首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antipsychotics constitute efficacious augmenting agents in the treatment of anxiety disorders, including refractory obsessive-compulsive disorder. We examined the effects of 36 compounds, including typical, atypical and novel antipsychotics with dual dopamine D2/5-hydroxytryptamine 1A (D2/5-HT1A) actions on marble burying behavior in mice, a putative preclinical test for anxiety disorders. One hour after drug administration, male NMRI mice were placed individually in cages containing 20 marbles, and the total number of marbles buried after 30 min was counted. The selective serotonin reuptake inhibitors, citalopram (2.5-40 mg/kg), fluoxetine (2.5-10 mg/kg) and the benzodiazepine diazepam (2.5-10 mg/kg), reduced the number of buried marbles. The atypical antipsychotic, clozapine (0.16-10 mg/kg), but not its congener olanzapine, was effective in this test. Haloperidol, a typical antipsychotic, also reduced the number of buried marbles, albeit not in a dose-dependent manner. The atypical risperidone was partially active (0.16-0.63 mg/kg), as was the benzamide derivative, amisulpride, albeit at high (10-40 mg/kg) doses. Among the 'third-generation' antipsychotics possessing combined D2/5-HT1A properties, bifeprunox was active at 0.0025 mg/kg, whereas SLV313 and aripiprazole were active only at the highest doses (2.5 and 10 mg/kg, respectively). SSR181507, F15063 and the antidyskinetic agent, sarizotan, were without any effect. Among a series of receptor subtype-selective ligands, only the 5-HT1A agonist, (+)-8-OH-DPAT (0.63-2.5 mg/kg) and the 5-HT2A/2B/2C antagonist, ritanserin (0.63-2.5 mg/kg) were active. Among novel antipsychotics with dual D2/5-HT1A properties, only bifeprunox was able to potently reduce the number of buried marbles. Inhibition of marble burying behavior may result from the interplay of several receptor systems, including 5-HT2 receptor blockade, dopamine D2 partial agonism and serotonin 5-HT1A agonism.  相似文献   

2.
N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP) and ketamine can evoke psychotic symptoms in normal individuals and schizophrenic patients. Here, we have examined the effects of PCP (5 mg/kg) and ketamine (25 mg/kg) on the efflux of serotonin (5-HT) in the medial prefrontal cortex (mPFC) and their possible blockade by the antipsychotics, clozapine, olanzapine and haloperidol, as well as ritanserin (5-HT2A/2C receptor antagonist) and prazosin (alpha1-adrenoceptor antagonist). The systemic administration, but not the local perfusion, of the two NMDA receptor antagonists markedly increased the efflux of 5-HT in the mPFC. The atypical antipsychotics clozapine (1 mg/kg) and olanzapine (1 mg/kg), and prazosin (0.3 mg/kg), but not the classical antipsychotic haloperidol (1 mg/kg), reversed the PCP- and ketamine-induced increase in 5-HT efflux. Ritanserin (5 mg/kg) was able to reverse only the effect of PCP. These findings indicate that an increased serotonergic transmission in the mPFC is a functional consequence of NMDA receptor hypofunction and this effect is blocked by atypical antipsychotic drugs.  相似文献   

3.
The ability of antipsychotic drugs to affect 5-HT(2A) receptor function has been widely suggested to contribute to their therapeutic properties. We have compared the ability of the antipsychotic drugs clozapine and haloperidol, alone and in combination with chronic phencyclidine (PCP), to modulate 5-HT(2A) receptor binding and mRNA. Acute (i.p. 45 min) and chronic (21-day) clozapine (osmotic minipump (OMP); 20 mg/kg/day) produced widespread decreases in 5-HT(2A) receptor binding (-60%-80%), measured using [(3)H]ketanserin autoradiography. Conversely, 5-HT(2A) mRNA levels, determined using in-situ hybridisation, were modestly increased by chronic clozapine treatment (+10%-30%). Chronic PCP treatment, at a dose (2.58 mg/kg i.p. intermittently for 28 days) that reproduces many of the neurochemical deficits of schizophrenia, decreased 5-HT(2A) receptor binding in the prefrontal cortex (PFC; -16%), consistent with the changes in post-mortem brain tissue from schizophrenic patients. Combined chronic PCP (i.p.) and clozapine (OMP) treatment down-regulated 5-HT(2A) receptor binding in many areas, similar to the effects of clozapine treatment alone and clozapine further enhanced the effects of PCP in the prefrontal cortex. In contrast 5-HT(2A) mRNA was not altered. Haloperidol treatment alone (1 mg/kg/day; OMP) and in combination with PCP (i.p.), generally produced no changes in 5-HT(2A) receptor protein or mRNA. Hence chronic PCP treatment, as employed here, mimics the decreased 5-HT(2A) receptor binding observed in the PFC of schizophrenic patients. Clozapine's enhancement of the natural response of PCP to down-regulate PFC 5-HT(2A) receptors may contribute to it's improved therapeutic profile against negative symptoms and cognitive deficits.  相似文献   

4.
Curran MP  Perry CM 《CNS drugs》2002,16(3):207-211
Amisulpride, a substituted benzamide derivative, is a second-generation (atypical) antipsychotic. At low doses, it enhances dopaminergic neurotransmission by preferentially blocking presynaptic dopamine D(2)/D(3) autoreceptors. At higher doses, amisulpride antagonises postsynaptic D(2) and D(3) receptors, preferentially in the limbic system rather than the striatum, thereby reducing dopaminergic transmission. In patients with acute exacerbations of schizophrenia, the recommended dosage of amisulpride is 400 to 800 mg/day, although dosages < or = 1200 mg/day may be administered. In comparative trials, amisulpride administered within this range (400 to 1200 mg/day) was as effective as haloperidol 5 to 40 mg/day, flupenthixol 25 mg/day and risperidone 8 mg/day in patients with acute exacerbations of schizophrenia with predominantly positive symptoms. Amisulpride was more effective than haloperidol but equally effective as risperidone in controlling negative symptoms. Amisulpride 400 to 800 mg/day was more effective than haloperidol, risperidone and flupenthixol in controlling affective symptoms in these patients. In randomised, double-blind trials involving patients with predominantly negative symptoms of schizophrenia, amisulpride 50 to 300 mg/day was more effective than placebo. Amisulpride is effective as maintenance therapy in patients with chronic schizophrenia. Long-term treatment with amisulpride was associated with improvements in quality of life and social functioning. Amisulpride is generally well tolerated. In well-controlled trials, the neurological tolerability profile (including ratings on extrapyramidal symptom scales) of amisulpride 400 to 1200 mg/day was superior to that of the conventional antipsychotics (haloperidol or flupenthixol), but was similar to that of the atypical antipsychotic risperidone. At low dosages of amisulpride (< or = 300 mg/day), the incidence of adverse events (including extrapyramidal symptoms) reported with amisulpride was similar to that with placebo. Conclusion: In comparative trials, amisulpride 400 to 1200 mg/day showed efficacy in reducing overall symptomatology and positive symptoms similar to that of conventional antipsychotics and newer atypical antipsychotics in patients with acute exacerbations of schizophrenia. Moreover, its effective alleviation of negative and affective symptoms, its lower association with extrapyramidal symptoms and loss of cognitive function than conventional antipsychotics and its long-term efficacy justifies consideration of the use of higher dosages of amisulpride in this group of patients. Consequently, the dosage of amisulpride that is recommended in patients with acute exacerbations of schizophrenia is 400 to 800 mg/day, although dosages < or = 1200 mg/day may be administered. Lower dosages of amisulpride (50 to 300 mg/day) should be considered for the management of patients with negative symptoms of schizophrenia. Amisulpride is a first-line treatment option in the management of schizophrenia in the acute phase and for the maintenance of treatment response.  相似文献   

5.
M P Curran  C M Perry 《Drugs》2001,61(14):2123-2150
Amisulpride, a substituted benzamide derivative, is a second-generation (atypical) antipsychotic. At low doses, it enhances dopaminergic neurotransmission by preferentially blocking presynaptic dopamine D2/D3 autoreceptors. At higher doses, amisupride antagonises postsynaptic dopamine D2 and D3 receptors, preferentially in the limbic system rather than the striatum, thereby reducing dopaminergic transmission. In patients with acute exacerbations of schizophrenia, the recommended dosage of amisulpride is 400 to 800 mg/day, although dosages < or =1200 mg/day may be administered. In comparative trials, amisulpride administered within this range (400 to 1200 mg/day) was as effective as haloperidol 5 to 40 mg/day, flupenthixol 25 mg/day and risperidone 8 mg/day in patients with acute exacerbations of schizophrenia with predominantly positive symptoms. Amisulpride was more effective than haloperidol but equally effective as risperidone in controlling negative symptoms. Amisulpride 400 to 800 mg/day was more effective than haloperidol, risperidone and flupenthixol in controlling affective symptoms in these patients. In randomised, double-blind trials involving patients with predominantly negative symptoms of schizophrenia, amisulpride 50 to 300 mg/day was more effective than placebo. Amisulpride is effective as maintenance therapy in patients with chronic schizophrenia. Long-term treatment with amisulpride was associated with improvements in quality of life and social functioning. Amisulpride is generally well tolerated. In well-controlled trials, the neurological tolerability profile (including ratings on extrapyramidal symptom scales) of amisulpride 400 to 1200 mg/day was superior to that of the conventional antipsychotics (haloperidol or flupenthixol), but was similar to that of the atypical antipsychotic risperidone. At low dosages of amisulpride (< or =300 mg/day), the incidence of adverse events (including extrapyramidal symptoms) reported with amisulpride was similar to that with placebo. CONCLUSION: In comparative trials, amisulpride 400 to 1200 mg/day showed efficacy in reducing overall symptomatology and positive symptoms similar to that of conventional antipsychotics and newer atypical antipsychotics in patients with acute exacerbations of schizophrenia. Moreover, its effective alleviation of negative and affective symptoms, its lower association with extrapyramidal symptoms and loss of cognitive function than conventional antipsychotics and its long-term efficacy justifies consideration of the use of higher dosages of amisulpride in this group of patients. Consequently, the dosage of amisulpride that is recommended in patients with acute exacerbations of schizophrenia is 400 to 800 mg/day, although dosages < or =1200 mg/day may be administered. Lower dosages of amisulpride (50 to 300 mg/day) should be considered for the management of patients with negative symptoms of schizophrenia. Amisulpride is a first-line treatment option in the management of schizophrenia in the acute phase and for the maintenance of treatment response.  相似文献   

6.
Preponderance of serotonin 5-HT2A antagonism over dopamine D2 blockade exerted by atypical antipsychotics may contribute to their cognitive-enhancing effect. In a double-blind placebo-controlled study we examined the effect of add-on mianserin (15 mg/day), an agent with marked 5-HT2A antagonism, on cognitive functioning in 30 chronic hospitalized DSM-IV schizophrenia patients stabilized on typical antipsychotics. The Automated Neuropsychological Assessment Metrics (ANAM) battery was used to assess learning, memory and sustained attention; Wisconsin Card Sorting Test (WCST) to assess executive function at baseline and endpoint (4 weeks). Clinical assessment included appropriate rating scales. The mianserin group overperformed the placebo group on selective ANAM memory/learning tests, reflected in moderate-to-high effect size values. No between-group differences were revealed in WCST and clinical ratings. CONCLUSIONS: Improved performance on selective neurocognitive tests with addition of the 5-HT2A antagonist mianserin to typical antipsychotics indicates a possible role of the 5-HT system in cognitive-enhancing effects. The effect of flexible doses of mianserin on cognitive deficits in a broader schizophrenia population merits further investigation.  相似文献   

7.
Atypical antipsychotics have greatly enhanced the treatment of schizophrenia. The mechanisms underlying the effectiveness and adverse effects of these drugs are, to date, not sufficiently explained. This article summarises the hypothetical mechanisms of action of atypical antipsychotics with respect to the neurobiology of schizophrenia.When considering treatment models for schizophrenia, the role of dopamine receptor blockade and modulation remains dominant. The optimal occupancy of dopamine D(2) receptors seems to be crucial to balancing efficacy and adverse effects - transient D(2) receptor antagonism (such as that attained with, for example, quetiapine and clozapine) is sufficient to obtain an antipsychotic effect, while permanent D(2) receptor antagonism (as is caused by conventional antipsychotics) increases the risk of adverse effects such as extrapyramidal symptoms. Partial D(2) receptor agonism (induced by aripiprazole) offers the possibility of maintaining optimal blockade and function of D(2) receptors. Balancing presynaptic and postsynaptic D(2) receptor antagonism (e.g. induced by amisulpride) is another mechanism that can, through increased release of endogenous dopamine in the striatum, protect against excessive blockade of D(2) receptors.Serotonergic modulation is associated with a beneficial increase in striatal dopamine release. Effects on the negative and cognitive symptoms of schizophrenia relate to dopamine release in the prefrontal cortex; this can be modulated by combined D(2) and serotonin 5-HT(2A) receptor antagonism (e.g. by olanzapine and risperidone), partial D(2) receptor antagonism or the preferential blockade of inhibitory dopamine autoreceptors.In the context of the neurodevelopmental disconnection hypothesis of schizophrenia, atypical antipsychotics (in contrast to conventional antipsychotics) induce neuronal plasticity and synaptic remodelling, not only in the striatum but also in other brain areas such as the prefrontal cortex and hippocampus. This mechanism may normalise glutamatergic dysfunction and structural abnormalities and affect the core pathophysiological substrates for schizophrenia.  相似文献   

8.
The dopamine D1/D2 agonist apomorphine (0.63 mg/kg) disrupted prepulse inhibition (PPI) of acoustic startle in rats, a model of sensorimotor gating deficits observed in schizophrenia. All current antipsychotics, which antagonize D2 receptors, prevent this apomorphine-induced deficit. A novel class of antipsychotics possesses, in addition to D2 antagonist property, various levels of 5-HT1A agonist activity. Considering that the latter itself produces PPI deficits, it appeared necessary to assess the potential of this novel class of antipsychotics to reverse apomorphine-PPI deficits. Potent D2 antagonists, like haloperidol (0.63-2.5 mg/kg), risperidone (0.63-10 mg/kg), and olanzapine (0.63-40 mg/kg) prevented apomorphine PPI disruption. The atypical antipsychotics, clozapine (40 mg/kg), nemonapride (0.01-2.5 mg/kg), ziprasidone (10 mg/kg), and aripiprazole (0.01 and 10 mg/kg), which all exhibit 5-HT1A agonist properties, reversed PPI deficits at some doses only, whereas the anti-dyskinetic agent sarizotan (0.16-10 mg/kg), an efficacious 5-HT1A agonist, did not. New generation antipsychotics with marked 5-HT1A agonist properties, such as SLV313 and SSR181507 (0.0025-10 mg/kg and 0.16-10 mg/kg, respectively) did not reverse these deficits whereas bifeprunox (0.04-2.5 mg/kg) did. To reveal the contribution of 5-HT1A agonist properties in the lack of effects of SLV313 and SSR181507, we pretreated rats with the 5-HT1A antagonist WAY100635 (0.63 mg/kg). Under these conditions, significant reversal of PPI deficit was observed, indicating that D2 antagonist properties of SLV313 and SSR181507 are now sufficient to overcome the disruptive effects of apomorphine. To summarize, antipsychotics possessing agonist efficacy at 5-HT1A receptors exhibit diverse profiles against apomorphine-induced PPI deficits, depending on the balance between D2 and 5-HT1A activities, suggesting that they may display distinct activity on some aspects of gating deficits in schizophrenic patients.  相似文献   

9.
The pharmacological profiles of the atypical antipsychotics, clozapine, olanzapine, quetiapine and risperidone, all show a combined serotonin (5-HT2) and dopamine type-2 (D2) receptor antagonism. Amisulpride, a highly selective dopamine D2/D3 receptor antagonist that binds preferentially to receptors in the mesolimbic system, is also an 'atypical' antipsychotic despite having a different receptor-affinity profile. A meta-analysis of 18 clinical trials was undertaken to compare the efficacy and safety of amisulpride with conventional antipsychotics. The improvement in mental state was assessed using the Brief Psychiatric Rating Scale (BPRS) or the Scale for the Assessment of Negative Symptoms (SANS). In a pooled analysis of 10 studies of acutely ill patients, amisulpride was significantly more effective than conventional neuroleptics with regard to improvement of global symptoms. Amisulpride is, to date, the only atypical antipsychotic for which several studies on patients suffering predominantly from negative symptoms have been published. In four such studies, amisulpride was significantly superior to placebo. Three small studies with conventional neuroleptics as a comparator showed only a trend in favour of amisulpride in this regard. Amisulpride was associated with fewer extrapyramidal side-effects and fewer drop-outs due to adverse events than conventional neuroleptics. These results clearly show that amisulpride is an 'atypical' antipsychotic, and they cast some doubt on the notion that combined 5-HT2-D2 antagonism is the only reason for the high efficacy against negative symptoms and fewer extrapyramidal side-effects.  相似文献   

10.
RATIONAL: In humans, the N-methyl-D-aspartate antagonist phencyclidine (PCP) induces behavioral changes that mimic schizophrenia symptoms, including positive and negative symptoms as well as cognitive deficits. In clinic, the cognitive deficits are closely associated with functional outcome. Thus, improvement of cognition may have high impact on patients' daily life. OBJECTIVE: In the present study, three second-generation antipsychotics (sertindole, risperidone, and clozapine) as well as the classical antipsychotic haloperidol were tested for the ability to reverse PCP-induced cognitive deficits in the Morris' water maze. RESULTS: The second-generation antipsychotics reversed the PCP-induced cognitive impairment: sertindole (0.63-2.5 mg/kg, s.c.), risperidone (0.04 mg/kg, s.c.; whereas 0.08 and 0.16 mg/kg were without significant effect), and clozapine (0.63 mg/kg, s.c.; while 1.3 mg/kg was without significant effect). The significant effect of sertindole was observed from day 2 onwards, while clozapine and risperidone only had significant effect at day 3. The classical antipsychotic haloperidol (0.010-0.020 mg/kg, s.c.) was ineffective. No compounds influenced swimming speed at the doses used, indicating that motor function was preserved. CONCLUSION: These results confirm that repeated PCP administration induces marked cognitive deficits. Further, second-generation antipsychotics like sertindole, clozapine, and risperidone within a certain, often narrow, dose range are able to reverse the impairment and thus might improve cognitive deficits in schizophrenic patients, whereas classical compounds like haloperidol lack this effect. The receptor mechanisms involved in the reversal of PCP's disruptive effect are discussed and likely include a delicate balance between effects on dopamine D(2), 5-HT(2A/6), alpha-adrenergic, muscarinic, and histaminergic H(1) receptors.  相似文献   

11.
The treatment of schizophrenic patients who fail adequate trials of typical neuroleptics is a major challenge. For these patients, the availability of atypical antipsychotics is a useful therapeutic advance. Olanzapine shows a superior and broader spectrum of efficacy in the treatment of schizophrenia, particularly its negative symptoms, with a substantially more favorable safety profile than conventional antipsychotic agents (e.g., haloperidol). However, little information on the clinical effects of olanzapine is available in Japan. This article provides information on the efficacy of olanzapine for various symptoms of schizophrenic patients and drug safety. Olanzapine is significantly superior to haloperidol in positive, negative, and depressive symptoms of patients, and for tardive dyskinesia and extrapyramidal symptoms. Significantly greater improvement in avolition-apathy is achieved with olanzapine as compared to risperidone. These advantages are related to high affinity at the 5-HT2 binding site, no association with an alteration in dopamine A9 firing rates, and lower D2 striatal receptor blockade of olanzapine. Treatment with 10 mg/day olanzapine is more appropriate for positive symptoms, and 12.5-17.5 mg/day olanzapine is more effective for negative symptoms. Patients will need help adapting to a new level of functioning after a successful switch to olanzapine, and overcoming the disappointment that eventually occurs when the limitations of olanzapine become apparent.  相似文献   

12.
Atypical antipsychotics offer advantages over earlier drugs for the treatment of schizophrenia, although few data exist on the relative merits of different atypical antipsychotics. A multicentre, double-blind, randomized trial was performed to compare amisulpride and olanzapine in the treatment of acute schizophrenia. Adult schizophrenic patients with dominant positive symptomatology received amisulpride (200-800 mg/day) or olanzapine (5-20 mg/day) for 6 months. The primary efficacy variable was change from baseline of the Brief Psychiatric Rating Scale (BPRS) score, assessed with a non-inferiority analysis. The evolution of positive and negative symptomatology, depression, social functioning and quality of life were assessed. Safety evaluation included adverse event reporting, neurological status and body weight. The improvement of BPRS score was 32.7% in the amisulpride group and 33.0% in the olanzapine group; thus, the efficacy of amisulpride was not inferior to that of olanzapine. All other secondary efficacy outcome variables evolved to a similar extent in both groups. Adverse event frequency was similar in both groups. Amenorrhoea was encountered only in the amisulpride group (6.2% of patients), whereas elevations of liver transaminases were more frequent in the olanzapine group (17% versus 3.7% of patients). The incidence and mean extent of clinically relevant weight gain were higher in the olanzapine group (35.1% and 3.9 kg) than in the amisulpride group (20.6% and 1.6 kg). The efficacy of amisulpride is not inferior to that of olanzapine in the treatment of acute schizophrenia. The side-effect profile of the two drugs differed.  相似文献   

13.
The central histaminergic system has been proven to be involved in several physiological functions including feeding behavior. Some atypical antipsychotics like risperidone and aripiprazole are known to affect feeding behavior and to antagonize the serotonin (5-HT) receptor subtypes. To examine the possible neural relationship between the serotonergic and histaminergic systems in the anorectic effect of the antipsychotics, we studied the effect of a single administration of these drugs on food intake and hypothalamic histamine release in mice using in?vivo microdialysis. Single injection of risperidone (0.5mg/kg, i.p.) or aripiprazole (1mg/kg, i.p.), which have binding affinities to 5-HT(1A, 2A, 2B) and (2C) receptors decreased food intake in C57BL/6N mice with concomitant increase of hypothalamic histamine release. However, a selective D(2)-antagonist, haloperidol (0.5mg/kg, i.p.), did not have effects on food intake or histamine release. Furthermore, in histamine H(1) receptor-deficient mice, there was no reduction of food intake induced by atypical antipsychotics, although histamine release was increased. Moreover, selective 5-HT(2A)-antagonists, volinanserin (0.5, 1mg/kg, i.p.) and ketanserin (5, 10mg/kg, i.p.), significantly increased histamine release and 5-HT(2B/2C) -antagonist, SB206553 (2.5, 5mg/kg, i.p.), slightly increased it. On the contrary, 5-HT(1A) -selective antagonist, WAY100635 (1, 2mg/kg), did not affect the histaminergic tone. These findings suggest that serotonin tonically inhibits histamine release via 5-HT(2) receptors and that antipsychotics enhance the release of hypothalamic histamine by blockade of 5-HT(2) receptors resulting in anorexia via the H(1) receptor.  相似文献   

14.
High affinity for serotonin-2A (5-HT(2A)) over dopamine (DA) D(2) receptors is a leading hypothesis for clozapine's favorable therapeutic profile. Recent preclinical studies also indicate that a sufficient antipsychotic effect might be obtained by a combined high 5-HT(2A)/low D(2) receptor blockade. Thus, addition of a 5-HT(2A) receptor antagonist to an ineffective dose of a D(2) receptor antagonist produces a robust antipsychotic-like effect in the conditioned avoidance response (CAR) test. Electrophysiological and biochemical studies also show that 5-HT(2A) receptor antagonists can confer an atypical (clozapine-like) profile on a D(2) receptor antagonist. Improved therapeutic efficacy by adjunctive 5-HT(2A) receptor antagonist treatment to a traditional D(2) receptor blocking regimen has been suggested. However, the ability of 5-HT(2A) receptor blockade to protect against, or ameliorate, parkinsonian symptoms still remains unclear. Using the CAR and the catalepsy (CAT) tests as indices for antipsychotic activity and extrapyramidal side effect (EPS) liability, respectively, the effects of the selective 5-HT(2A) receptor antagonist MDL 100,907 in combination with the DA D(2) receptor antagonists haloperidol or raclopride were studied in rats. Haloperidol (0.025 or 0.1 mg/kg sc, -30 min) produced a dose-dependent suppression of CAR. Pretreatment with MDL 100,907 (0.5, 1.0, or 1.5 mg/kg sc; -60 min) enhanced and prolonged the haloperidol-induced suppression of CAR without escape failures. MDL 100,907 (1 mg/kg sc, -60 min) had no effect on CAT when coadministered with ineffective doses of raclopride. Raclopride (1 mg/kg sc, -30 min) alone produced a submaximal cataleptic response that was significantly enhanced by pretreatment with MDL 100,907. The present results confirm and extend previous results by showing that 5-HT(2A) receptor blockade can enhance the antipsychotic-like effects of a very low dose of a commonly used traditional antipsychotic. 5-HT(2A) receptor blockade does not, however, prevent EPS (CAT). The therapeutic advantage of this combination might, therefore, operate within a fairly narrow window.  相似文献   

15.
Amisulpride, a substituted benzamide with high affinity for dopamine D2 and D3 receptors only, has been reported to have therapeutic effects on both negative and positive schizophrenic symptoms, although at distinct dose ranges (50-300 mg/day vs. 400-1,200 mg/day). The purpose of this study was to investigate the binding of amisulpride to extrastriatal (i.e., thalamus and temporal cortex) and striatal D2 dopamine receptors with respect to plasma amisulpride determinations. Ten patients with schizophrenia treated with amisulpride over a wide range of doses (25-1,200 mg/day) were studied. Positron emission tomography images were acquired by using 76Br-FLB-457, a highly specific antagonist of the D2 and D3 dopamine receptors. Binding indexes (BI) in the regions studied were estimated with reference to values from six healthy subjects. A curvilinear relationship was demonstrated between plasma concentration of amisulpride and the BI in extrastriatal regions. The BI also varied as a function of plasma concentration in striatum. Furthermore, the data provide evidence for different binding profiles: low plasma concentrations (28-92 ng/mL) induced marked extrastriatal binding and low striatal binding, whereas higher plasma concentrations (>153 ng/mL) induced marked binding both in extrastriatal and striatal regions. Dose-dependent differential binding profiles of amisulpride to D2 receptors in extrastriatal and striatal regions were demonstrated, and two therapeutic ranges of plasma concentrations for negative and positive schizophrenic symptoms, respectively, are suggested.  相似文献   

16.
The relationship between clinically effective antipsychotic drug dosage and binding affinity to cloned dopamine (DA) and serotonin receptor subtypes was analyzed in an effort to elucidate the contribution of individual receptor subtypes to medication response. Clinically effective dose and binding affinity to D(2) DA receptor were modestly correlated for typical antipsychotic medications (r=0.54, p=0.046), but surprisingly were not correlated for atypical antipsychotics (r=0.41, p=0.31). For typical antipsychotics, a more robust inverse relationship was observed between medication dose and 5-HT(2C) affinity (r=-0.68, p=0.021). The strongest correlation for typical antipsychotics was observed between drug dosage and 5-HT(2C)/D(2) binding affinity ratio (r=-0.81, p=0.003). For atypical antipsychotics, no significant correlations were identified between medication dosage and 5-HT(2C), 5-HT(2A), 5-HT(2C)/D(2), or 5-HT(2A)/D(2) receptor-binding affinities. In contrast, atypical antipsychotic medication dosage was highly correlated with the ratios of D(2) (5-HT(2A)/5-HT(1A)) (r=0.80, p=0.031), and D(2) (5-HT(2C)/5-HT(1A)) (r=0.78, p=0.038) binding affinities. These observations demonstrate an interaction between D(2) and 5-HT(2C) receptor effects contributing to positive symptom response for typical antipsychotic medications, suggesting that signaling through 5-HT(2C) receptors interacts with and improves antipsychotic effects achieved via D(2) receptor blockade. This analysis also demonstrates that, in contrast to typical antipsychotics, therapeutic effects of atypical antipsychotic medications are determined by opposing interactions among three different domains: (1) increasing D(2) DA receptor-binding affinity enhances antipsychotic potency. (2) Increasing 5-HT(2C) and 5-HT(2A) receptor-binding affinities also facilitate antipsychotic efficacy. (3) Increasing 5-HT(1A) receptor-binding affinity, in contrast, reduces antipsychotic efficacy.  相似文献   

17.
It has been believed that the 'selective binding profile' may result in the 'selective treatment' for a disease. However, typical antipsychotics with the selective affinity for dopamine D2 receptor produce antipsychotic efficacy against positive symptoms accompanied with extrapyramidal side effects. Serotonin-dopamine-antagonists produce fewer EPS, since they have a potent antagonistic activity for 5-HT2A receptor besides the dopamine D2 antagonism. The disinhibition of diminished glutamatergic transmission and alpha 1 antagonism by MARTAs (Multi-Acting-Acting-Receptor-Targeted-Antipsychotics) can reduce positive symptoms of schizophrenic patients, and the 5-HT2A antagonitic and anticholinergic activities of the drugs may reduce the EPS. Moreover, MARTAs increase intracellular concentrations of dopamine and norepinephrine in the prefrontal cortex and disinhibit the diminished glutamatergic transmission, which are expected to improve the negative symptoms, anxiety and depressive symptoms, and cognitive impairment that are difficult to be treated by other existing antipsychotics. These important biological changes are induced by the antagonism of 5-HT2A, 5-HT2C, alpha 1-adrenergic and muscarinic receptors by MARTAs. Thus a multireceptorial profile of MARTA is considered to result in the improved treatment. Therefore 'selective binding profile' does not always mean 'selective treatment.' Instead, if a breakthrough drug is to be developed for the treatment of refractory diseases, it may be necessary to rethink the ordinary strategy targeting for a single receptor.  相似文献   

18.
INTRODUCTION: Prepulse inhibition (PPI) of the startle reflex has been extensively studied because it is disrupted in several psychiatric diseases, most notably schizophrenia. In rats, and to a lesser extent, in humans, PPI can be diminished by dopamine (DA) D(2)/D(3) and serotonin 5-HT(1A) receptor agonists. A novel class of potential antipsychotics (SSR181507, bifeprunox, and SLV313) possess partial agonist/antagonist properties at D(2) receptors and various levels of 5-HT(1A) activation. MATERIALS AND METHODS: It thus appeared warranted to assess, in Sprague-Dawley rats, the effects of these antipsychotics on basal PPI. RESULTS: SSR181507, sarizotan, and bifeprunox decreased PPI, with a near-complete abolition at 2.5-10 mg/kg; SLV313 had a significant effect at 0.16 mg/kg only. Co-treatment with the 5-HT(1A) receptor antagonist WAY100,635 (0.63 mg/kg) showed that the 5-HT(1A) agonist activity of SSR181507 was responsible for its effect. By contrast, antipsychotics with low affinity and/or efficacy at 5-HT(1A) receptors, such as aripiprazole (another DA D(2)/D(3) and 5-HT(1A) ligand), and established typical and atypical antipsychotics (haloperidol, clozapine, risperidone, olanzapine, quetiapine, and ziprasidone) had no effect on basal PPI (0.01-2.5 to 2.5-40 mg/kg). DISCUSSION: The present data demonstrate that some putative antipsychotics with pronounced 5-HT(1A) agonist activity, coupled with partial agonist activity at DA D(2) receptors, markedly diminish PPI of the startle reflex in rats. CONCLUSIONS: These data raise the issue of the influence of such compounds on sensorimotor gating in humans.  相似文献   

19.
We examined the effects of tropisetron, a 5-hydroxytryptamine (5-HT(3)) receptor antagonist and alpha7 nicotinic receptor agonist, on cognitive deficits in mice after repeated administration of the NMDA receptor antagonist phencyclidine (PCP). PCP (10 mg/kg/day for 10 days)-induced cognitive deficits were significantly improved by subsequent subchronic (2 weeks) administration of tropisetron, but not ondansetron. Effects of tropisetron were significantly antagonized by co-administration of the alpha7 nicotinic receptor antagonist methyllycaconitine, suggesting the role of alpha7 nicotinic receptors in the active mechanisms of tropisetron. These findings suggest that tropisetron could be a potential therapeutic drug for cognitive deficits in schizophrenic patients.  相似文献   

20.
Aripiprazole is a dopamine D/D3 and serotonin 5-HT1A receptor partial agonist which is approved for treatment of schizophrenia. We evaluated the pharmacological properties of aripiprazole, dopamine D2 receptor partial agonists and antipsychotics using forskolin-stimulated cAMP accumulation in cells expressing human dopamine D2 and D3 receptors. In cells expressing high densities of D2 receptor with high sensitivity for dopamine, the maximal agonist effects of partial agonists were higher than in cells expressing low densities of D2 receptor with low sensitivity for dopamine. Aripiprazole's intrinsic activities at D2 and D9 receptors were lower than those observed with partial agonists (terguride, bifeprunox, OPC-4392 and (-)-3-PPP), which demonstrated clinically suboptimal improvement of positive symptoms of schizophrenia patients, and higher than that of SDZ 208-912, which demonstrated incidence of extrapyramidal symptoms similar to haloperidol. Aripiprazole's appropriate intrinsic activities at D2 and D: receptors may contribute to desired results in a clinical profile. Antipsychotics (risperidone, olanzapine, amisulpride, sulpiride and perphenazine) which displayed antidepressive effects in schizophrenia patients behaved as preferential antagonists in cells expressing D2 receptors compared to cells expressing D3 receptors. Preferential antagonism at dopamine D2 receptors may play a role in the antidepressive effects of these antipsychotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号