首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
AMP-activated protein kinase (AMPK) activation by AICAR (5-amino-imidazole carboxamide riboside) is correlated with increased glucose transport in rodent skeletal muscle via an insulin-independent pathway. We determined in vitro effects of insulin and/or AICAR exposure on glucose transport and cell-surface GLUT4 content in skeletal muscle from nondiabetic men and men with type 2 diabetes. AICAR increased glucose transport in a dose-dependent manner in healthy subjects. Insulin and AICAR increased glucose transport and cell-surface GLUT4 content to a similar extent in control subjects. In contrast, insulin- and AICAR-stimulated responses on glucose transport and cell-surface GLUT4 content were impaired in subjects with type 2 diabetes. Importantly, exposure of type 2 diabetic skeletal muscle to a combination of insulin and AICAR increased glucose transport and cell-surface GLUT4 content to levels achieved in control subjects. AICAR increased AMPK and acetyl-CoA carboxylase phosphorylation to a similar extent in skeletal muscle from subjects with type 2 diabetes and nondiabetic subjects. Our studies highlight the potential importance of AMPK-dependent pathways in the regulation of GLUT4 and glucose transport activity in insulin-resistant skeletal muscle. Activation of AMPK is an attractive strategy to enhance glucose transport through increased cell surface GLUT4 content in insulin-resistant skeletal muscle.  相似文献   

2.
Nelson BA  Robinson KA  Buse MG 《Diabetes》2000,49(6):981-991
Sustained hyperglycemia induces insulin resistance, but the mechanism is still incompletely understood. Glucosamine (GlcN) has been extensively used to model the role of the hexosamine synthesis pathway (HSP) in glucose-induced insulin resistance. 3T3-L1 adipocytes were preincubated for 18 h in media +/- 0.6 nmol/l insulin containing either low glucose (5 mmol/l), low glucose plus GlcN (0.1-2.5 mmol/l), or high glucose (25 mmol/l). Basal and acute insulin-stimulated (100 nmol/l) glucose transport was measured after re-equilibration in serum and insulin-free media. Preincubation with high glucose or GlcN (1-2.5 mmol/l) inhibited basal and acute insulin-stimulated glucose transport only if insulin was present during preincubation. However, only preincubation with GlcN plus insulin inhibited insulin-stimulated GLUT4 translocation. GLUT4 and GLUT1 protein expression were not affected. GlcN (2.5 mmol/l) increased cellular UDP-N-acetylhexosamines (UDP-HexNAc) by 400 and 900% without or with insulin, respectively. High glucose plus insulin increased UDP-HexNAc by 30%. GlcN depleted UDP-hexoses, whereas high glucose plus insulin increased them. Preincubation with 0.5 mmol/l GlcN plus insulin maximally increased UDP-HexNAc without affecting insulin-stimulated or basal glucose transport. GlcN plus insulin (but not high glucose plus insulin) caused marked GlcN dose-dependent accumulation of GlcN-6-phosphate, which correlated with insulin resistance of glucose transport (r = 0.935). GlcN plus insulin (but not high glucose plus insulin) decreased ATP (10-30%) and UTP (>50%). GTP was not measured, but GDP increased. Neither high glucose plus insulin nor GlcN plus insulin prevented acute insulin stimulation (approximately 20-fold) of insulin receptor substrate 1-associated phosphatidylinositol (PI)-3 kinase. We have come to the following conclusions. 1) Chronic exposure to high glucose or GlcN in the presence of low insulin caused insulin resistance of glucose transport by different mechanisms. 2) GlcN inhibited GLUT4 translocation, whereas high glucose impaired GLUT4 "intrinsic activity" or membrane intercalation. 3) Both agents may act distally to PI-3 kinase. 4) GlcN has metabolic effects not shared by high glucose. GlcN may not model HSP appropriately, at least in 3T3-L1 adipocytes.  相似文献   

3.
Glucose transport in skeletal muscle is stimulated by two distinct stimuli, insulin and exercise. The mechanism by which exercise stimulates glucose transport is not known, although it is distinct from the insulin-mediated pathway. Recently, it has been shown that AMP-activated protein kinase (AMPK) is activated by exercise in skeletal muscle, whereas pharmacological activation of AMPK by 5-amino-4-imidazolecarboxamide riboside (AICAR) leads to increased glucose transport. It has been postulated, therefore, that AMPK may be the link between exercise and glucose transport. To address this, we have examined the signaling pathway involved in the stimulation of glucose uptake after activation of AMPK. Here we show that activation of AMPK by AICAR in rat muscle and mouse H-2Kb muscle cells activates glucose transport approximately twofold. AMPK in H-2Kb cells is also activated by hyperosmotic stress and the mitochondrial uncoupling agent, dinitrophenol, both of which lead to increased glucose transport. In contrast, insulin, which activates glucose transport two- to-threefold in both rat muscle and H-2Kb cells, has no effect on AMPK activity. A previous study has shown that AMPK phosphorylates and activates endothelial nitric oxide synthase (NOS). We show here that NOS activity in H-2Kb cells is activated after stimulation of AMPK by AICAR. Treatment of H-2Kb cells or rat muscle with NOS inhibitors completely blocks the increase in glucose transport after activation of AMPK. In addition, an inhibitor of guanylate cyclase also blocks activation of glucose transport by AICAR in H-2Kb cells. These results indicate that activation of AMPK in muscle cells stimulates glucose transport by activation of NOS coupled to downstream signaling components, including cyclic GMP.  相似文献   

4.
Berberine has been shown to have antidiabetic properties, although its mode of action is not known. Here, we have investigated the metabolic effects of berberine in two animal models of insulin resistance and in insulin-responsive cell lines. Berberine reduced body weight and caused a significant improvement in glucose tolerance without altering food intake in db/db mice. Similarly, berberine reduced body weight and plasma triglycerides and improved insulin action in high-fat-fed Wistar rats. Berberine downregulated the expression of genes involved in lipogenesis and upregulated those involved in energy expenditure in adipose tissue and muscle. Berberine treatment resulted in increased AMP-activated protein kinase (AMPK) activity in 3T3-L1 adipocytes and L6 myotubes, increased GLUT4 translocation in L6 cells in a phosphatidylinositol 3' kinase-independent manner, and reduced lipid accumulation in 3T3-L1 adipocytes. These findings suggest that berberine displays beneficial effects in the treatment of diabetes and obesity at least in part via stimulation of AMPK activity.  相似文献   

5.
Recent studies have demonstrated that chronic administration of AICAR (5-aminoimidazole-4-carboxamide- 1-beta-D-ribofuranoside), an activator of the AMP-activated protein kinase, increases hexokinase activity and the contents of total GLUT4 and glycogen in rat skeletal muscles. To explore whether AICAR also affects insulin-stimulated glucose transport and GLUT4 cell surface content, Wistar rats were subcutaneously injected with AICAR for 5 days in succession (1 mg/g body wt). Maximally insulin-stimulated (60 nmol/l) glucose uptake was markedly increased in epitrochlearis (EPI) muscle (average 63%, P < 0.001, n = 18-19) and in extensor digitorum longus muscle (average 26%, P < 0.001, n = 26-30). In contrast, administration of AICAR did not maximally influence insulin-stimulated glucose transport in soleus muscle. Studies of EPI muscle with the 4,4'-O-[2-[2-[2-[2-[2-[6-(biotinylamino)hexanoyl]amino]ethoxy]ethoxy] ethoxy]-4-(1-azi-2,2,2,-trifluoroethyl)benzoyl]amino-1,3-propanediyl]bis-D-mannose photolabeling technique showed a concomitant increase (average 68%, P < 0.02) in cell surface GLUT4 content after insulin exposure in AICAR-injected rats when compared with controls. In conclusion, 5 days of AICAR administration induces a pronounced fiber type-specific increase in insulin-stimulated glucose uptake and GLUT4 cell surface content in rat skeletal muscle with the greatest effect observed on white fast-twitch glycolytic muscles (EPI). These results are comparable with the effects of chronic exercise training, and it brings the AMP-activated protein kinase into focus as a new interesting target for future pharmacological intervention in insulin-resistant conditions.  相似文献   

6.
Insulin and contraction increase GLUT4 translocation in skeletal muscle via distinct signaling mechanisms. Akt substrate of 160 kDa (AS160) mediates insulin-stimulated GLUT4 translocation in L6 myotubes, presumably through activation of Akt. Using in vivo, in vitro, and in situ methods, insulin, contraction, and the AMP-activated protein kinase (AMPK) activator AICAR all increased AS160 phosphorylation in mouse skeletal muscle. Insulin-stimulated AS160 phosphorylation was fully blunted by wortmannin in vitro and in Akt2 knockout (KO) mice in vivo. In contrast, contraction-stimulated AS160 phosphorylation was only partially decreased by wortmannin and unaffected in Akt2 KO mice, suggesting additional regulatory mechanisms. To determine if AMPK mediates AS160 signaling, we used AMPK alpha2-inactive (alpha2i) transgenic mice. AICAR-stimulated AS160 phosphorylation was fully inhibited, whereas contraction-stimulated AS160 phosphorylation was partially reduced in the AMPK alpha2i transgenic mice. Combined AMPK alpha2 and Akt inhibition by wortmannin treatment of AMPK alpha2 transgenic mice did not fully ablate contraction-stimulated AS160 phosphorylation. Maximal insulin, together with either AICAR or contraction, increased AS160 phosphorylation in an additive manner. In conclusion, AS160 may be a point of convergence linking insulin, contraction, and AICAR signaling. While Akt and AMPK alpha2 activities are essential for AS160 phosphorylation by insulin and AICAR, respectively, neither kinase is indispensable for the entire effects of contraction on AS160 phosphorylation.  相似文献   

7.
Glucocorticoids reportedly induce insulin resistance. In this study, we investigated the mechanism of glucocorticoid-induced insulin resistance using 3T3-L1 adipocytes in which treatment with dexamethasone has been shown to impair the insulin-induced increase in glucose uptake. In 3T3-L1 adipocytes treated with dexamethasone, the GLUT1 protein expression level was decreased by 30%, which possibly caused decreased basal glucose uptake. On the other hand, dexamethasone treatment did not alter the amount of GLUT4 protein in total cell lysates but decreased the insulin-stimulated GLUT4 translocation to the plasma membrane, which possibly caused decreased insulin-stimulated glucose uptake. Dexamethasone did not alter tyrosine phosphorylation of insulin receptors, and it significantly decreased protein expression and tyrosine phosphorylation of insulin receptor substrate (IRS)-1. Interestingly, however, protein expression and tyrosine phosphorylation of IRS-2 were increased. To investigate whether the reduced IRS-1 content is involved in insulin resistance, IRS-1 was overexpressed in dexamethasone-treated 3T3-L1 adipocytes using an adenovirus transfection system. Despite protein expression and phosphorylation levels of IRS-1 being normalized, insulin-induced 2-deoxy-D-[3H]glucose uptake impaired by dexamethasone showed no significant improvement. Subsequently, we examined the effect of dexamethasone on the glucose uptake increase induced by overexpression of GLUT2-tagged p110alpha, constitutively active Akt (myristoylated Akt), oxidative stress (30 mU glucose oxidase for 2 h), 2 mmol/l 5-aminoimidazole-4-carboxamide ribonucleoside for 30 min, and osmotic shock (600 mmol/l sorbitol for 30 min). Dexamethasone treatment clearly inhibited the increases in glucose uptake produced by these agents. Thus, in conclusion, the GLUT1 decrease may be involved in the dexamethasone-induced decrease in basal glucose transport activity, and the mechanism of dexamethasone-induced insulin resistance in glucose transport activity (rather than the inhibition of phosphatidylinositol 3-kinase activation resulting from a decreased IRS-1 content) is likely to underlie impaired glucose transporter regulation.  相似文献   

8.
Activation of AMP-activated protein kinase (AMPK) with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofurano-side (AICAR) increases glucose transport in skeletal muscle via an insulin-independent pathway. To examine the effects of AMPK activation on skeletal muscle glucose transport activity and whole-body carbohydrate and lipid metabolism in an insulin-resistant rat model, awake obese Zuckerfa/fa rats (n = 26) and their lean (n = 23) littermates were infused for 90 min with AICAR, insulin, or saline. The insulin infusion rate (4 mU.kg(-1).min(-1)) was selected to match the glucose requirements during AICAR (bolus, 100 mg/kg; constant, 10 mg.kg(-1).min(-1)) isoglycemic clamps in the lean rats. The effects of these identical AICAR and insulin infusion rates were then examined in the obese Zucker rats. AICAR infusion increased muscle AMPK activity more than fivefold (P < 0.01 vs. control and insulin) in both lean and obese rats. Plasma triglycerides, fatty acid concentrations, and glycerol turnover, as assessed by [2-13C]glycerol, were all decreased in both lean and obese rats infused with AICAR (P < 0.05 vs. basal), whereas insulin had no effect on these parameters in the obese rats. Endogenous glucose production rates, measured by [U-13C]glucose, were suppressed by >50% during AICAR and insulin infusions in both lean and obese rats (P < 0.05 vs. basal). In lean rats, rates of whole-body glucose disposal increased by more than two-fold (P < 0.05 vs. basal) during both AICAR and insulin infusion; [3H]2-deoxy-D-glucose transport activity increased to a similar extent, by >2.2-fold (both P < 0.05 vs. control), in both soleus and red gastrocnemius muscles of lean rats infused with either AICAR or insulin. In the obese Zucker rats, neither AICAR nor insulin stimulated whole-body glucose disposal or soleus muscle glucose transport activity. However, AICAR increased glucose transport activity by approximately 2.4-fold (P < 0.05 vs. control) in the red gastrocnemius from obese rats, whereas insulin had no effect. In summary, acute infusion of AICAR in an insulin-resistant rat model activates skeletal muscle AMPK and increases glucose transport activity in red gastrocnemius muscle while suppressing endogenous glucose production and lipolysis. Because type 2 diabetes is characterized by diminished rates of insulin-stimulated glucose uptake as well as increased basal rates of endogenous glucose production and lipolysis, these results suggest that AICAR-related compounds may represent a new class of antidiabetic agents.  相似文献   

9.
Spurlin BA  Park SY  Nevins AK  Kim JK  Thurmond DC 《Diabetes》2004,53(9):2223-2231
Insulin-stimulated translocation of GLUT4 vesicles from an intracellular compartment to the plasma membrane in 3T3L1 adipocytes is mediated through a syntaxin 4 (Syn4)- and Munc18c-dependent mechanism. To investigate the impact of increasing Syn4 protein abundance on glucose homeostasis in vivo, we engineered tetracycline-repressible transgenic mice to overexpress Syn4 by fivefold in skeletal muscle and pancreas and threefold in adipose tissue. Increases in Syn4 caused increases in Munc18c protein, indicating that Syn4 regulates Munc18c expression in vivo. An important finding was that female Syn4 transgenic mice exhibited an increased rate of glucose clearance during glucose tolerance tests that was repressible by the administration of tetracycline. Insulin-stimulated glucose uptake in skeletal muscle was increased by twofold in Syn4 transgenic mice compared with wild-type mice as assessed by hyperinsulinemic-euglycemic clamp analysis, consistent with a twofold increase in insulin-stimulated GLUT4 translocation in skeletal muscle. Hepatic insulin action was unaffected. Moreover, insulin content and glucose-stimulated insulin secretion by islets isolated from Syn4 transgenic mice did not differ from that of wild-type mice. In sum, these data suggest that increasing the number of Syn4-Munc18c "fusion sites" at the plasma membrane of skeletal muscle increases the amount of GLUT4 available to increase the overall rate of insulin-mediated glucose uptake in vivo.  相似文献   

10.
Cell surface GLUT4 levels in skeletal muscle from nine type 2 diabetic subjects and nine healthy control subjects have been assessed by a new technique that involves the use of a biotinylated photo-affinity label. A profound impairment in GLUT4 translocation to the skeletal muscle cell surface in response to insulin was observed in type 2 diabetic patients. Levels of insulin-stimulated cell surface GLUT4 above basal in type 2 diabetic patients were only approximately 10% of those observed in healthy subjects. The magnitude of the defect in GLUT4 translocation in type 2 diabetic patients was greater than that observed for glucose transport activity, which was approximately 50% of that in healthy subjects. Reduced GLUT4 translocation is therefore a major contributor to the impaired glucose transport activity in skeletal muscle from type 2 diabetic subjects. When a marked impairment in GLUT4 translocation occurs, the contribution of other transporters to transport activity becomes apparent. In response to hypoxia, marked reductions in skeletal muscle cell surface GLUT4 levels were also observed in type 2 diabetic patients. Therefore, a defect in a common late stage in signal transduction and/or a direct impairment in the GLUT4 translocation process accounts for reduced glucose transport in type 2 diabetic patients.  相似文献   

11.
P Mayor  L Maianu  W T Garvey 《Diabetes》1992,41(3):274-285
We previously reported that, in primary cultured adipocytes, chronic exposure to glucose plus insulin impairs the insulin-responsive glucose transport system. In this study, we examined regulation of glucose transport in BC3H1 myocytes as a model for muscle and found important differences between BC3H1 cells and adipocytes. In myocytes, chronic glucose exposure per se (25 mM) decreased basal glucose transport activity by 78% and insulin's acute ability to maximally stimulate transport by 68% (ED50 approximately 2.5 mM; T1/2 approximately 4 h). D-Mannose and 3-O-methyl-glucose diminished transport rates with approximately 100 and 50% of the potency of D-glucose, respectively, whereas L-glucose, D-fructose, and D-galactose were inactive. Chronic glucose exposure also reduced cell surface insulin binding by 30% via an apparent decrease in receptor affinity, and this effect was associated with a comparable rightward shift in the insulin-glucose transport dose-response curve. In other studies, persistent stimulation with 15 nM insulin also decreased maximally stimulated glucose transport activity, which was independent and additive to the regulatory effect of glucose. Moreover, glucose and insulin-induced insulin resistance via different mechanisms. Glucose (25 mM) reduced the number of cellular glucose transporter proteins by 84% and levels of GLUT1 transporter mRNA by 50% (whether normalized to total RNA or CHO-B mRNA). In contrast, chronic insulin exposure led to a 2.1-fold increase in GLUT1 mRNA but did not alter cellular levels of transporter protein. Cotreatment with glucose prevented the insulin-induced rise in GLUT1 mRNA. BC3H1 cells did not express GLUT4 mRNA that encodes the major transporter isoform in skeletal muscle. In conclusion, in BC3H1 myocytes 1) glucose diminished insulin sensitivity by decreasing insulin receptor binding affinity and decreased basal and maximally insulin-stimulated glucose transport rates via cellular depletion of glucose transporters and suppression of GLUT1 mRNA; 2) chronic insulin exposure exerted an independent and additive effect to reduce maximal transport activity; however, insulin increased levels of GLUT1 mRNA and did not alter the cellular content of glucose transporters; and 3) although BC3H1 cells are commonly used as a model for skeletal muscle, studies examining glucose transport should be interpreted cautiously due to the absence of GLUT4 expression. Nevertheless, the data generally support the idea that, in non-insulin-dependent diabetes mellitus, hyperglycemia and hyperinsulinemia can induce or exacerbate insulin resistance in target tissues.  相似文献   

12.
Although interleukin-6 (IL-6) has been associated with insulin resistance, little is known regarding the effects of IL-6 on insulin sensitivity in humans in vivo. Here, we show that IL-6 infusion increases glucose disposal without affecting the complete suppression of endogenous glucose production during a hyperinsulinemic-euglycemic clamp in healthy humans. Because skeletal muscle accounts for most of the insulin-stimulated glucose disposal in vivo, we examined the mechanism(s) by which IL-6 may affect muscle metabolism using L6 myotubes. IL-6 treatment increased fatty acid oxidation, basal and insulin-stimulated glucose uptake, and translocation of GLUT4 to the plasma membrane. Furthermore, IL-6 rapidly and markedly increased AMP-activated protein kinase (AMPK). To determine whether the activation of AMPK mediated cellular metabolic events, we conducted experiments using L6 myotubes infected with dominant-negative AMPK alpha-subunit. The effects described above were abrogated in AMPK dominant-negative-infected cells. Our results demonstrate that acute IL-6 treatment enhances insulin-stimulated glucose disposal in humans in vivo, while the effects of IL-6 on glucose and fatty acid metabolism in vitro appear to be mediated by AMPK.  相似文献   

13.
Liu LB  Omata W  Kojima I  Shibata H 《Diabetes》2007,56(8):1977-1985
The small ubiquitin-related modifier (SUMO) conjugating enzyme Ubc9 has been shown to upregulate GLUT4 in L6 myoblast cells, although the mechanism of action has remained undefined. Here we investigated the physiological significance of Ubc9 in GLUT4 turnover and subcellular targeting by adenovirus vector-mediated overexpression and by small interfering RNA (siRNA)-mediated gene silencing of Ubc9 in 3T3-L1 adipocytes. Overexpression of Ubc9 resulted in an inhibition of GLUT4 degradation and promoted its targeting to the unique insulin-responsive GLUT4 storage compartment (GSC), leading to an increase in GLUT4 amount and insulin-responsive glucose transport in 3T3-L1 adipocytes. Overexpression of Ubc9 also antagonized GLUT4 downregulation and its selective loss in GSC induced by long-term insulin stimulation. By contrast, siRNA-mediated depletion of Ubc9 accelerated GLUT4 degradation and decreased the amount of the transporter, concurrent with its selective loss in GSC, which resulted in attenuated insulin-responsive glucose transport. Intriguingly, overexpression of the catalytically inactive mutant Ubc9-C93A produced effects indistinguishable from those with wild-type Ubc9, suggesting that Ubc9 regulates GLUT4 turnover and targeting to GSC by a mechanism independent of its catalytic activity. Thus, Ubc9 is a pivotal regulator of the insulin sensitivity of glucose transport in adipocytes.  相似文献   

14.
A recent study by C.F. Burant et al. (13) demonstrates that GLUT5 is a high-affinity fructose transporter with a much lower capacity to transport glucose. To characterize the potential role of GLUT5 in fructose and glucose transport in insulin-sensitive tissues, we investigated the distribution and insulin-stimulated translocation of the GLUT5 protein in human tissues by immunoblotting with an antibody to the COOH-terminus of the human GLUT5 sequence. GLUT5 was detected in postnuclear membranes from the small intestine, kidney, heart, four different skeletal muscle groups, and the brain, and in plasma membranes from adipocytes. Cytochalasin-B photolabeled a 53,000-M(r) protein in small intestine membranes that was immunoprecipitated by the GLUT5 antibody; labeling was inhibited by D- but not L-glucose. N-glycanase treatment resulted in a band of 45,000 M(r) in all tissues. Plasma membranes were prepared from isolated adipocytes from 5 nonobese and 4 obese subjects. Incubation of adipocytes from either group with 7 nM insulin did not recruit GLUT5 to the plasma membrane, in spite of a 54% insulin-stimulated increase in GLUT4 in nonobese subjects. Thus, GLUT5 appears to be a constitutive sugar transporter that is expressed in many tissues. Further studies are needed to define its overall contribution to fructose and glucose transport in insulin-responsive tissues and brain.  相似文献   

15.
Insulin stimulates the disposal of blood glucose into skeletal muscle and adipose tissues by the translocation of GLUT4 from intracellular pools to the plasma membrane, and consequently the concentration of blood glucose levels decreases rapidly in vivo. Phosphatidylinositol (PI) 3-kinase and Akt play a pivotal role in the stimulation of glucose transport by insulin, but detailed mechanisms are unknown. We and others reported that not only insulin but also platelet-derived growth factor (PDGF) and epidermal growth factor facilitate glucose uptake through GLUT4 translocation by activation of PI 3-kinase and Akt in cultured cells. However, opposite results were also reported. We generated transgenic mice that specifically express the PDGF receptor in skeletal muscle. In these mice, PDGF stimulated glucose transport into skeletal muscle in vitro and in vivo. Thus, PDGF apparently shares with insulin some of the signaling molecules needed for the stimulation of glucose transport. The degree of glucose uptake in vivo reached approximately 60% of that by insulin injection in skeletal muscle, but blood glucose levels were not decreased by PDGF in these mice. Therefore, PDGF-induced disposal of blood glucose into skeletal muscle is insufficient for rapid decrease of blood glucose levels.  相似文献   

16.
HIV protease inhibitors (HPIs) are potent antiretroviral agents clinically used in the management of HIV infection. Recently, HPI therapy has been linked to the development of a metabolic syndrome in which adipocyte insulin resistance appears to play a major role. In this study, we assessed the effect of nelfinavir on glucose uptake and lipolysis in differentiated 3T3-L1 adipocytes. An 18-h exposure to nelfinavir resulted in an impaired insulin-stimulated glucose uptake and activation of basal lipolysis. Impaired insulin stimulation of glucose up take occurred at nelfinavir concentrations >10 micromol/l (EC(50) = 20 micromol/l) and could be attributed to impaired GLUT4 translocation. Basal glycerol and free fatty acid (FFA) release were significantly enhanced with as low as 5 micromol/l nelfinavir, displaying fivefold stimulation of FFA release at 10 micromol/l. Yet, the antilipolytic action of insulin was preserved at this concentration. Potential underlying mechanisms for these metabolic effects included both impaired insulin stimulation of protein kinase B Ser 473 phosphorylation with preserved insulin receptor substrate tyrosine phosphorylation and decreased expression of the lipolysis regulator perilipin. Troglitazone pre- and cotreatment with nelfinavir partly protected the cells from the increase in basal lipolysis, but it had no effect on the impairment in insulin-stimulated glucose uptake induced by this HPI. This study demonstrates that nelfinavir induces insulin resistance and activates basal lipolysis in differentiated 3T3-L1 adipocytes, providing potential cellular mechanisms that may contribute to altered adipocyte metabolism in treated HIV patients.  相似文献   

17.
AMP-activated protein kinase (AMPK) is a heterotrimeric protein that regulates glucose transport mediated by cellular stress or pharmacological agonists such as 5-aminoimidazole-4-carboxamide 1 beta-d-ribonucleoside (AICAR). AS160, a Rab GTPase-activating protein, provides a mechanism linking AMPK signaling to glucose uptake. We show that AICAR increases AMPK, acetyl-CoA carboxylase, and AS160 phosphorylation by insulin-independent mechanisms in isolated skeletal muscle. Recombinant AMPK heterotrimeric complexes (alpha1beta1gamma1 and alpha2beta2gamma1) phosphorylate AS160 in a cell-free assay. In mice deficient in AMPK signaling (alpha2 AMPK knockout [KO], alpha2 AMPK kinase dead [KD], and gamma3 AMPK KO), AICAR effects on AS160 phosphorylation were severely blunted, highlighting that complexes containing alpha2 and gamma3 are necessary for AICAR-stimulated AS160 phosphorylation in intact skeletal muscle. Contraction-mediated AS160 phosphorylation was also impaired in alpha2 AMPK KO and KD but not gamma3 AMPK KO mice. Our results implicate AS160 as a downstream target of AMPK.  相似文献   

18.
In 3T3-L1 adipocytes, insulin-stimulated GLUT4 translocation requires phosphorylation of the protein designated Akt substrate of 160 kDa (AS160). Both insulin and contractions activate Akt in skeletal muscle. Therefore, we assessed the effects in skeletal muscle of each stimulus on phosphorylation of proteins, including AS160, on the Akt phosphomotif. Isolated rat epitrochlearis muscles were incubated with insulin (for time course and dose response), stimulated to contract, or incubated with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) and used to assess the following: serine-phosphorylation of Akt (P-Akt), immunoreactivity with an antibody recognizing the Akt phosphomotif (alpha-phospho-[Ser/Thr] Akt substrate [PAS]), and PAS immunoreactivity of samples immunoprecipitated with anti-AS160. P-Akt peaked at 5 min of insulin, and PAS immunoreactivity subsequently peaked for proteins of 250 kDa (10 min) and 160 kDa (15 min). P-Akt, PAS-160, and PAS-250 increased significantly with 0.6 nmol/l insulin. Contractile activity led to increased P-Akt and PAS immunoreactivity of proteins of 160 and 250 kDa. The 160-kDa protein was confirmed to be AS160 based on elevated PAS immunoreactivity in AS160 immunoprecipitates. Wortmannin inhibited insulin (120 nmol/l) and contraction effects on AS160 phosphorylation. Incubation with AICAR caused increased phosphorylation of AMP-activated protein kinase and AS160 but not Akt. Our working hypothesis is that phosphorylation of these putative Akt substrates is important for some of the insulin and contraction bioeffects.  相似文献   

19.

OBJECTIVE

Exercise is an important strategy for the treatment of type 2 diabetes. This is due in part to an increase in glucose transport that occurs in the working skeletal muscles. Glucose transport is regulated by GLUT4 translocation in muscle, but the molecular machinery mediating this process is poorly understood. The purpose of this study was to 1) use a novel imaging system to elucidate the kinetics of contraction-induced GLUT4 translocation in skeletal muscle and 2) determine the function of AMP-activated protein kinase α2 (AMPKα2) in this process.

RESEARCH DESIGN AND METHODS

Confocal imaging was used to visualize GLUT4-enhanced green fluorescent protein (EGFP) in transfected quadriceps muscle fibers in living mice subjected to contractions or the AMPK-activator AICAR.

RESULTS

Contraction increased GLUT4-EGFP translocation from intracellular vesicle depots to both the sarcolemma and t-tubules with similar kinetics, although translocation was greater with contractions elicited by higher voltage. Re-internalization of GLUT4 did not begin until 10 min after contractions ceased and was not complete until 130 min after contractions. AICAR increased GLUT4-EGFP translocation to both sarcolemma and t-tubules with similar kinetics. Ablation of AMPKα2 activity in AMPKα2 inactive transgenic mice did not change GLUT4-EGFP′s basal localization, contraction-stimulated intracellular GLUT4-EGFP vesicle depletion, translocation, or re-internalization, but diminished AICAR-induced translocation.

CONCLUSIONS

We have developed a novel imaging system to study contraction-stimulated GLUT4 translocation in living mice. Contractions increase GLUT4 translocation to the sarcolemma and t-tubules with similar kinetics and do not require AMPKα2 activity.Skeletal muscle is critical in the regulation of glucose homeostasis, being the major site of whole-body glucose disposal (1). In skeletal muscle fibers, the GLUT4 protein mediates increases in glucose uptake. Upon stimulation with insulin or muscle contraction, GLUT4 is translocated from intracellular vesicle compartments to the two main muscle membrane surfaces, the sarcolemma and t-tubules (25). The kinetics of GLUT4 intracellular trafficking in skeletal muscle and how signaling molecules regulate GLUT4 translocation are poorly understood, especially for contraction-mediated GLUT4 translocation. The majority of studies analyzing GLUT4 translocation dynamics have been carried out in adipocytes (610) or in muscle cell cultures (1113), cell types that do not resemble fully differentiated muscle (14).Recently, intravital imaging techniques have allowed detailed analysis of the spatial-temporal dynamics of GLUT4 translocation in response to insulin stimulation in skeletal muscle fibers of living animals (5,15,16). Direct imaging of insulin-stimulated GLUT4-EGFP translocation has shown that GLUT4 is translocated to both the sarcolemma and t-tubules. Both GLUT4 translocation and re-internalization were delayed in the t-tubules compared with the sarcolemma due to a lag in insulin diffusion (5,16). These imaging studies have also shown that in states of insulin resistance, the t-tubules, and not the sarcolemma, are the primary site of impaired insulin signaling and GLUT4 translocation (16). Collectively, these findings illustrate that insulin-mediated signaling and GLUT4 translocation are compartmentalized in mature skeletal muscle fibers.It is unknown whether a similar type of compartmentalization exists for contraction-mediated GLUT4 translocation. It is well established that rapid spreading of membrane depolarization throughout the t-tubule network results in simultaneous activation of contraction throughout the muscle fiber (17).Biochemical studies have suggested that in response to muscle contraction, GLUT4 can translocate to both the sarcolemma and t-tubules (4,18). However, imaging studies have never been done in intact contracting skeletal muscle to analyze the kinetics of GLUT4 translocation in high resolution.The signaling mechanisms mediating contraction-induced GLUT4 translocation are not fully understood, but differ from those triggered by insulin (19). Muscle contractions increase AMPK activity (20), and pharmacological activation of AMPK results in increased glucose transport in skeletal muscle (2022), although one report suggested that AICAR only caused GLUT4 translocation to the sarcolemma (23). Surprisingly, studies directly assessing the role of AMPK in contraction-mediated glucose transport using animal models with ablated AMPK activity have been ambiguous. Contraction-mediated glucose transport was not impaired in whole-body knockouts of the AMPKα1 or AMPKα2 catalytic subunits (24). In muscle-specific AMPKα2 inactive transgenic mice, contraction- or exercise-mediated glucose transport was either partially reduced (25,26) or unaffected (27,28), but the effects of AMPK activity on GLUT4 translocation kinetics are not known.In the current study, we used intravital imaging to determine GLUT4 translocation kinetics in contracting skeletal muscle. To understand the intracellular signals that regulate this effect, we used muscle-specific AMPKα2 inactive transgenic mice (27). We found that contraction-stimulated GLUT4 translocation occurs at both the sarcolemma and t-tubules with similar kinetics. Our data demonstrate that contractions elicited by a higher voltage resulted in a higher degree of translocation, and that GLUT4 remains at the cell surface for up to 2 h after the cessation of contraction. Finally, our data show that contraction-stimulated GLUT4 translocation is AMPKα2-independent.  相似文献   

20.
To address a role of mitogen-activated protein kinase (MAPK) in the regulation of glucose transport, we made a constitutively active mutant of MAPK kinase (MAPKK) and introduced it into 3T3-L1 preadipocytes by using a retrovirus-mediated transfection procedure. The deletion of 20 amino acids (those between and including 32 and 51) in the amino terminal region of Xenopus MAPKK and the replacement of serine residues on the 218 and 222 positions by glutamic acid (dSESE-MAPKK) let Xenopus MAPKK constitutively active. The isolated cell clones differently expressing dSESE-MAPKK (clone 219 higher expression, clone 233 lower expression) efficiently differentiated to adipocytes by a standard differentiation cocktail. Accordingly, the increased expression of dSESE-MAPKK protein during differentiation resulted in the increased basal MAPK activity in clone 219 adipocytes and, to a lesser extent, in clone 233 adipocytes. In contrast to clone 233 and parental adipocytes, basal 2-deoxyglucose uptake was enhanced fourfold in clone 219 adipocytes, in accordance with increased expression of GLUT1 mRNA and protein. Whereas GLUT4 mRNA was similarly expressed in all of the adipocytes, GLUT4 protein appeared to decrease in clone 219 adipocytes. More importantly, subcellular fractionation studies showed that the localization of both GLUT1 and GLUT4 in the plasma membranes (PMs) was markedly increased in the basal state in clone 219 adipocytes compared with that in clone 233 and parental adipocytes, in which both glucose transporters were preferentially located in intracellular compartments. Consequently, insulin-induced translocation of GLUT1 was abolished in clone 219 adipocytes, although the remaining intracellular GLUT4 was still responsive to insulin stimulation, which led to the movement to the PM. As combined effects on the situation of GLUT1 and GLUT4, the foldness of insulin stimulation of glucose transport based on the basal activity was reduced in cells expressing constitutively active MAPKK. These results imply that chronic activation of MAPK could be one of the mechanisms for insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号