首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: In the present study, we sought to determine the potential of sustained transgene expression by a single i.m. administration of recombinant adeno-associated virus 2 (rAAV) encoding angiostatin and endostatin in inhibiting i.p. ovarian cancer growth and dissemination in a preclinical mouse model. EXPERIMENTAL DESIGN: Cohorts of female athymic nude mice received either no virus or 1.2 x 10(11) particles of rAAV encoding green fluorescence protein or endostatin plus angiostatin, i.m. Three weeks later, the mice were i.p. injected with 10(6) human epithelial ovarian cancer cell line SKOV3.ip1. As a measure of effectiveness of the therapy, tumor weight, abdominal distension, ascites volume and vascular endothelial growth factor level, and tumor weight were determined. Immunohistochemistry was done to determine tumor cell apoptosis and endothelial cell proliferation following the therapy. Tumor-free survival was recorded as the end point. RESULTS: Results indicated a significant tumor-free survival (P < 0.003) following therapy with rAAV encoding endostatin and angiostatin compared with untreated or rAAV-green fluorescence protein-treated mice. Ascites volume in rAAV endostatin and angiostatin-treated mice was significantly lower than naive mice and contained less hemorrhage and tumor conglomerates. The level of vascular endothelial growth factor in the ascites of antiangiogenic vector treated mice was also significantly less compared with the untreated mice. Immunohistochemical analyses indicated increased tumor cell apoptosis and decreased blood vasculature following rAAV endostatin and angiostatin treatment. CONCLUSION: The results indicate that antiangiogenic genetic prevention from stable systemic levels of angiostatin and endostatin by i.m. administration of rAAV can be used for the treatment of i.p. ovarian cancer growth and dissemination.  相似文献   

2.
Ovarian cancer cells use integrins to attach to the peritoneal wall. Integrin alpha(5)beta(1) is also the target for the angiogenesis inhibitor, endostatin. Therefore, the ability of endostatin to competitively inhibit tumor cell seeding of the peritoneum was investigated. An imaging method was developed to determine early phases of peritoneal dissemination of ovarian cancer cells. Using this method, endostatin was found to bind ovarian cancer cells through integrin alpha(5)beta(1) and inhibit vessel cooption efficiently. Although both angiostatin and endostatin are potent inhibitors of tumor angiogenesis, peritoneal attachment and vessel cooption was blocked only by the endostatin. Knocking down the expression of integrins alpha(5) and beta(1) in ovarian cancer cells interfered with endostatin-mediated inhibition of peritoneal seeding. Furthermore, adenovirus-mediated in situ expression of endostatin either inside the peritoneum or by the ovarian tumor cells inhibited peritoneal seeding and dissemination in vivo. Endostatin treatment also prevented primary ovarian cancer cells from attaching to mouse peritoneal wall. These studies show a paraendothelial mechanism by which endostatin can inhibit peritoneal dissemination of ovarian cancer cells and raises the possibility of intraperitoneal expression of endostatin to reduce recurrence.  相似文献   

3.
Kim KS  Park YS 《Oncology research》2005,15(7-8):343-350
Angiostatin and endostatin are potent endothelial cell growth inhibitors and have been carefully evaluated for antiangiogenic cancer therapy. Previously, we have shown that subcutaneous administration of angiostatin K1-3 and endostatin genes complexed with liposomal vectors is a more practical treatment procedure than administration of angiostatin and endostatin proteins. This study provides additional conclusive evidence supporting the effectiveness of antiangiogenic cancer gene therapy employing angiostatin K1-3 and endostatin genes. Plasmids encoding a mouse angiostatin K1-3 gene (pFLAG-AngioK1/3) and an endostatin gene (pFLAG-Endo) were introduced by the hydrodynamic transduction method into mice carrying Matrigel plugs or B16BL6 mouse melanoma tumors. A single systemic injection of the two genes exhibited potent antiangiogenic and antitumor activity in the mouse model. Hydrodynamic coadministration of the genes inhibited the B16BL6 mouse melanoma growth and pulmonary metastasis more effectively than administration of either gene alone. Compared with the untreated control group, the mice cotreated with pFLAG-AngioK1/3 and pFLAG-Endo exhibited 75% reduction of tumor growth while those treated with pFLAG-AngioK1/3 or pFLAG-Endo showed 46% and 52% reduction, respectively. The cotreatment inhibited B16BL6 pulmonary metastasis formation by 80% while the inhibition induced by individual treatment with pFLAG-AngioK1/3 or pFLAG-Endo was 68% and 71%, respectively. These results provide additional evidence that systemic expression of angiostatin K1-3 and/or endostatin genes is a viable alternative procedure for antiangiogenic cancer therapy.  相似文献   

4.
Previous studies have shown that a single point mutation in endostatin at position 125 (P125A) can improve the biological activity of endostatin. Addition of an integrin-targeting moiety, R-G-D, resulted in better localization to tumor vasculature and improved the antiangiogenic activity of endostatin. Because endostatin has relatively shorter serum half-life, frequent dosing was required for inhibiting tumor growth. In our study, we have genetically fused RGD-P125A-endostatin to Fc of IgG4 isotype and evaluated its antiangiogenic and antitumor effects in athymic mice. Two genetic constructs were made, RGD-P125A-endostatin-Fc (RE-Fc) and P125A-endostatin-RGD-Fc (ER-Fc). Both constructs were cloned and expressed in mammalian cells. Purified fusion proteins inhibited endothelial cell migration and proliferation better than yeast-derived P125A-endostatin. Both RE-Fc and ER-Fc inhibited ovarian cancer growth and were found to be as effective as Bevacizumab treatment. Fusion protein showed marked increased half-life. Combination treatment with Bevacizumab and ER-Fc showed additive inhibition of ovarian cancer growth. These studies demonstrate that genetic fusion with human IgG4-Fc increases the half-life of P125A-endostatin and can be used along with Bevacizumab to improve antiangiogenic and antitumor activities.  相似文献   

5.
Transfection of the antiangiogenic angiostatin and endostatin genes was shown to be an alternative to high-dose administration of angiostatin or endostatin proteins for cancer therapy. We have systematically investigated whether coadministration of the mouse angiostatin kringle 1-3 gene (pFLAG-AngioK1/3) and the endostatin gene (pFLAG-Endo) complexed with cationic liposomes exhibits enhanced therapeutic efficacy. In vitro, the coexpressed mixture of angiostatin K1-3 and endostatin more effectively reduced angiogenesis in chorioallantoic membranes than either angiostatin K1-3 or endostatin alone. In vivo, subcutaneous co-administration of pFLAG-AngioK1/3 and pFLAG-Endo lipoplexes more effectively inhibited vascularization in Matrigel plugs implanted in mice than either one alone. Additionally, subcutaneous administration of these genes inhibited the growth and formation of pulmonary metastases of B16BL6 melanoma cells in mice. Compared to treatment with an empty vector, treatment with pFLAG-AngioK1/3 plus pFLAG-Endo inhibited 81% of tumor growth, while treatment with pFLAG-AngioK1/3 or pFLAG-Endo inhibited tumor growth 70 and 69%, respectively. Cotreatment with the two plasmids after primary tumor excision induced a 90% inhibition of pulmonary metastases versus 79% for pFLAG-AngioK1/3 or 80% for pFLAG-Endo individually. These results suggest that combined administration of angiostatin K1-3 and endostatin genes complexed with cationic liposomes may be an innovated antiangiogenic strategy for cancer therapy.  相似文献   

6.
In vivo expression of angiostatin and endostatin, two different types of endothelial cell growth inhibitor, have been reported to inhibit vascularization in tumor tissues, resulting in tumor growth inhibition. Recently, in vivo expression of saxatilin, a novel disintegrin purified from snake (Gloydius saxatilis) venom, was able to strongly inhibit endothelial cell proliferation and smooth muscle cell migration, resulting in tumor growth inhibition. However, the antitumor efficacy of the individual antiangiogenic molecules expressed in vivo was not sufficiently potent to induce tumor regression in animal models. Therefore, in this study, we have systemically examined how combinational transfer of angiostatin, endostatin, and saxatilin genes affects neovascularization in tumor tissues and tumor progression in a mouse model. In Matrigel-implanted mice, cotransfection with plasmids encoding angiostatin K1-3 (pFLAG-Angio K1/3), endostatin (pFLAG-Endo), and saxatilin (pFLAG-Sax) resulted in the most effective inhibition of angiogenesis. In addition, hydrodynamic cotransfection of the three genes induced more inhibition of B16BL6 melanoma growth and pulmonary metastasis than other combinations of transfected genes. Compared with the empty vector-treated control group, cotreatment with the three plasmids reduced B16BL6 tumor growth by 89% and pulmonary metastasis by 90%. These results provide additional evidence supporting the combined systemic expression of antiangiogenic factors, such as angiostatin K1-3, endostatin, and saxatilin, as an alternative procedure for antiangiogenic cancer therapy.  相似文献   

7.
Antiangiogenic factors are potent endothelial cell growth inhibitors that have been shown to inhibit angiogenesis in vitro and tumor growth in mice. We have demonstrated the synergistic antitumor effect of antiangiogenic genes (mouse angiostatin: pBLAST-mAngio; and mouse endostatin: p-BLAST42-mEndo XV) delivered to tumors by low-voltage electroporation in mouse colon 26 models. A synergistic antitumor effect was strongly suggested by in vivo tumor growth kinetics, as well as in survival studies with the mice. RT-PCR confirmed that the fragments of each gene were transferred by low-voltage electroporation in the tumor. Decreased microvessel density measurements in tumors also confirmed the efficacy of the synergistic antitumor effect of both genes. Significant growth inhibition was observed in mice treated with a 1:1 proportion of angiostatin and endostatin genes, and the order of the both genes transferred (first the endostatin gene, followed 1 week later by the angiostatin gene) had a profound inhibitory effect on tumor growth. These data suggest that in vivo delivery of antiangiogenic genes with low-voltage electroporation could be a possible therapeutic strategy for established solid tumors when both genes were applied in combination.  相似文献   

8.
Development of lentiviral vectors for antiangiogenic gene delivery.   总被引:5,自引:0,他引:5  
Growth and metastasis of malignant tumors requires angiogenesis. Inhibition of tumor-induced angiogenesis may represent an effective cytostatic strategy. We have constructed recombinant self-inactivating lentiviral vectors expressing angiostatin and endostatin, and have tested their antiangiogenic activities. As VSV-G-pseudotyped lentiviral vectors showed low relative transduction titers on bovine aortic and human umbilical vein endothelial cells, it was difficult to achieve significant inhibition of endothelial cell growth by lentivirus-mediated antiangiogenic gene transfer directly to endothelial cells without concomitant vector-associated cytotoxicity. However, lentivirus vectors could efficiently and stably transduce T24 human bladder cancer cells that are relatively resistant to adenovirus infection due to loss of coxsackievirus-adenovirus receptor expression. Long-term expression and secretion of angiostatin and endostatin from lentivirus-transduced T24 cells resulted in significant inhibition of cellular proliferation on coculture with endothelial cells. This report represents the first use of lentivirus-based vectors to deliver the antiangiogenic factors, angiostatin and endostatin, and suggests the potential utility of antiangiogenic gene therapy with lentiviral vectors for the treatment of cancer.  相似文献   

9.
A human ovarian cancer cell line, which migrates to mouse ovaries and establishes peritoneal carcinomatosis, was used to evaluate the cooperative effect of an antiangiogenic gene therapy combined with chemotherapy. The ovarian carcinoma cell line MA148 was genetically modified by "Sleeping Beauty" transposon-mediated delivery of DsRed2 fluorescent protein. Stable, high-level expression of DsRed protein enabled in vivo imaging of peritoneal dissemination of ovarian cancer. Both external and internal imaging, along with histopathology, showed migration of i.p. injected human ovarian cancer cell line to mouse ovaries. Using this model, we evaluated the effect of adeno-associated virus (AAV)-mediated expression of a mutant endostatin either alone or in combination with carboplatin treatment. A single i.m. injection of recombinant AAV (rAAV)-mutant human endostatin with P125A substitution (P125A-endostatin) showed sustained expression of mutant endostatin. Antiangiogenic gene therapy inhibited orthotopic growth of ovarian cancer and resulted in 33% long-term tumor-free survival. A single cycle of carboplatin treatment combined with mutant endostatin gene therapy resulted in 60% of the animals remaining tumor free for >200 days, which was significantly better than rAAV-LacZ and/or carboplatin. Combination treatment delayed tumor appearance in 40% of the animals, wherein the residual tumors were smaller in size with limited or no peritoneal metastasis. These studies suggest that AAV-mediated gene therapy of P125A-endostatin in combination with carboplatin is a useful method to inhibit peritoneal dissemination of ovarian carcinoma.  相似文献   

10.
Tumor vasculatures express high levels of alphaVbeta3/alphaVbeta5 and alpha5beta1 integrins. Consequently, peptides containing the RGD (Arg-Gly-Asp) sequence, which is present in ligands of integrins, is effective in targeting therapeutic reagents to tumor vascular endothelium. In our study, we investigated whether the biologic activity of endostatin can be enhanced by the addition of an integrin targeting sequence. RGD sequence was added to either the amino or carboxyl terminus of endostatin containing a point mutation, P125A-endostatin. Earlier we have shown that the P125A mutation did not affect the biologic activity of endostatin but in fact had better antiangiogenic activity when compared to the native molecule. Further modification of P125A-endostatin with the RGD motif showed specific and increased binding to endothelial cells, and the increased binding coincided with improved antiangiogenic properties. Both amino and carboxyl terminal RGD-modification of P125A-endostatin resulted in greater inhibition of endothelial cell migration and proliferation. RGD modification increased tumor localization without affecting the circulatory half-life of P125A-endostatin, and RGD-modified P125A-endostatin was found to be more effective when compared to the P125A-endostatin in inhibiting ovarian and colon cancer growth in athymic mice. Complete inhibition of ovarian tumor growth was observed when P125A-endostatin-RGD was encapsulated into alginate beads. These studies demonstrate that addition of a vascular targeting sequence can enhance the biologic activity of an antiangiogenic molecule.  相似文献   

11.
Yokoyama Y  Ramakrishnan S 《Cancer》2005,104(2):321-331
BACKGROUND: Blood vessels in tumors express higher level of aminopeptidase N (APN) compared with normal tissues. It has been reported that peptides that contain asparagine-glycine-arginine (NGR) sequence home to APN in tumor vasculature. Increased expression of APN in tumor vascular endothelium, therefore, offers an opportunity to target NGR peptide-linked therapeutic reagents to tumors. METHODS: To determine whether an additional NGR sequence could improve endothelial homing and biologic activity, human endostatin was modified genetically to introduce an NGR motif (NGR-endostatin) and was expressed in yeast. In vitro biologic activity of NGR-endostatin was compared with the native protein in endothelial cell proliferation and migration. NGR-modified endostatin was used in tumor localization studies. Finally, the effects of endostatin and NGR-endostatin on tumor growth were determined in two model systems. RESULTS: Human endostatin has an internal NGR sequence, which is not accessible to bind APN. However, the addition of an NGR-sequence at the amino terminus resulted in strong binding and inhibition of endothelial cell APN. NGR-endostatin showed increased binding to endothelial cells compared with the native protein. Increased binding of endostatin also coincided with improved antiangiogenic properties of endostatin. NGR modification improved tumor localization and, as a consequence, effectively inhibited ovarian carcinoma growth in athymic nude mice. CONCLUSIONS: These studies demonstrated that human endostatin can be modified genetically to improve its ability to inhibit tumor growth.  相似文献   

12.
Endostatin, a C-terminal fragment of collagen type XVIII, is one of the well-characterized endogenous inhibitors of angiogenesis. Endostatin is known to bind integrin alpha(5)beta(1), which is upregulated on tumor endothelium. Most of the ovarian cancer cells express significant amounts of alpha(5)beta(1) integrin, which is important for ovarian cancer cells to attach to the peritoneal wall. Therefore we investigated whether endostatin could directly bind ovarian cancer cells and inhibit tumor cell attachment to extracellular matrix. Binding of endostatin to ovarian cancer cells was characterized by preincubation with function blocking antibodies to integrin subunits. These studies showed that ovarian cancer cell attachment to fibronectin-coated wells can be inhibited by alpha(5)beta(1) integrin specific antibodies as well as endostatin. Downregulation of integrin alpha(5) and beta(1) by siRNA abrogated the binding of OVCAR5 and human umbilical vein endothelial cell to endostatin. Although endostatin treatment did not affect ovarian cancer cell migration, treated cells failed to attach mouse peritoneal wall preparations. These studies suggest an extra-antiangiogenic role for endostatin, which can be used prevent peritoneal attachment and dissemination of ovarian cancer cells.  相似文献   

13.
The success of surgery to remove primary tumors can be compromised by the subsequent outgrowth of metastases. It is recognized that primary tumors secrete antiangiogenic factors that suppress the outgrowth of their daughter metastases. In accord we show here that surgical removal of primary EL-4 lymphomas led to a marked decrease in the levels of circulating angiostatin and endostatin, and promoted the growth of distant nodular tumors. Expression vectors encoding angiostatin and endostatin, formulated with poly-N-vinyl pyrrolidone (PVP), were injected into the tibialis and gastrocnemia muscles, leading to expression of angiostatin and endostatin in muscle fibers. High levels of biologically active exogenous proteins were secreted into the circulation. Intramuscular gene therapy with angiostatin and endostatin plasmids significantly inhibited tumor vascularity and induced tumor cell apoptosis, and thereby suppressed the growth of secondary subcutaneous and disseminated metastatic tumors in the lung and liver. Simultaneous intramuscular delivery of both angiostatin and endostatin plasmids significantly prolonged the survival of mice after removal of primary tumors. These results suggest that intramuscular gene transfer of angiostatin and endostatin might serve as a prophylactic cancer-prevention strategy to combat the recurrence of cancer after surgical resection of primary tumors.  相似文献   

14.
Antiangiogenic therapy is a promising alternative for prostate cancer growth and metastasis and holds great promise as an adjuvant therapy. The present study evaluated the potential of stable expression of angiostatin and endostatin before the onset of neoplasia and during the early and late stages of prostate cancer progression in transgenic adenocarcinoma of mouse prostate (TRAMP) mice. Groups of 5-, 10-, and 18-week-old male TRAMP mice received recombinant adeno-associated virus-6 encoding mouse endostatin plus angiostatin (E+A) by i.m. injection. The effects of therapy were determined by sacrificing groups of treated mice at defined stages of tumor progression and following cohorts of similarly treated mice for long-term survival. Results indicated remarkable survival after recombinant adeno-associated virus-(E+A) therapy only when the treatment was given at an earlier time, before the onset of high-grade neoplasia, compared with treatment given for invasive cancer. Interestingly, early-stage antiangiogenic therapy arrested the progression of moderately differentiated carcinoma to poorly differentiated state and distant metastasis. Immunohistochemical analysis of the prostate from treated mice indicated significantly lower endothelial cell proliferation and increased tumor cell apoptosis. Vascular endothelial growth factor receptor (VEGFR)-2 expression was significantly down-regulated in tumor endothelium after treatment but not VEGFR-1. Analysis of the neuroendocrine marker synaptophysin expression indicated that antiangiogenic therapy given at an early-stage disease reduced neuroendocrine transition of the epithelial tumors. These studies indicate that stable endostatin and angiostatin gene therapy may be more effective for minimally invasive tumors rather than advanced-stage disease.  相似文献   

15.
 目的 观察SA脂质体介导血管抑素和/或内皮抑素基因对Lewis肺癌小鼠移植瘤生长、转移的抑制作用。方法 建立C57BL/6j小鼠肺癌模型,30只荷瘤鼠随机分空白对照组,SA脂质体对照组,血管抑素基因(pAng)治疗组,内皮抑素基因(pEnd)治疗组,血管抑素和内皮抑素基因联合治疗组,每组6只。以SA脂质体介导,将血管抑素和/或内皮抑素基因直接注入移植瘤内,每周2次,共6周,每周测瘤体大小2次,6周末处死所有小鼠,观察瘤体大小变化、肺表面转移灶数、生存期等。结果 各治疗组均能抑制肿瘤增长及肺内转移,与对照组比较有统计学意义(P<0.01),小鼠活动能力、饮食、对外界刺激的反应能力均无明显改变,生存期明显长于对照组。结论 SA脂质体介导血管抑素和/或内皮抑素基因治疗可有效地抑制Lewis肺癌移植瘤的生长、转移,生存期明显长于对照组。  相似文献   

16.
Angiogenesis is characteristic of solid tumor growth and a surrogate marker for metastasis in many human cancers. Inhibition of tumor angiogenesis using antiangiogenic drugs and gene transfer approaches has suggested the potential of this form of therapy in controlling tumor growth. However, for long-term tumor-free survival by antiangiogenic therapy, the factors controlling tumor neovasculature need to be systemically maintained at stable therapeutic levels. Here we show sustained expression of the antiangiogenic factors angiostatin and endostatin as secretory proteins by recombinant adeno-associated virus 2 (rAAV)-mediated gene transfer. Both vectors provided significant protective efficacy in a mouse tumor xenograft model. Stable transgene persistence and systemic levels of both angiostatin and endostatin were confirmed by in situ hybridization of the vector-injected tissues and by serum ELISA measurements, respectively. Whereas treatment with rAAV containing either endostatin or angiostatin alone resulted in moderate to significant protection, the combination of endostatin and angiostatin gene transfer from a single vector resulted in a complete protection. These data suggest that AAV-mediated long-term expression of both endostatin and angiostatin may have clinical utility against recurrence of cancers after primary therapies and may represent rational adjuvant therapies in combination with radiation or chemotherapy.  相似文献   

17.
Gene therapy transfer of angiostatin and endostatin represents an alternative method of delivering angiogenic polypeptide inhibitors. We examined whether liposomes complexed to plasmids encoding angiostatin or endostatin inhibited angiogenesis and the growth of MDA-MB-435 tumors implanted in the mammary fat pads of nude mice. We determined that plasmids expressing angiostatin (PCI-Angio) or endostatin (PCI-Endo) effectively reduced angiogenesis using an in vivo Matrigel assay. We then investigated the efficacy of these plasmids in reducing the size of tumors implanted in the mammary fat pad of nude mice. Both PCI-Angio and PCI-Endo significantly reduced tumor size when injected intratumorally (P < 0.05). Compared to the untreated control group, the mice treated with PCI-Angio and PCI-Endo exhibited a reduction in tumor size of 36% and 49%, respectively. In addition, we found that i.v. injections of liposomes complexed to PCI-Endo reduced tumor growth in the nude mice by nearly 40% when compared to either empty vector (PCI) or untreated controls (P < 0.05). These findings provide a basis for the further development of nonviral delivery of antiangiogenic genes.  相似文献   

18.
PURPOSE: Recombinant adeno-associated virus (rAAV)-mediated antiangiogenic gene therapy offers a powerful strategy for cancer treatment, maintaining sustained levels of antiangiogenic factors with coincident enhanced therapeutic efficacy. We aimed to develop rAAV-mediated antiangiogenic gene therapy delivering endostatin and 3TSR, the antiangiogenic domain of thrombospondin-1. EXPERIMENTAL DESIGN: rAAV vectors were constructed to express endostatin (rAAV-endostatin) or 3TSR (rAAV-3TSR). The antiangiogenic efficacy of the vectors was characterized using a vascular endothelial growth factor (VEGF)-induced mouse ear angiogenesis model. To evaluate the antitumor effects of the vectors, immunodeficient mice were pretreated with rAAV-3TSR or rAAV-endostatin and received orthotopic implantation of cancer cells into the pancreas. To mimic clinical situations, mice bearing pancreatic tumors were treated with intratumoral injection of rAAV-3TSR or rAAV-endostatin. RESULTS: rAAV-mediated i.m. gene delivery resulted in expression of the transgene in skeletal muscle with inhibition of VEGF-induced angiogenesis at a distant site (the ear). Local delivery of the vectors into the mouse ear also inhibited VEGF-induced ear angiogenesis. Pretreatment of mice with i.m. or intrasplenic injection of rAAV-endostatin or rAAV-3TSR significantly inhibited tumor growth. A single intratumoral injection of each vector also significantly decreased the volume of large established pancreatic tumors. Tumor microvessel density was significantly decreased in each treatment group and was well correlated with tumor volume reduction. Greater antiangiogenic and antitumor effects were achieved when rAAV-3TSR and rAAV-endostatin were combined. CONCLUSIONS: rAAV-mediated 3TSR and endostatin gene therapy showed both localized and systemic therapeutic effects against angiogenesis and tumor growth and may provide promise for patients with pancreatic cancer.  相似文献   

19.
BACKGROUND: Inhibiting tumor angiogenesis is a promising new strategy for treating cancer. Difficulties with the stability, manufacture, and long-term administration of recombinant antiangiogenic proteins have prompted investigators to use gene therapy to generate these proteins in vivo. We investigated whether transfer of the gene encoding the angiogenesis inhibitor endostatin into the murine liver cell line NMuLi could inhibit tumor growth in vivo. METHODS: NMuLi cells were transduced with retroviral vectors containing the murine endostatin gene. The presence and function of endostatin in transduced cell supernatants were confirmed by competitive enzyme immunoassay and endothelial cell proliferation assays. Nude mice were given a subcutaneous or intraperitoneal injection with NMuLi cells, control transduced cells (NEF-null), or endostatin-transduced clones (NEF-Endo1 to 4) and were monitored for tumor growth. All statistical tests were two-sided. RESULTS: Supernatants from the clone secreting the lowest amount of endostatin (NEF-Endo4, 28 ng/mL) inhibited endothelial cell proliferation by 6% (95% confidence interval [CI] = 0% to 12%), and those from the clone secreting the highest amount (NEF-Endo1, 223 ng/mL) inhibited endothelial cell proliferation by 20% (95% CI = 13% to 27%). Increased levels of endostatin were detected in tumor lysates, but not serum, of mice given a subcutaneous injection of NEF-Endo1 cells. After 63 days, mice given a subcutaneous injection of parental NMuLi or NEF-null cells had tumor volumes of 2400 mm(3) (95% CI = 1478 mm(3) to 3300 mm(3)) and 2700 mm(3) (95% CI = 2241 mm(3) to 3144 mm(3)), respectively, compared with mean tumor volumes of less than 30 mm(3) in mice given an injection of NEF-Endo clones, a statistically significant difference (P<.001). After 123 days, all 16 mice given an intraperitoneal injection of parental NMuLi or NEF-null cells had died, compared with only three (9%) of 32 mice given an injection of NEF-Endo clones. CONCLUSIONS: Retroviral endostatin gene transfer leads to secretion of functional endostatin that is sufficiently active to inhibit tumor growth. Further studies of retroviral endostatin gene transfer for the treatment of cancer are warranted.  相似文献   

20.
The possibility of inhibiting tumor growth by blocking the formation of new tumor vessels has recently received attention. Antiangiogenic tumor therapies have recently attracted intense interest because of their direct endothelial targeting and the absence of drug resistance. Local antiangiogenic gene therapy for cancer offers a potential way to achieve sustained therapeutic release of antiangiogenic substances. As a step toward this goal, we used liposomes complexed to angiostatin cDNA and targeted to human squamous cell carcinoma cell lines in vivo. Tumor cells expressing angiostatin after local gene transfer showed markedly reduced vascularity and contained many apoptotic tumor cells. These results demonstrate the potential utility of liposome-derived angiostatin for adjuvant therapy of oral cancer in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号