM volume, memory performance and DTI indices of PWM integrity were significant indicator variables for differentiating the young and old participants. Taken together, these findings suggest that age-related alterations do occur in the PWM region and may contribute to the normal decline in memory function seen in healthy aging by degrading information flow to the hippocampus.  相似文献   

18.
Diffusion tensor imaging (DTI) has previously shown compromised white matter integrity in frontotemporal white matter fibers in patients with schizophrenia, as indicated by reduced fractional anisotropy (FA). In the present study we investigated whether reduced white matter FA is also present in relatives of individuals with schizophrenia who are at high risk (HR) for genetic reasons. Twenty-two HR subjects, 31 patients with schizophrenia and 51 control subjects underwent DTI. We compared FA between the three groups in the cingulum cingulate gyri, the uncinate and the arcuate fasciculi and the anterior limb of the internal capsules (ALIC). A voxel-based analysis showed lower FA in patients with schizophrenia compared to controls in left and right uncinate (p<0.03), the left arcuate (p<0.03) and left and right ALIC (p<0.01). Using an automatic region-of-interest analysis, less sensitive to potential misregistration errors, produced essentially the same results, as well as reduced FA of the ALIC in the HR group compared to controls (p<0.05). This study replicates previous findings showing lower FA in frontotemporal white matter fibers of schizophrenia patients. We also found reduced FA in the ALIC of both patients and subjects at high risk of schizophrenia when compared to controls. This may be a possible indicator of the higher vulnerability of relatives to develop the disorder.  相似文献   

19.
People with HIV are living longer as combination antiretroviral therapy (cART) becomes more widely available. However, even when plasma viral load is reduced to untraceable levels, chronic HIV infection is associated with neurological deficits and brain atrophy beyond that of normal aging. HIV is often marked by cortical and subcortical atrophy, but the integrity of the brain's white matter (WM) pathways also progressively declines. Few studies focus on older cohorts where normal aging may be compounded with HIV infection to influence deficit patterns. In this relatively large diffusion tensor imaging (DTI) study, we investigated abnormalities in WM fiber integrity in 56 HIV+ adults with access to cART (mean age: 63.9 ± 3.7 years), compared to 31 matched healthy controls (65.4 ± 2.2 years). Statistical 3D maps revealed the independent effects of HIV diagnosis and age on fractional anisotropy (FA) and diffusivity, but we did not find any evidence for an age by diagnosis interaction in our current sample. Compared to healthy controls, HIV patients showed pervasive FA decreases and diffusivity increases throughout WM. We also assessed neuropsychological (NP) summary z‐score associations. In both patients and controls, fiber integrity measures were associated with NP summary scores. The greatest differences were detected in the corpus callosum and in the projection fibers of the corona radiata. These deficits are consistent with published NP deficits and cortical atrophy patterns in elderly people with HIV. Hum Brain Mapp 35:975–992, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Previous research has shown that bilingual speakers have higher levels of cognitive control than comparable monolinguals, especially at older ages. The present study investigates a possible neural correlate of this behavioral effect. Given that white matter (WM) integrity decreases with age in adulthood, we tested the hypothesis that bilingualism is associated with maintenance of WM in older people. Using diffusion tensor imaging, we found higher WM integrity in older people who were lifelong bilinguals than in monolinguals. This maintained integrity was measured by fractional anisotropy (FA) and was found in the corpus callosum extending to the superior and inferior longitudinal fasciculi. We also hypothesized that stronger WM connections would be associated with more widely distributed patterns of functional connectivity in bilinguals. We tested this by assessing the resting-state functional connectivity of frontal lobe regions adjacent to WM areas with group differences in FA. Bilinguals showed stronger anterior to posterior functional connectivity compared to monolinguals. These results are the first evidence that maintained WM integrity is related to lifelong naturally occurring experience; the resulting enhanced structural and functional connectivity may provide a neural basis for "brain reserve."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号