首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously suggested that insulin effects on 2-deoxyglucose (2-DOG) uptake in BC3H-1 myocytes are due to increases in de novo phospholipid synthesis, diacylglycerol generation, and protein kinase C activation. To test this hypothesis further, we examined the effects of phenylephrine, an agonist that increases diacylglycerol and protein kinase C activity through phospholipase C activation. As evidence for phospholipase activation in BC3H-1 myocytes, we found that phenylephrine increased acute 32PO4 incorporation into phosphatidic acid and phosphatidylinositol, generation of [3H]inositol phosphates from prelabeled [3H]inositol phospholipids, cytosolic Ca2+, and membrane-bound protein kinase C. Phenylephrine also provoked dose-related increases in [3H]2-DOG uptake that were similar in magnitude and time course to those induced by insulin. As with insulin, phenylephrine effects on 2-DOG uptake were not apparent in myocytes that were maximally stimulated with 12-O-tetradecanoylphorbol-13-acetate, a diacylglycerol analogue that activates protein kinase C. These findings support our hypothesis that diacylglycerol generation and protein kinase C activation may be important in the stimulation of glucose uptake by agents such as phenylephrine and insulin that activate the phosphoinositide cycle.  相似文献   

2.
Phorbol esters translocatively activate and subsequently downregulate protein kinase C and insulin-stimulated glucose uptake in rat adipocytes. This study examined the possibility that other translocative activators of protein kinase C in rat adipocytes, e.g., insulin and glucose, provoke similar downregulating effects. Pretreatment of rat adipocytes for 20-24 h with phorbol esters, 3 nM insulin, 20 mM glucose, or 3 nM insulin plus 20 mM glucose resulted in concomitant decreases in protein kinase C and insulin-stimulated (or phorbol ester-stimulated) [3H]-2-deoxyglucose uptake. Downregulating effects of glucose on protein kinase C and insulin-stimulated [3H]-2-deoxyglucose uptake were also evident within 30 min in adipocytes freshly incubated in medium containing 5-20 mM, rather than 0, glucose. These findings confirm that protein kinase C is required during insulin-stimulated glucose uptake and raise the possibility that downregulation of protein kinase C by continued translocative activation of the enzyme may contribute (along with other factors) to impaired responsiveness of the glucose transport system after prolonged insulin and/or glucose treatment.  相似文献   

3.
Denervated muscle is generally regarded as insulin resistant because the ability of insulin to stimulate glucose transport and glycogen synthesis is impaired. Previous studies indicate that insulin resistance in these muscles is likely due to a defect at a postreceptor site in the signaling pathway. Because glucose transport into cells has been reported to be linked to changes in diacylglycerol (DAG) and protein kinase C (PKC), we investigated the effect of denervation on the content and synthesis of DAG and the activity and distribution of PKC in the soleus muscle. The DAG content in muscles denervated for 24 h was 40% greater than in control muscles. This was associated with a two- to threefold increase in the percentage of total PKC activity that was membrane associated, with no significant change in total PKC activity, suggesting an increase in PKC activity in vivo. Studies of glucose disposition confirmed that the stimulation of glycogen synthesis by insulin and, to a lesser extent, 2-deoxyglucose uptake were impaired by denervation. However, the stimulation by insulin of glucose incorporation into DAG and other lipids was two- to threefold greater in denervated than in control muscles, and conversion of glucose to lactate and pyruvate and glucose oxidation to CO2 were unchanged. The results reveal a dichotomy in the effects of denervation on various actions of insulin, with both insulin resistance and hyperresponsiveness occurring in different pathways of glucose metabolism. They also reveal a potential mechanism for the elevation of muscle DAG after denervation. The results do not support a direct link between DAG-PKC and glucose transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Dehydroepiandrosterone (DHEA) has been shown to modulate glucose utilization in humans and animals, but the mechanisms of DHEA action have not been clarified. We show that DHEA induces a dose- and time-dependent increase in glucose transport rates in both 3T3-L1 and human adipocytes with maximal effects at 2 h. Exposure of adipocytes to DHEA does not result in changes of total GLUT4 and GLUT1 protein levels. However, it does result in significant increases of these glucose transporters in the plasma membrane. In 3T3-L1 adipocytes, DHEA increases tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and IRS-2 and stimulates IRS-1- and IRS-2-associated phosphatidylinositol (PI) 3-kinase activity with no effects on either insulin receptor or Akt phosphorylation. In addition, DHEA causes significant increases of cytosolic Ca(2+) concentrations and a parallel activation of protein kinase C (PKC)-beta(2). The effects of DHEA are abrogated by pretreatment of adipocytes with PI 3-kinase and phospholipase C gamma inhibitors, as well as by inhibitors of Ca(2+)-dependent PKC isoforms, including a specific PKC-beta inhibitor. Thus, DHEA increases glucose uptake in both human and 3T3-L1 adipocytes by stimulating GLUT4 and GLUT1 translocation to the plasma membrane. PI 3-kinase, phospholipase C gamma, and the conventional PKC-beta(2) seem to be involved in DHEA effects.  相似文献   

5.
Ruan H  Pownall HJ 《Diabetes》2001,50(2):233-240
Plasma nonesterified fatty acids (NEFA) at elevated concentrations antagonize insulin action and thus may play a critical role in the development of insulin resistance in type 2 diabetes. Plasma NEFA and glucose concentrations are regulated, in part, by their uptake into peripheral tissues. Cellular energy uptake can be increased by enhancing either energy transport or metabolism. The effects of overexpression of 1-acylglycerol-3-phosphate acyltransferase (AGAT)-alpha, which catalyzes the second step in triglyceride formation from glycerol-3-phosphate, was studied in 3T3-L1 adipocytes and C2C12 myotubes. In myotubes, overexpression of AGAT-alpha did not affect total [14C]glucose uptake in the presence or absence of insulin, whereas insulin-stimulated [14C]glucose conversion to cellular lipids increased significantly (33%, P = 0.004) with a concomitant decrease (-30%, P = 0.005) in glycogen formation. [3H]oleic acid (OA) uptake in AGAT-overexpressing myotubes increased 34% (P = 0.027) upon insulin stimulation. AGAT-alpha overexpression in adipocytes increased basal (130%, P = 0.04) and insulin-stimulated (27%, P = 0.01) [3H]OA uptake, increased insulin-stimulated glucose uptake (56%, P = 0.04) and conversion to cellular lipids (85%, P = 0.007), and suppressed basal (-44%, P = 0.01) and isoproterenol-stimulated OA release (-45%, P = 0.03) but not glycerol release. Our data indicate that an increase in metabolic flow to triglyceride synthesis can inhibit NEFA release, increase NEFA uptake, and promote insulin-mediated glucose utilization in 3T3-L1 adipocytes. In myotubes, however, AGAT-alpha overexpression does not increase basal cellular energy uptake, but can enhance NEFA uptake and divert glucose from glycogen synthesis to lipogenesis upon insulin stimulation.  相似文献   

6.
Sand rats (Psammomys obesus) maintained on a diet providing a free choice between laboratory chow and salt bush (Atriplex halimus) were classified into four groups differing in extent of the diabetic syndrome: A, normoglycemic-normoinsulinemic; B, normoglycemic-hyperinsulinemic; C, hyperglycemic-hyperinsulinemic; or D, hyperglycemic with reduced insulin levels. The metabolic pattern of these groups was characterized by measuring the uptake of fatty acid-labeled, very-low-density lipoprotein-borne triglycerides (VLDL-TG) and [3H]-2-deoxyglucose (2-DOG) into muscle and adipose tissues; incorporation of [14C]alanine into glycogen in vivo; gluconeogenesis from lactate, pyruvate, and alanine in hepatocytes; the effect of insulin on glycogen synthesis from glucose; the oxidation of albumin-bound [1-14C]palmitate and [14C]glucose in strips of soleus muscle; activities of muscle and adipose tissue lipoprotein lipase; and activities of rate-limiting enzymes of glycolysis, gluconeogenesis, and fatty acid synthesis in liver. In group A, uptake of VLDL-TG and activity of lipoprotein lipase were higher in adipose tissue and lower in muscle than in albino rats. In the liver, gluconeogenesis and the activity of phosphoenolpyruvate carboxykinase, as well as lipid synthesis and the activity of NADP-malate dehydrogenase, were higher than in albino rats, whereas activity of pyruvate kinase was lower. In group B, uptake of VLDL-TG by adipose tissue and muscle and lipoprotein lipase activity were similar or higher than in group A. Uptake of 2-DOG by muscle and adipose tissue and activity of liver phosphoenolpyruvate carboxykinase were lower than in group A. In groups C and D, uptake of VLDL-TG and lipoprotein lipase activity in muscle were further increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The relationship between diet and insulin sensitivity was examined in isolated soleus muscle from 10-wk-old lean Zucker rats. Rats were fed either a high fat or high carbohydrate diet that had 67% of calories as fat or carbohydrate, respectively, for 10 days. Plasma insulin but not plasma glucose concentrations were significantly elevated in high-fat-fed rats, indicating that a state of insulin resistance existed. The mechanisms responsible for the insulin resistance were studied by measuring insulin binding, 2-deoxyglucose uptake, and glucose metabolism in soleus muscle. The soleus muscle from the high-fat-fed rats bound significantly less insulin than high carbohydrate control rats under equilibrium binding conditions. The 35% decrease in insulin binding at maximal insulin concentrations resulted from a decrease in insulin receptor number but no change in receptor affinity. Maximal insulin-stimulated 2-deoxyglucose uptake was reduced in soleus muscle from high-fat-fed rats when compared with high carbohydrate controls. A decrease in postmembrane basal and insulin-stimulated glucose utilization was produced by high rat feeding and varied depending upon the pathway involved. An estimate of glycolysis (3H2O) formation from [5-3H]glucose) and glucose oxidation (14CO2 production from 14C-glucose) demonstrated a greater decrease in basal and insulin-stimulated utilization than in [5-3H]glucose conversion to [3H]glycogen. These results suggest that multiple sites are responsible for the observed insulin resistance in soleus muscle after high fat feeding.  相似文献   

8.
Glucocorticoids reportedly induce insulin resistance. In this study, we investigated the mechanism of glucocorticoid-induced insulin resistance using 3T3-L1 adipocytes in which treatment with dexamethasone has been shown to impair the insulin-induced increase in glucose uptake. In 3T3-L1 adipocytes treated with dexamethasone, the GLUT1 protein expression level was decreased by 30%, which possibly caused decreased basal glucose uptake. On the other hand, dexamethasone treatment did not alter the amount of GLUT4 protein in total cell lysates but decreased the insulin-stimulated GLUT4 translocation to the plasma membrane, which possibly caused decreased insulin-stimulated glucose uptake. Dexamethasone did not alter tyrosine phosphorylation of insulin receptors, and it significantly decreased protein expression and tyrosine phosphorylation of insulin receptor substrate (IRS)-1. Interestingly, however, protein expression and tyrosine phosphorylation of IRS-2 were increased. To investigate whether the reduced IRS-1 content is involved in insulin resistance, IRS-1 was overexpressed in dexamethasone-treated 3T3-L1 adipocytes using an adenovirus transfection system. Despite protein expression and phosphorylation levels of IRS-1 being normalized, insulin-induced 2-deoxy-D-[3H]glucose uptake impaired by dexamethasone showed no significant improvement. Subsequently, we examined the effect of dexamethasone on the glucose uptake increase induced by overexpression of GLUT2-tagged p110alpha, constitutively active Akt (myristoylated Akt), oxidative stress (30 mU glucose oxidase for 2 h), 2 mmol/l 5-aminoimidazole-4-carboxamide ribonucleoside for 30 min, and osmotic shock (600 mmol/l sorbitol for 30 min). Dexamethasone treatment clearly inhibited the increases in glucose uptake produced by these agents. Thus, in conclusion, the GLUT1 decrease may be involved in the dexamethasone-induced decrease in basal glucose transport activity, and the mechanism of dexamethasone-induced insulin resistance in glucose transport activity (rather than the inhibition of phosphatidylinositol 3-kinase activation resulting from a decreased IRS-1 content) is likely to underlie impaired glucose transporter regulation.  相似文献   

9.
10.
Several reports indicate that protein kinase C (PKC) plays a role in insulin-induced glucose transport in certain cells. The precise effects of insulin on specific PKC isoforms are as yet unknown. Utilizing primary cultures of rat skeletal muscle, we investigated the possibility that insulin may influence the activation state of PKC isoenzymes by inducing their translocation and tyrosine phosphorylation. This, in turn, may mediate insulin effects on glucose transport. We identified and determined the glucose transporters and PKC isoforms affected by insulin and 12-O-tetradecanoylphorbol-13-acetate (TPA). Insulin and TPA each caused an increase in glucose uptake. Insulin translocated GLUT3 and GLUT4 without affecting GLUT1. In contrast, TPA translocated GLUT1 and GLUT3 without affecting GLUT4. Insulin translocated and tyrosine phosphorylated and activated PKC-beta2 and -zeta; these effects were blocked by phosphatidylinositol 3-kinase (PI3K) inhibitors. TPA translocated and activated PKC-alpha, -beta2, and -delta; these effects were not noticeably affected by PI3K inhibitors. Furthermore, wortmannin significantly inhibited both insulin and TPA effects on GLUT translocation and glucose uptake. Finally, insulin-induced glucose transport was blocked by the specific PKC-beta2 inhibitor LY379196. These results indicate that specific PKC isoenzymes, when tyrosine-phosphorylated, are implicated in insulin-induced glucose transport in primary cultures of skeletal muscle.  相似文献   

11.
T S Lee  K Q Hu  T Chao  G L King 《Diabetes》1989,38(12):1643-1646
Retinal capillary pericyte is a cell type selectively lost in early diabetic retinopathy. The physiological function of pericytes is not yet clearly identified, although it probably has contractile properties. We determined the specific binding of endothelin 1, a 21-amino acid peptide with potent vasoconstrictive action, and the stimulation of diacylglycerol/protein kinase C (DAG/PKC) pathway in cultured retinal capillary pericytes by endothelin. A single specific binding site for 125I-labeled endothelin was identified, with an apparent Kd of 1.3 nM and a maximal binding capacity of approximately 1-2 x 10(5) sites/cell. Endothelin (100 nM) increased total cellular DAG content by 15% at 5 min and 24% at 10 min. When pericytes were labeled isotopically with [3H]glycerol, endothelin stimulated [3H]DAG formation by 100% at 10 min and 88% at 30 min. After 10 min of endothelin treatment, PKC activities were increased by 60 and 100% in the membranous and cytosolic pools, respectively. We conclude that bovine retinal capillary pericytes possess numerous high-affinity specific binding sites for endothelin that mediate the action of endothelin by the stimulation of the DAG/PKC pathway in pericytes. These findings suggest that endothelin is a regulator of the contractile properties of pericytes, which may be adversely affected in diabetic retinopathy.  相似文献   

12.
A L Jochen  P Berhanu 《Diabetes》1987,36(4):542-545
We recently demonstrated that chymotrypsin substrate analogues inhibit receptor-mediated insulin internalization in isolated rat adipocytes. In this study, the effect on glucose transport of inhibiting insulin internalization with these agents was examined. Glucose transport was assayed by measuring [3H]-2-deoxyglucose uptake, and internalized insulin was measured after rapidly dissociating surface-bound insulin with an acidic buffer. The chymotrypsin substrate analogue N-acetyl-Tyr ethyl ester inhibited insulin internalization by 85% while increasing surface-bound insulin by 80-110%. Under these conditions, ATP levels were minimally altered, and basal glucose transport was unchanged; however, insulin-stimulated glucose transport was decreased by 86%. The inhibition of insulin-stimulated glucose transport was not overcome by supramaximal concentrations (400 ng/ml) of insulin. When insulin internalization and insulin-stimulated glucose transport were measured in the presence of increasing concentrations of N-acetyl-Tyr ethyl ester (0.1-1 mM), a strong and highly significant correlation (r = .97, P less than .001) was found between inhibition of insulin internalization and inhibition of insulin-stimulated glucose uptake. Fragments of N-acetyl-Tyr ethyl ester that do not inhibit insulin internalization were also without effect on insulin-stimulated glucose transport. In addition to N-acetyl-Tyr ethyl ester, four other chymotrypsin substrate analogues that are effective inhibitors of insulin internalization also markedly inhibited insulin-stimulated glucose transport. These results indicate that insulin internalization and insulin-stimulated glucose transport share a common postbinding step in adipocytes and that this step is inhibitable by chymotrypsin substrate analogues.  相似文献   

13.
Skeletal muscle accounts for a large proportion of insulin-stimulated glucose utilization. It is generally regarded that much of the control over rates of uptake is posited within the proximal steps of delivery, transport, and phosphorylation of glucose, with glucose transport as the main locus of control. Whether insulin modulates the distribution of control across these steps and in what manner remains uncertain. The current study addressed this in vivo using dynamic positron emission tomography (PET) imaging of human muscle with sequential injections of three tracers ([(15)O]H(2)O, [(11)C]3-O-methyl glucose [3-OMG], and [(18)F]fluoro-deoxy glucose [FDG]) that enabled quantitative determinations of glucose delivery, transport, and its phosphorylation, respectively. Lean, healthy, research volunteers were studied during fasting conditions (n = 8) or during a euglycemic insulin infusion at 30 mU/min per m(2) (n = 8). PET images were coregistered with magnetic resonance imaging to contrast glucose kinetics in soleus, a highly oxidative muscle, with tibialis anterior, a less oxidative muscle. During fasting conditions, uptake of [(11)C]3-OMG was similar in soleus and tibialis anterior muscles, despite higher delivery to soleus (by 35%; P < 0.01). Uptake of [(18)F]FDG was also similar between muscle during fasting, and glucose transport was found to be the dominant locus of control (90%) for glucose uptake under this condition. Insulin increased uptake of [(11)C]3-OMG substantially and strongly stimulated the kinetics of bidirectional glucose transport. Uptake of [(11)C]3-OMG was higher in soleus than tibialis anterior muscle (by 22%; P < 0.01), a difference partially due to higher delivery, which was again found to be 35% higher to soleus (P < 0.01). The uptake of [(18)F]FDG was 65% greater in soleus compared with tibialis anterior muscle, a larger difference than for [(11)C]3-OMG (P < 0.01), indicating an added importance of glucose phosphorylation in defining insulin sensitivity. Analysis of the distribution of control during insulin-stimulated conditions revealed that most of the control was posited at delivery and transport and was equally divided between these steps. Thus, insulin evokes a broader distribution of control than during fasting conditions in governing glucose uptake into skeletal muscle. This redistribution of control is triggered by the robust stimulation of glucose transport, which in turn unmasks a greater dependence upon delivery and glucose phosphorylation.  相似文献   

14.
Hyperglycemia causes insulin-receptor kinase (IRK) resistance in fat cells. We characterized the mechanism of IRK inhibition and studied whether it is the consequence of a glucose-induced stimulation of protein kinase C (PKC). Fat cells were incubated for 1 or 12 h in culture medium containing either a low-(5-mM) or high- (25-mM) glucose concentration. IRK was isolated, insulin binding was determined, and autophosphorylation was studied in vitro with [gamma-32P]ATP or was determined by Western blotting with anti-phosphotyrosine antibodies. Substrate phosphorylation was investigated with the artificial substrate poly(Glu80-Tyr20). Partially purified insulin receptor from rat fat cells, which were cultured under high-glucose conditions for 1 or 12 h, showed no alteration of insulin binding but a reduced insulin effect on autophosphorylation (30 +/- 7% of control) and poly(Glu80-Tyr20) phosphorylation (55.5 +/- 9% of control). Lineweaver-Burk plots of the enzyme kinetics revealed, beside a reduced Vmax, and increased KM (from 30 microM to 80 microM) for ATP of IRK from high-glucose-treated cells. Because a similar inhibition pattern was earlier found for IRK from fat cells after acute phorbol ester stimulation, we investigated whether activation of PKC might be the cause of the reduced IRK activity. We isolated PKC from the cytosol and the membrane fraction of high- and low-glucose fat cells and determined the diacylglycerol- and phospholipid-stimulated PKC activity toward the substrate histone. There was no significant change of cytosolic PKC; however, membrane-associated PKC activity was increased in high-glucose-treated cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Because retinal pericytes have contractile properties and are affected by diabetes, we have studied the responsiveness of pericytes to ET-1, a potent vasoconstrictor, in the presence of various concentrations of glucose. Cultured calf retinal pericytes were exposed to glucose levels of 5.5 or 25 mM for up to 8 days. Radioreceptor studies that used [125I]ET-1 showed that pericytes contained high-affinity binding sites with Kd of 3 x 10(-10) M, and these binding affinities were unaffected by glucose concentration. Receptor number appears to be elevated, but this increase was NS. Responsiveness of pericytes to ET-1 was studied with respect to stimulation of DAG and IP3 levels and PKC activities. In contrast to receptor binding, exposure to 25 mM glucose for > 6 days blunted pericyte responsiveness to ET-1. The time course of ET-1 stimulation as measured by [3H]glycerol labeling, and IP3 level showed a 98% increase in [3H]DAG at 10 min and a fourfold increase for IP3, respectively. Cells exposed to 25 mM glucose only had a 32% increase for DAG, and no increase for IP3 was observed. Dose-response studies on the stimulation of [3H]DAG increase showed the range of ET-1's effect to be between 10(-9) and 10(-7) M. At maximum, cells exposed to 5.5 mM glucose had a 70% increase versus only a 30% increase in those exposed to 25 mM glucose. Similarly, ET-1 only increased the total DAG levels in pericytes exposed to 5.5 mM glucose by 41%. PKC activity also was measured because DAG is one of its cellular activators.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The uptake of 2-deoxy-D-[1-14C]-glucose, in the presence and absence of insulin, was measured in adipocytes from normal and streptozotocin-diabetic animals, over a wide temperature range (25-45 degrees C). Optimum temperatures for uptake in the presence of maximally stimulating insulin concentrations occurred near physiologic temperatures. Both high and low temperatures lead to progressive inhibition of insulin-sensitive uptake, whereas basal uptake was only marginally affected. It is possible that the apparent "resistance" to insulin action at high (febrile) temperatures may have pathologic significance. The magnitude of 2-deoxy-D-glucose uptake at all temperatures in the diabetic adipocytes was much reduced, both in the presence and absence of insulin, on a per cell basis, compared with cells from age-matched control animals. However, the fold stimulation of uptake caused by insulin at 35 degrees C is comparable in both normal and diabetic adipocytes (approximately 2-3-fold). Photomicrographs of adipocytes were used to estimate the cell diameters of the average normal (50 micron) and diabetic (37 micron) cells. The diabetic adipocytes are not "resistant" to insulin action in terms of 2-deoxy-D-glucose uptake since the basal and insulin-stimulated uptake magnitudes per micron2 membrane surface area are identical in both normal and diabetic cells (within experimental error). It is possible that the decreased diabetic cell size reflects the reduced antilipolytic effects of chronic hypoinsulinemia rather than any inherent resistance to insulin action in the cell itself.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Kwan EP  Xie L  Sheu L  Nolan CJ  Prentki M  Betz A  Brose N  Gaisano HY 《Diabetes》2006,55(5):1421-1429
Munc13-1 is a diacylglycerol (DAG) receptor that is essential for synaptic vesicle priming. We recently showed that Munc13-1 is expressed in rodent and human islet beta-cells and that its levels are reduced in islets of type 2 diabetic humans and rat models, suggesting that Munc13-1 deficiency contributes to the abnormal insulin secretion in diabetes. To unequivocally demonstrate the role of Munc13-1 in insulin secretion, we studied heterozygous Munc13-1 knockout mice (+/-), which exhibited elevated glucose levels during intraperitoneal glucose tolerance tests with corresponding lower serum insulin levels. Munc13-1(+/-) mice exhibited normal insulin tolerance, indicating that a primary islet beta-cell secretory defect is the major cause of their hyperglycemia. Consistently, glucose-stimulated insulin secretion was reduced 50% in isolated Munc13-1(+/-) islets and was only partially rescued by phorbol ester potentiation. The corresponding alterations were minor in mice expressing one allele of a Munc13-1 mutant variant, which does not bind DAG (H567K/+). Capacitance measurements of Munc13-1(+/-) and Munc13-1(H567k/+) islet beta-cells revealed defects in granule priming, including the initial size and refilling of the releasable pools, which become accentuated by phorbol ester potentiation. We conclude that Munc13-1 plays an important role in glucose-stimulated insulin secretion and that Munc13-1 deficiency in the pancreatic islets as occurs in diabetes can reduce insulin secretion sufficient to cause abnormal glucose homeostasis.  相似文献   

18.
A Shisheva  D Gefel  Y Shechter 《Diabetes》1992,41(8):982-988
The effects of Zn2+ in mimicking insulin in vivo and in vitro are further characterized. Like insulin, Zn2+ stimulated the conversion of [U-14C]-, [1-14C]-, and [6-14C]glucose to lipids in rat adipocytes. Maximum stimulation of lipogenesis was 55-80% of maximum insulin response after preincubation (30 min at 37 degrees C) of adipocytes with ZnCl2 (0.4 mM). Under these conditions, the half-maximum effect was achieved at 0.17 +/- 0.02 mM of ZnCl2. Similarly, an insulinlike effect of Zn2+ was observed on the oxidation of glucose by both pathways, glycolytic and hexose monophosphate shunt. In contrast, unlike insulin, Zn2+ did not inhibit lipolysis but rather exhibited a slight lipolytic activity. Also, the effect of Zn2+ on hexose influx did not exceed 14 +/- 3% that of insulin. The stimulatory effects of Zn2+ were not related to generation of H2O2. Catalase (100 micrograms/ml) did not inhibit Zn(2+)-stimulated glucose oxidation and its incorporation into lipids. Zn2+ had an additive effect on either insulin- or vanadate-stimulated conversion of [1-14C]glucose to fat, and together, the effect was approximately 140% of the maximum rate of lipogenesis. Chelation of intracellular Zn2+ by the cell-permeable chelator N,N,N',N'-tetrakis (2-pyridylmethyl)ethylenediamine did not significantly affect the ability of insulin to stimulate lipogenesis. Adipocytes derived from STZ rats were largely refractory to the modulating action of insulin. In contrast, the effect of Zn2+ on lipogenesis in these cells was more pronounced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
T S Gansler  R M Smith  L Jarett 《Diabetes》1986,35(4):392-397
Bacitracin is known to inhibit proteolytic degradation of insulin and several other peptide hormones. Previous work with isolated rat adipocytes showed that bacitracin blocked insulin degradation by the plasma membrane and, even in the absence of detectable insulin degradation, bacitracin increased insulin binding by decreasing the rate of insulin dissociation. The present study examined the effects of bacitracin on insulin binding and degradation and on levels of intracellular insulin in a variety of cell types. Bacitracin inhibited insulin degradation in all cell types. Maximal inhibition varied from 70% (H4IIEC3 hepatoma cells) to 95% (rat adipocytes); concentrations giving half-maximal inhibition varied from 25 microM (3T3-A31 fibroblasts) to 250 microM (H4IIEC3). Dose-response curves showed three distinctive effects on insulin binding: dose-dependent stimulation (rat adipocytes), a biphasic curve with slight stimulation at low doses and inhibition at concentrations greater than 50 microM (human fibroblasts, H4IIEC3, and 3T3-L1 adipocytes), or dose-dependent inhibition of binding (3T3-L1 preadipocytes and 3T3-A31 fibroblasts). The intracellular accumulation of insulin rat adipocytes was not affected by bacitracin but was decreased in all other cell types. These data illustrated type-specific variability in the effects of bacitracin on insulin processing resulting from cellular heterogeneity either in processing insulin or in response to bacitracin, or both, and suggest that insulin binding studies performed in the presence of bacitracin can be biased.  相似文献   

20.
T P Thomas  D B Martin  S B Pek 《Diabetes》1991,40(5):621-627
The effect of activators of protein kinase C (PKC) on cytosolic concentration of free Ca2+ [( Ca2+]i) was assessed in insulin-secreting islet cell line HIT T-15. Dioctanoylglycerol (DiC8) and 12-O-tetradecanoylphorbol-13-acetate (TPA) evoked activation of PKC. Basal [Ca2+]i was 65-160 nM. DiC8 induced triphasic increases in [Ca2+]i; phase 2 was the most prominent and consistent one. With 25-150 microM DiC8, [Ca2+]i increased in a dose-dependent manner during phase 2; half-maximal stimulatory dose was 53 microM. TPA did not evoke any increase in [Ca2+]i. Staurosporine, sphingosine, and H7, which are inhibitors of PKC, did not block DiC8-induced rise in [Ca2+]i. DiC8-induced rise in [Ca2+]i was also seen in cells that had been depleted of PKC by prior exposure to TPA. DiC8-induced rise in [Ca2+]i still occurred in the presence of the Ca(2+)-channel blocker verapamil or when the extracellular Ca2+ had been reduced from 2.5 mM to 30 nM by EGTA. Three immediate metabolites of DiC8, monooctanoylglycerol, octanoate, and glycerol, did not evoke any change in [Ca2+]i. Monooleoylglycerol and R59022, which induce increases in endogenous diacylglycerol (DAG) by inhibiting DAG kinase, evoked increases in [Ca2+]i. DiC8 did not cause any change in inositol 1,4,5-trisphosphate levels. DiC8 evoked biphasic increases in insulin release; the second-phase increase in [Ca2+]i preceded the late phase of insulin secretion. Exogenous DAGs should be used with caution in assessing PKC function. Changes in the generation in DAGs must be included among the mechanisms by which Ca2+ homeostasis is regulated in islet cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号