首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A variety of studies demonstrated a crucial role of mitochondria for clearance of Ca2+ loads in motoneurons. However, previous reports rarely addressed the potential influence of cell dialysis during patch-clamp recordings or temperature on mitochondrial processes. We therefore developed a protocol allowing investigation of Ca2+ dynamics in “undisturbed” AM-ester loaded hypoglossal motoneurons in a slice preparation. By comparing our findings to previous results, we argue against a significant disturbance of mitochondrial buffering by cell dialysis. By varying bath temperatures between 19 and 32 °C, we show that temperature alters the rate of mitochondrial uptake but not the relative contribution to maintenance of Ca2+ homeostasis. The results further indicate that mitochondria in hypoglossal motoneurons participate in intracellular Ca2+ regulation at concentrations much lower than has been generally observed for other neurons or neuroendocrine cells. Taken together, our findings further support the important role of mitochondria as regulators of Ca2+ homeostasis in motoneurons.  相似文献   

3.
The molecular mechanism(s) involved in mediating Ca2+ entry into rat parotid acinar and other non-excitable cells is not known. In this study we have examined the kinetics of Ca2+ entry in fura-2-loaded parotid acinar cells, which were treated with thapsigargin to deplete internal Ca2+ pools (Ca2+-pool-depleted cells). The rate of Ca2+ entry was determined by measuring the initial increase in free cytosolic [Ca2+] ([Ca2+]i) in Ca2+-pool-depleted, and control (untreated), cells upon addition of various [Ca2+] to the medium. In untreated cells, a low-affinity component was detected with K Ca = 3.4 ± 0.7 mM (where K Ca denotes affinity for Ca2+) and V max = 9.8 ± 0.4 nM [Ca2+]i /s. In thapsigargin-treated cells, two Ca2+ influx components were detected with K Ca values of 152 ±  79 μM (V max = 5.1 ± 1.9 nM [Ca2+]i/s) and 2.4 ±  0.9 mM (V max = 37.6 ± 13.6 nM [Ca2+]i/s), respectively. We have also examined the effect of Ca2+ and depolarization on these two putative Ca2+ influx components. When cells were treated with thapsigargin in a Ca2+-free medium, Ca2+ influx was higher than into cells treated in a Ca2+-containing medium and, while there was a 46% increase in the V max of the low-affinity component (no change in K Ca), the high-affinity component was not clearly detected. In depolarized Ca2+-pool-depleted cells (with 50 mM KCl in the medium) the high-affinity component was considerably decreased while there was an apparent increase in the K Ca of the low-affinity component, without any change in the V max. These results demonstrate that Ca2+ influx into parotid acinar cells (1) is increased (four- to five-fold) upon internal Ca2+ pool depletion, and (2) is mediated via at least two components, with low and high affinities for Ca2+. Received: 30 October 1995/Received after revisionand accepted: 13 December 1995  相似文献   

4.
The effects of antibodies against immunoglobulin delta-heavy chains (anti-delta) on intracellular free Ca2+ concentrations, [Ca2+]i, and 86Rb+ influx in human neoplastic B-cells were tested in vitro. When preloading the cells with high concentrations of the fluorescent Ca2+ chelator quin 2 and subsequently stimulating in EGTA medium, the anti-delta induced rise in [Ca2+]i was strongly reduced or blocked. Nevertheless, 86Rb+ influx, also induced by anti-delta, was potentiated. In fact, in a population of cells in which anti-delta increased [Ca2+]i, but not 86Rb+ influx under standard conditions, the combination of quin-2 preloading and subsequent extracellular Ca2+ chelation by EGTA revealed an anti-delta induced 86Rb+ influx. Most of this influx was ouabain resistant, suggesting only a minor contribution from the Na+/K+ pump. Based on the Ca2+ buffer effect of quin 2 we suggest that the Ca2+ effect on 86Rb+ (K+ analogue) permeability is not mediated by increased [Ca2+]i but rather by the Ca2+ release per se from the plasma membrane.  相似文献   

5.
Using whole cell patch-clamp recording from pyramidal cells and interneurons in the CA1 area of hippocampal slices, the effect of IEM-1460, a selective channel blocker of Ca2+ permeable AMPA receptors (AMPARs), on postsynaptic currents (PSCs) was studied. Excitatory postsynaptic currents (EPSCs) were evoked by stimulation of Schaffer collaterals (SCs) in the presence of APV and bicuculline to pharmacologically isolate the EPSCs mediated by AMPAR activation. IEM-1460 (50 microM) did not affect the amplitude of EPSCs in CA1 pyramidal cells but reversibly decreased their amplitude in interneurons of pyramidal layer (15 cells), radiatum (37 cells) and border radiatum-lacunosum-moleculare (R-LM) (55 cells) layers. The ability of IEM-1460 to decrease EPSC amplitude correlated with EPSC rectification properties in CA1 interneurons, providing evidence for synaptic localization of Ca2+ permeable AMPARs at the SC synaptic input. Independent of their localization, the majority of interneurons studied exhibited only modest sensitivity to IEM-1460 (EPSC amplitude decreased by less than 30%), while in 15% of interneurons IEM-1460 induced more than 50% reduction in EPSC amplitude. To reveal possible afferent-specific localization of Ca2+ permeable AMPARs on R-LM interneurons, the effect of IEM-1460 on EPSCs evoked by stimulation of SC was compared with that of perforant path (PP). Although average sensitivities did not differ significantly, in 61% of R-LM layer interneurons, the SC-evoked EPSCs exhibited higher sensitivity to IEM-1460 than the PP-evoked EPSCs. Moreover, in 54% of R-LM layer interneurons the EPSCs evoked by SC stimulation were complex, having an initial peak followed by one or several late components. Kinetics, latency distribution and reversal potential of late components suggest di- and polysynaptic origin of the late components. Late EPSCs were strongly and reversibly inhibited by IEM-1460 indicating that Ca2+ permeable AMPARs are involved in the indirect excitation of R-LM layer interneurons. Despite the ability to decrease the excitatory synaptic input to interneurons, IEM-1460 did not affect interneuron-mediated inhibitory postsynaptic currents (IPSCs) evoked in pyramidal neurons by SC stimulation. These data suggest that interneurons with a synaptic input highly sensitive to IEM-1460 do not contribute specifically to the feed-forward inhibition of hippocampal pyramidal neurons.  相似文献   

6.
Changes in membrane potential and cytosolic free Ca2+ concentrations, [Ca2+]i, in response to L-glutamate and glutamate receptor agonists were measured in rat cerebellar granule cells grown on coverslips. The membrane was depolarized by the application of L-glutamate and kainate, and by elevating the extracellular K+ concentration, as determined by using the membrane potential probe bisoxonol (DiBA-C4-(3)). The [Ca2+]i as measured with fura-2 was 220 nM on average under resting conditions and increased by raising the extracellular K+ and by applying L-glutamate, kainate, quisqualate or N-methyl-D-aspartate (NMDA). Verapamil and nifedipine reduced the high-K+ induced rise in [Ca2+]i but did not significantly affect the responses produced by NMDA, quisqualate and kainate, suggesting that the increase in intracellular Ca2+ in response to glutamate receptor agonists is primarily due to Ca2+ influx through receptor-coupled ion channels.  相似文献   

7.
The mean sarcomere length (SL) of guinea-pig cardiac myocytes was recorded simultaneously with the whole-cell current under voltage-clamp conditions. After blocking both sarcoplasmic reticulum (SR) and L-type Ca(2+) channels with ryanodine, cyclopiazonic acid and nicardipine, strong depolarizing pulses induced only the tonic component of SL shortening through the reverse mode of Na(+)/Ca(2+) exchange (NCX). A positive staircase of SL shortening was observed on applying a train pulses to +60~+100 mV at 2 Hz and trans-membrane Ca(2+) flux was calculated from the time integral of the Na(+)/Ca(2+) exchange current ( I(NCX)). Changes in cytosolic [Ca(2+)] ([Ca(2+)](i)) were determined indirectly using the experimental [Ca(2+)](i)/SL relationship. Cellular Ca(2+) buffering was characterized by a lumped single-component system with a maximum binding capacity of 200 micro M and a dissociation constant of 613 nM. Despite the decrease in driving force, the amplitude of the outwards I(NCX) at +60 mV gradually increased along with the positive staircase. The model simulation suggested that this increase of outwards I(NCX) is caused by a dramatic increase in Ca(2+)-mediated activation of NCX.  相似文献   

8.
 Previous studies have indicated that a 16-pS K+ channel (KCca) in the basolateral membrane is responsible for the acetylcholine-induced whole-cell K+ conductance in these cells. In the present study we have examined this channel in excised inside-out patches of the basolateral membrane. Over a wide voltage range this channel showed inward rectification. The Ca2+ sensitivity was very marked, with a Hill coefficient of three and with half-maximal activation at 330 nmol/l. After several minutes most channels showed a slow run-down. Channel activity could be refreshed by addition of ATP (1 mmol/l) to the bath solution. The non-metabolizable derivative 5’-adenylylimidodiphosphate (AMP-PNP) had no such effect. In contrast, it inhibited channel activity by some 50%. ATP and its derivatives had no effect on the Ca2+ sensitivity. Channels activated by ATP were subsequently studied in the presence of alkaline (10 kU/l) or acidic (1 kU/l) phosphatase. Both phosphatases reduced channel activity significantly. These data suggest that the 16-pS K+ channel is directly controlled by cytosolic Ca2+. This regulatory step is probably distal to an activation produced by protein-kinase-C-dependent phosphorylation. As is the case for several other K+ channels, high concentrations of non-metabolizable ATP analogues inhibit this channel. Received: 23 July 1997 / Accepted: 17 September 1997  相似文献   

9.
Ca2+ -induced Ca2+ -release (CICR) from ryanodine-sensitive Ca2+ stores provides a mechanism to amplify and propagate a transient increase in intracellular calcium concentration ([Ca2+]i). A subset of rat dorsal root ganglion neurons in culture exhibited regenerative CICR when sensitized by caffeine. [Ca2+]i oscillated in the maintained presence of 5 mM caffeine and 25 mM K+. Here, CICR oscillations were used to study the complex interplay between Ca2+ regulatory mechanisms at the cellular level. Oscillations depended on Ca2+ uptake and release from the endoplasmic reticulum (ER) and Ca2+ influx across the plasma membrane because cyclopiazonic acid, ryanodine, and removal of extracellular Ca2+ terminated oscillations. Increasing caffeine concentration decreased the threshold for action potential-evoked CICR and increased oscillation frequency. Mitochondria regulated CICR by providing ATP and buffering [Ca2+]i. Treatment with the ATP synthase inhibitor, oligomycin B, decreased oscillation frequency. When ATP concentration was held constant by recording in the whole cell patch-clamp configuration, oligomycin no longer affected oscillation frequency. Aerobically derived ATP modulated CICR by regulating the rate of Ca2+ sequestration by the ER Ca2+ pump. Neither CICR threshold nor Ca2+ clearance by the plasma membrane Ca2+ pump were affected by inhibition of aerobic metabolism. Uncoupling electron transport with carbonyl cyanide p-trifluoromethoxy-phenyl-hydrazone or inhibiting mitochondrial Na+/Ca2+ exchange with CGP37157 revealed that mitochondrial buffering of [Ca2+]i slowed oscillation frequency, decreased spike amplitude, and increased spike width. These findings illustrate the interdependence of energy metabolism and Ca2+ signaling that results from the complex interaction between the mitochondrion and the ER in sensory neurons.  相似文献   

10.
Microfluorimetric studies were carried out to investigate the effects of hypoosmotic swelling on intracellular Ca2+ concentration ([Ca2+]i) in single rat epididymal cells. In Ca2+-free solution containing 50 mol/l ethylenebis(oxonitrilo)tetraacetate (EGTA) hypoosmotic swelling (–160 mosmol/l) induced a transient rise in [Ca2+]i which was either monophasic, biphasic or oscillatory. The [Ca2+]i responses to repeated hypoosmotic stimulations followed a decremental pattern. However, if 2.5 mmol/l Ca2+ was admitted during the recovery period between successive stimulations, the second and the third [Ca2+]i responses were slightly greater than the first. Increasing the change in osmolarity from –14±1.0 to –154±1.5 mosmol/l increased the rise in [Ca2+]i but reduced the [Ca2+]i response to subsequent ionomycin stimulation (4 mol/l). The swelling- and the ionomycin-induced rises in [Ca2+]i followed a reciprocal pattern. It was suggested that intracellular Ca2+ release in response to cell swelling in the epididymal epithelium might play a role in cell volume regulation and the control of epididymal fluid osmolarity.  相似文献   

11.
We performed experiments using the Ca2+ indicator dye, fura-2 to investigate the effect of extracellular Ca2+ concentration ([Ca2+]o) on sarcoplasmic reticulum (SR) Ca2+ release and loading in single rat ventricular cells. In normal Tyrode solution (1.8 mM [Ca2+]o) repetitive stimulation (0.5 Hz) resulted in a gradual decrease in calcium transients (the negative staircase phenomenon) without being accompanied by a gradual decrease in diastolic intracellular Ca2+ concentration. The rate of the slow decline in calcium transient was faster in lower [Ca2+]o. However, the peak of the first calcium transient was relatively invariant over a wide range of [Ca2+]o (0.5–5 mM). The size of the calcium transient elicited by field stimulation was proportional to that induced by 10 mM caffeine, applied following the field stimulation. These results suggest that the size of calcium transients depends mainly on the Ca2+ content of the SR. The quiescent period favoured the replenishment of the SR and this effect was promoted further by increasing the driving force for Ca2+ entry across the sarcolemma during this period. We conclude that in low [Ca2+]o, short stimulation interval may limit Ca2+ influx across the sarcolemma during the quiescent period to cause a gradual reduction in calcium content of the SR and thus the calcium transient.  相似文献   

12.
Ca2+ signaling and neurotransmission modulate touch-evoked responses in Merkel cell–neurite complexes. To identify mechanisms governing these processes, we analyzed voltage-activated ion channels and Ca2+ signaling in purified Merkel cells. Merkel cells in the intact skin were specifically labeled by antibodies against voltage-activated Ca2+ channels (CaV2.1) and voltage- and Ca2+-activated K+ (BKCa) channels. Voltage-clamp recordings revealed small Ca2+ currents, which produced Ca2+ transients that were amplified sevenfold by Ca2+-induced Ca2+ release. Merkel cells’ voltage-activated K+ currents were carried predominantly by BKCa channels with inactivating and non-inactivating components. Thus, Merkel cells, like hair cells, have functionally diverse BKCa channels. Finally, blocking K+ channels increased response magnitude and dramatically shortened Ca2+ transients evoked by mechanical stimulation. Together, these results demonstrate that Ca2+ signaling in Merkel cells is governed by the interplay of plasma membrane Ca2+ channels, store release and K+ channels, and they identify specific signaling mechanisms that may control touch sensitivity.  相似文献   

13.
Using whole-cell patch-clamp techniques, we demonstrate, for the first time, that rat submandibular acinar cells contain a tetraethylammonium (TEA)-insensitive, Ca2+-activated K+ conductance which is not attributable to large conductance, voltage-sensitive, Ca2+-dependent K+ channels (maxi-K+ channels). Taken together with our recent K+ efflux and fluid secretion studies in intact rat submandibular gland, we postulate that the K+ conductance reported here may be involved in the basolateral K+ efflux pathway activated by cytosolic Ca2+ concentration during secretion by this gland.  相似文献   

14.
Like voltage-operated Ca(2+) channels, store-operated CRAC channels become permeable to monovalent cations in the absence of external divalent cations. Using the whole-cell patch-clamp technique, we have characterized the permeation and selectivity properties of store-operated channels in the rat basophilic leukemia (RBL-1) cell line. Store depletion by dialysis with InsP(3) and 10 mM EGTA resulted in the rapid development of large inward currents in Na(+)- and Li(+)-based divalent-free solutions. Cs(+) permeated the channels poorly (P(Cs)/ P(Na)=0.01). Trimethylamine (TMA(+)), tetramethylammonium (TeMA(+)), tetraethylammonium (TEA(+)), N-methyl- D-glucamine (NMDG(+)) and TRIS(+) were not measurably permeant. NH(4)(+) was conducted well. We estimated the minimum pore diameter under divalent-free conditions to be between 0.32 nm and 0.55 nm. When cells were dialysed with buffered Ca(2+) solution and I(CRAC) activated by application of thapsigargin, P(Cs)/ P(Na) was still low (0.08). Outward currents through CRAC channels were carried by intracellular Na(+), K(+) and, to a much lesser extent, by Cs(+). Currents were unaffected by dialysis with Mg(2+)-free solution. The Na(+) current was inhibited by external Ca(2+) (half-maximal blocking concentration of 10 microM). This Ca(2+)-dependent block could be alleviated by hyperpolarization. The monovalent Na(+) current was voltage dependent, increasing as the holding potential depolarized above 0 mV. Our results suggest that CRAC channels in RBL-1 cells have a smaller pore diameter than voltage-operated Ca(2+) channels, discriminate between Group I cations, and differ markedly in their selectivity from CRAC channels reported in lymphocytes.  相似文献   

15.
The effects of intracellular Ca2+ concentration, [Ca2+]i, on the volume of rat alveolar type II cells (AT-II cells) were examined. Perfusion with a Ca2+-free solution induced shrinkage of the AT-II cell volume in the absence or presence of amiloride (1 microm, an inhibitor of Na+ channels); however, it did not in the presence of 5-(N-methyl-N-isobutyl)-amiloride (MIA, an inhibitor of Na+-H+ exchange). MIA decreased the volume of AT-II cells. Inhibitors of Cl(-)-HCO3- exchange, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) also decreased the volume of AT-II cells. This indicates that the cell shrinkage induced by a Ca2+-free solution is caused by a decrease in NaCl influx via Na+-H+ exchange and Cl(-)-HCO3- exchange. Addition of ionomycin (1 microm), in contrast, induced cell swelling when AT-II cells were pretreated with quinine and amiloride. This swelling of the AT-II cells is not detected in the presence of MIA. Intracellular pH (pHi) measurements demonstrated that the Ca2+-free solution or MIA decreases pHi, and that ionomycin increases it. Ionomycin stimulated the pHi recovery after an acid loading (NH4+ pulse method), which was not noted in MIA-treated AT-II cells. Ionomycin increased [Ca2+]i in fura-2-loaded AT-II cells. In conclusion, the Na+-H+ exchange activities of AT-II cells, which maintain the volume and pHi, are regulated by [Ca2+]i.  相似文献   

16.
Cellular uptake of neutral amino acids via Na+ cotransporters is known to be associated with an increased membrane K+ conductance mediated by an unknown mechanism that is essential for avoiding excessive cell swelling. We now demonstrate by patch-clamp single-channel current recording that exposure of rat liver cells to L-alanine, but not the poorly transported D-stereoisomer, evokes opening of single K+ channels and that this effect is reversible upon removal of the amino acid. The nature of the conductance pathways opened in the intact cell by L-alanine has been investigated in cell-free excised membrane patches where it can be shown that the K+-selective channels are opened by Ca2+ acting from the inside of the membrane at a concentration as low as 0.1 M.  相似文献   

17.
18.
Na+ and Ca2+ currents of acutely isolated adult rat nodose ganglion cells   总被引:9,自引:0,他引:9  
The electrical properties of nodose ganglion cells acutely isolated from adult rats were studied using the whole-cell patch-clamp recording method. Current-clamp recordings revealed a mean resting membrane potential of -54.3 mV and an input resistance of 527 M omega. Depolarizing current steps evoked action potentials with the following properties (mean): amplitude 111 mV, threshold -36 mV, and rate of rise 117 V/s. Two types of action potentials were observed, short and long duration. These properties, with the exception of input resistance (527 M omega cf. 50 M omega), are similar to those reported previously using intracellular recording methods in intact nodose ganglia (11, 20, 28). Brief application of 10 microM 5-hydroxytryptamine resulted in a rapid depolarization and burst of action potentials in the majority of cells. With voltage-clamp recording, step depolarizations to potentials positive to -10 mV elicited a transient inward current that was followed by a sustained outward current. Inward Na+ current was isolated by ion substitution and pharmacological agents. Two types of Na+ current were observed. One current was completely abolished by 3-15 microM tetrodotoxin (TTX), had a rapid time course, activated over the potential range -60 to -10 mV, and attained half-maximal conductance at -30 mV. The other current persisted in the presence of 15 microM TTX, had a slower time course, activated over the potential range -30 to 0 mV, and attained half-maximal conductance at -15 mV. In addition, 500 microM Cd2+ and 5.0 mM Co2+ reduced the TTX-insensitive current to 53 and 42% of control, respectively. Inward Ca2+ current was isolated by ion substitution and pharmacological agents and was identified by a dependence on external Ca2+. Cd2+ (500 microM) and Co2+ (5 mM) reduced the maximal inward current to 5 and 20% of control, respectively. When Ba2+ was substituted for Ca2+ as the charge carrier, the maximal inward current increased to 175% of control. Some cells had two Ca2+ current components, an inactivating component that activated near -60 mV and a large sustained current that activated near -40 mV. The initial inactivating current appeared as a "hump" on the current-voltage (I-V) curve over the potential range of -60 to -30 mV. The results indicate that, following isolation of these adult mammalian neurons, the membrane surfaces are sufficiently clean to allow patch-clamp recording.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
目的:探讨脑缺血再灌流后钙离子对沙土鼠海马区cGMP合成的影响。方法:钳夹沙土鼠的双侧颈总动脉复制脑缺血模型,应用免疫荧光法染色,以便观察cGMP浓度的变化及分布。结果:实验组海马区分布着许多cGMP强阳性细胞,主要分布于CA1区放射层及腔隙分子层。对照组海马区分布着一些中等强度的cGMP阳性细胞,cGMP阳性细胞分布同实验组。结论:钙离子与cGMP的合成有关。  相似文献   

20.
Primary skeletal muscle cells were cultured in a normal- (1.8 mM) or high- (4.8 mM) Ca2+ culture medium to determine whether Ca2+ modulates the number of L-type Ca2+ channels. Skeletal myoballs cultured in a normal medium showed, when exposed to a high extracellular [Ca2+], ([Ca2+]e) a transient increase in intracellular [Ca2+] ([Ca2+]i) from a resting concentration of 60 to 160 nM. By day 3, however, when the experiments were made, [Ca2+]i no longer differed from control (pre-exposure to high Ca2+). The maximum charge movements in myoballs incubated in 1.8 and 4.8 mM were 16.4+/-1.05 (n=56) and 24.1+/-1.18 nC/microF (n=58; P<0.01), respectively, and peak Ca2+ currents at 20 mV were -10.8+/-1.09 (n=46) and -12.8+/-0.75 nA/microF (n=82), respectively (P>0.05). The tail current amplitudes in 1.8 and 4.8 mM Ca2+-treated cells were -9.3+/-1.23 and -14.2+/-1.37 nA/microF (P<0.05), respectively, at 10 mV and -15.3+/-1.76 and -23.6+/-2.02 nA/microF (P<0.05), respectively at 60 mV. The maximum binding of [3H]PN200-110 (a radioligand specific for L-type Ca2+ channel alpha1 subunits) in myoballs cultured in 1.8 and 4.8 mM [Ca2+]e was 1.34+/-0.23 and 3.2+/-0.63 pmol/mg protein (n=8; P<0.02), respectively. The increase in [Ca2+]i associated with the increases in charge movements, tail currents and the number of L-type Ca2+ channel alpha1 subunits in skeletal muscle cells cultured in high [Ca2+]e support the concept that extracellular Ca2+ influx modulates the expression of L-type Ca2+ channels in skeletal muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号