首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Retinoblastoma is a rare type of eye cancer of the retina that commonly occurs in early childhood and mostly affects the children before the age of 5. It occurs due to the mutations in the retinoblastoma gene (RB1) which inactivates both alleles of the RB1. RB1 was first identified as a tumor suppressor gene, which regulates cell cycle components and associated with retinoblastoma. Previously, genetic alteration was known as the major cause of its occurrence, but later, it is revealed that besides genetic changes, epigenetic changes also play a significant role in the disease. Initiation and progression of retinoblastoma could be due to independent or combined genetic and epigenetic events. Remarkable work has been done in understanding retinoblastoma pathogenesis in terms of genetic alterations, but not much in the context of epigenetic modification. Epigenetic modifications that silence tumor suppressor genes and activate oncogenes include DNA methylation, chromatin remodeling, histone modification and noncoding RNA-mediated gene silencing. Epigenetic changes can lead to altered gene function and transform normal cell into tumor cells. This review focuses on important epigenetic alteration which occurs in retinoblastoma and its current state of knowledge. The critical role of epigenetic regulation in retinoblastoma is now an emerging area, and better understanding of epigenetic changes in retinoblastoma will open the door for future therapy and diagnosis.  相似文献   

3.
Epigenetics in cancer: implications for early detection and prevention   总被引:8,自引:0,他引:8  
Knowledge of the molecular events that occur during the early stages of cancer has advanced rapidly. The initiation and development of cancer involves several molecular changes, which include epigenetic alterations. Epigenetics is the study of modifications in gene expression that do not involve changes in DNA nucleotide sequences. Modifications in gene expression through methylation of DNA and remodelling of chromatin via histone proteins are believed to be the most important of the epigenetic changes. The study of epigenetics offers great potential for the identification of biomarkers that can be used to detect and diagnose cancer in its earliest stages and to accurately assess individual risk. There has been a recent surge of interest among researchers as variations in the methylation of DNA have been shown to be the most consistent molecular changes in many neoplasms. An important distinction between a genetic and an epigenetic change in cancer is that epigenetic changes can be reversed more easily by use of therapeutic interventions. The discovery of these basic premises should stimulate much future research on epigenetics.  相似文献   

4.
The genetic information of almost all eukaryotic cells is stored in chromatin. In cancer cells, alterations in chromatin organization or in its epigenetic marks occur frequently. Among these are changes in the patterns of DNA and histone methylation. Using Acute Promyelocytic Leukemia as model system we could demonstrate a direct correlation of epigenetic events induced by the driving oncogene product PML-RARalpha and cancer progression. Several of the enzymes ultimately responsible for these events can be inhibited by small compound inhibitors and thus can serve as targets in cancer therapy. In this article, we review the role of DNA methylation, histone methylation and chromatin alterations in human diseases. A picture is emerging in which these epigenetic signals "cross-talk" and are implicated in the physiological and pathological spreading of gene silencing.  相似文献   

5.
Cinti C  Macaluso M  Giordano A 《Oncogene》2005,24(38):5821-5826
Genetic alterations in Rb2/p130 gene have been reported in several tumors, but till now there are insufficient and conflicting data linking the loss of pRb2/p130 expression with the mutational status of this gene in lung cancer. We recently reported that loss or lowering of pRb2/p130 expression is mainly due to aberrant Rb2/p130 promoter methylation, in retinoblastoma tumors, and indicated that epigenetic silencing of Rb2/p130 can impair its function to negatively regulate cell cycle progression as well as apoptotic response. In order to clarify Rb2/p130 gene inactivation in lung cancer, we investigated whether epigenetic events could impair the expression of this gene in NSLC. Here, we show that specific Rb2-exon 1 homozygous mutations, occurring in an Rb2/p130, region, rich in CpG dinucleotides, could be the 'hit event' that predispose this gene to epigenetic changes, leading to Rb2/p130 gene silencing in lung cancer. Moreover, these homozygous mutations, found in different tumor histotypes, could represent tumor-specific markers.  相似文献   

6.
7.
Epigenetic gene silencing in cancer initiation and progression   总被引:35,自引:0,他引:35  
Nephew KP  Huang TH 《Cancer letters》2003,190(2):125-133
  相似文献   

8.
Gastric cancer is one of the most common malignancy worldwide. The various genetic and epigenetic events have been found to be associated with its carcinogenesis. The epigenetic is a heritable and transient/reversible change in the gene expression that is not accompanied by modification in the DNA sequence. This event is characterized by the alteration in the promoter CpG island of the gene or histone modification. These events are associated with silencing of critical tumor suppressor gene and activation of oncogenes leading to carcinogenesis. The DNA methylation is a chemical change in the DNA sequence that most commonly occurs at cytosine moiety of CpG dinucleotide and histone, primarily on N- terminal tail that ultimately effect the interaction of DNA with chromatin modifying protein.Hypermethylation of tumor suppressor genes and global hypomethylation of oncogenes are widely studied epigenetic modifications. There are large number of publish reports regarding epigenetic events involving gastric cancer. These changes are potentially useful in identifying markers for early diagnosis and management of this lethal malignancy. Also, role of specific miRNAs and long non coding RNAs in regulation of gene expression is gaining interest and is a matter of further investigation. In this review, we aimed to summarize major epigenetic events (DNA methylation) in gastric cancer along with alteration in miRNAs and long non coding RNAs which plays an important role in pathology of this poorly understood malignancy.  相似文献   

9.
10.
11.
Cancer cells typically exhibit aberrant DNA methylation patterns that can drive malignant transformation. Whether cancer cells are dependent on these abnormal epigenetic modifications remains elusive. We used experimental and bioinformatic approaches to unveil genomic regions that require DNA methylation for survival of cancer cells. First, we surveyed the residual DNA methylation profiles in cancer cells with highly impaired DNA methyltransferases. Then, we clustered these profiles according to their DNA methylation status in primary normal and tumor tissues. Finally, we used gene expression meta-analysis to identify regions that are dependent on DNA methylation-mediated gene silencing. We further showed experimentally that these genes must be silenced by DNA methylation for cancer cell survival, suggesting these are key epigenetic events associated with tumorigenesis.  相似文献   

12.
Epigenetic changes in tumours are associated not only with cancer development and progression, but also with resistance to chemotherapy. Aberrant DNA methylation at CpG islands and associated epigenetic silencing are observed during the acquisition of drug resistance. However, it remains unclear whether all of the observed changes are drivers of drug resistance, causally associated with response of tumours to chemotherapy, or are passenger events representing chance DNA methylation changes. Systematic approaches that link DNA methylation and expression with chemosensitivity will be required to identify key drivers. Such drivers will be important prognostic or predicitive biomarkers, both to existing chemotherapies, but also to epigenetic therapies used to modulate drug resistance.  相似文献   

13.
BRCA1 methylation: a significant role in tumour development?   总被引:1,自引:0,他引:1  
Cancer is a multistep process resulting from an accumulation of genetic mutations leading to dysfunction of critical genes, including tumour suppressor genes. Epigenetic changes are now also recognised as an important alternative mechanism of gene inactivation. In particular, aberrant methylation of the promoter region of a gene can lead to silencing ultimately contributing to the initiation or malignant progression of tumours. BRCA1, a breast and ovarian cancer susceptibility gene, is a tumour suppressor gene involved in the maintenance of genome integrity. Recent evidence for BRCA1 hypermethylation corroborates the view that this epigenetic alteration may play a determinant role in tumour suppressor silencing and possibly tumorigenesis. Here, we offer a summary of the data providing evidence for BRCA1 hypermethylation in tumours, and an investigation into the associated mechanism leading to BRCA1 silencing. We also discuss the impact of BRCA1 hypermethylation, as a form of epigenetic change, versus BRCA1 genetic mutations in tumour development.  相似文献   

14.
Trimethylation of histone 3 lysine 27 (H3K27me3) is a critical epigenetic mark for the maintenance of gene silencing. Additional accumulation of DNA methylation in target loci is thought to cooperatively support this epigenetic silencing during tumorigenesis. However, molecular mechanisms underlying the complex interplay between the two marks remain to be explored. Here we show that activation of PI3K/AKT signaling can be a trigger of this epigenetic processing at many downstream target genes. We also find that DNA methylation can be acquired at the same loci in cancer cells, thereby reinforcing permanent repression in those losing the H3K27me3 mark. Because of a link between PI3K/AKT signaling and epigenetic alterations, we conducted epigenetic therapies in conjunction with the signaling-targeted treatment. These combined treatments synergistically relieve gene silencing and suppress cancer cell growth in vitro and in xenografts. The new finding has important implications for improving targeted cancer therapies in the future.  相似文献   

15.
16.
Epigenetic events, a key driving force in the development of cancer, are alterations in gene expression without changes in the DNA coding sequence that are heritable through cell division. Such changes occur throughout all stages of tumorigenesis, including the early phases, and are increasingly recognized as major mechanisms involved in silencing tumor suppressor genes. Epigenetic changes can be reversed by the use of small molecules and, thus, such changes are promising targets for cancer chemopreventive drug development. This review examines the basis for targeting the epigenome as a prevention strategy, focusing on understanding the epigenetic changes that occur before the development of frank malignancy, when chemopreventive intervention will have the maximal impact.  相似文献   

17.
18.
吴浦嫄  范怡梅  王亚平 《癌症》2009,28(12):1236-1242
表观突变是指表观遗传调控出现错误,导致正常情况下表达的基因沉默或者正常情况下沉默的基因转录表达。表观突变通常被认为是局部体细胞事件,一般只存在于病变组织。但是,最近几年关于遗传性非息肉性结直肠癌的研究发现,在部分患者中,所有检测的正常组织均存在MLH1单等位基因启动子区域CpG岛甲基化,并证实这种异常甲基化是肿瘤形成的病因。随后,关于其他抑癌基因MSH2与BRCA1等的胚系异常甲基化也陆续有报道。这提示,表观突变也可以起源于胚系(生殖细胞形成期或胚胎发育早期),从而造成全身细胞广泛的基因转录沉默。这种胚系表观突变类似于经典的基因胚系序列突变,可能成为人类疾病发生的病因。本文着重对近年来抑癌基因胚系表观突变研究进展作一综述,探讨胚系表观突变可能的产生机制和代间遗传的可能性,并展望其给人类疾病病因研究所带来的深远影响。  相似文献   

19.
20.
Cancer not only is associated with inherited genetic sequences but also results from epigenetic changes. Thus, understanding the mechanisms underlying epigenetic modifications is important for cancer prevention, diagnosis, and therapy. There is much evidence showing that some Polycomb group (PcG) proteins are abnormally expressed in certain tumors. This review addresses biological functions and biochemical behaviors of the Polycomb repression complex proteins, including their enzymatic activities. Additionally, the potential mechanisms of PcG gene silencing by PcG and its link to cancers are summarized that will shed light on this novel area of study in cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号