首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: During prolonged critical illness, nocturnal pulsatile secretion of GH, TSH and prolactin (PRL) is uniformly reduced but remains responsive to the continuous infusion of GH secretagogues and TRH. Whether such (pertinent) secretagogues would synchronize pituitary secretion of GH, TSH and/or PRL is not known. DESIGN AND METHODS: We explored temporal coupling among GH, TSH and PRL release by calculating cross-correlation among GH, TSH and PRL serum concentration profiles in 86 time series obtained from prolonged critically ill patients by nocturnal blood sampling every 20 min for 9 h during 21-h infusions of either placebo (n=22), GHRH (1 microg/kg/h; n=10), GH-releasing peptide-2 (GHRP-2; 1 microg/kg/h; n=28), TRH (1 microg/kg/h; n=8) or combinations of these agonists (n=8). RESULTS: The normal synchrony among GH, TSH and PRL was absent during placebo delivery. Infusion of GHRP-2, but not GHRH or TRH, markedly synchronized serum profiles of GH, TSH and PRL (all P< or =0.007). After addition of GHRH and TRH to the infusion of GHRP-2, only the synchrony between GH and PRL was maintained (P=0.003 for GHRH + GHRP-2 and P=0.006 for TRH + GHRH + GHRP-2), and was more marked than with GHRP-2 infusion alone (P=0.0006 by ANOVA). CONCLUSIONS: The nocturnal GH, TSH and PRL secretory patterns during prolonged critical illness are herewith further characterized to include loss of synchrony among GH, TSH and PRL release. The synchronizing effect of an exogenous GHRP-2 drive, but not of GHRH or TRH, suggests that the presumed endogenous GHRP-like ligand may participate in the orchestration of coordinated anterior pituitary hormone release.  相似文献   

2.
OBJECTIVE: Central hyposomatotrophism, hypothyroidism and hypogonadism are present concomitantly in men with prolonged critical illness. This study evaluated the impact of combined treatment with GH-releasing peptide-2 (GHRP-2), TRH and GnRH for 5 days compared with GHRP-2 + TRH and with GHRP-2 alone. PATIENTS AND DESIGN: Thirty-three men with prolonged critical illness participated at baseline compared to 50 age- and body mass index (BMI)-matched controls. Patients were randomly assigned to 5 days of placebo (n = 7), GHRP-2 (1 microg/kg/h; n = 9), GHRP-2 + TRH infusion (1 + 1 microg/kg/h; n = 9) or pulsatile GnRH (0.1 microg/kg every 90 min) together with GHRP-2 + TRH infusion (n = 8). MEASUREMENTS: GH, TSH and LH secretion were quantified by deconvolution analysis of serum concentration time series obtained by sampling every 20 min from 2100 to 0600 h at baseline and on nights 1 and 5 of treatment. Serum concentrations of IGF-I, IGFBPs, thyroid hormones, gonadal and adrenal steroids, proinflammatory cytokines and selected metabolic and inflammation markers were measured daily. RESULTS: Patients revealed suppressed pulsatile GH, TSH and LH secretion in the face of low serum concentrations of IGF-I, IGFBP-3 and the acid-labile subunit (ALS) (P < 0.0001 each), thyroid hormones (P < 0.0001) and total and estimated free testosterone (P < 0.0001) levels, whereas free oestradiol (E2) estimates were normal. Serum dehydroepiandrosterone sulphate (DHEAS) levels were also suppressed whereas morning cortisol was normal. Serum levels of type I procollagen (PICP) and bone alkaline phosphatase (sALP) were elevated whereas osteocalcin (OC) was low (P = 0.03). Ureagenesis (P < 0.0001) and breakdown of bone tissue (P < 0.0001) were increased. Baseline serum TNF-alpha, IL-6 and C-reactive protein level and white blood cell (WBC) count were elevated; serum lactate was normal. Only low T4 and high IGFBP-1 levels independently predicted mortality. GHRP-2 infusion reactivated GH secretion and normalized serum IGF-I, IGFBP-3 and ALS. GHRP-2 + TRH infusion reactivated both the GH axis and the thyroid axis, with normal levels of T4 and T3 reached within 1 day. Only GHRP-2 + TRH infusion combined with GnRH pulses reactivated the GH and TSH axis and at the same time increased pulsatile LH secretion compared to placebo. Only GnRH pulses together with GHRP-2 + TRH infusion increased testosterone significantly from day 2 (peak increase of + 312%) through day 5 and serum E2 with > 80% from day 1 through day 3 (all P = 0.05). Ureagenesis was reduced by GHRP-2 + TRH + GnRH (P = 0.01) and by GHRP-2 + TRH (P = 0.009) but not by GHRP-2 alone. Serum OC levels were increased only by GHRP-2 + TRH + GnRH (P = 0.03), with a trend for GHRP-2 + TRH (P = 0.09), but not by GHRP-2 alone. On day 5, serum lactate levels and WBC count were increased by GHRP-2 infused alone and in combination with TRH but not by GHRP-2 + TRH + GnRH. CONCLUSIONS: Coadministration of GHRP-2, TRH and GnRH reactivated the GH, TSH and LH axes in prolonged critically ill men and evoked beneficial metabolic effects which were absent with GHRP-2 infusion alone and only partially present with GHRP-2 + TRH. These data underline the importance of correcting the multiple hormonal deficits in patients with prolonged critical illness to counteract the hypercatabolic state.  相似文献   

3.
OBJECTIVE Protein hypercatabolism and preservation of fat depots are hallmarks of critical illness, which is associated with blunted pulsatile GH secretion and low circulating IGF-I, TSH, T4 and T3. Repetitive TRH administration is known to reactivate the pituitary-thyroid axis and to evoke paradoxical GH release in critical illness. We further explored the hypothalamic-pituitary function in critical illness by examining the effects of GH-releasing hormone (GHRH) and/or GH-releasing peptide-2 (GHRP-2) and TRH administration. PATIENTS AND DESIGN Critically ill adults (n=40; mean age 55 years) received two i.v. boluses with a 6-hour interval (0900 and 1500 h) within a cross-over design. Patients were randomized to receive consecutively placebo and GHRP-2 (n=10), GHRH and GHRP-2 (n=10), GHRP-2 and GHRH+GHRP-2 (n=10), GHRH+GHRP-2 and GHRH+GHRP-2+TRH (n=10). The GHRH and GHRP-2 doses were 1μg/kg and the TRH dose was 200μg. Blood samples were obtained before and 20, 40, 60 and 120 minutes after each injection. MEASUREMENTS Serum concentrations of GH, T4, T3, rT3, thyroid hormone binding globulin (TBG), IGF-I, insulin and cortisol were measured by RIA; PRL and TSH concentrations were determined by IRMA. RESULTS Critically ill patients presented a striking GH response to GHRP-2 (mean±SEM peak GH 51±9 μg/l in older patients and 102±2μg/l in younger patients; P=0.005 vs placebo). The mean GH response to GHRP-2 was more than fourfold higher than to GHRH (P=0.007). In turn, the mean GH response to GHRH+GHRP-2 was 2.5-fold higher than to GHRP-2 alone (P=0.01), indicating synergism. Adding TRH to the GHRH+GHRP-2 combination slightly blunted this mean response by 18% (P=0.01). GHRP-2 had no effect on serum TSH concentrations whereas both GHRH and GHRH+GHRP-2 evoked an increase in peak TSH levels of 53 and 32% respectively. The addition of TRH further increased this TSH response < ninefold (P=0.005), elicited a 60% rise in serum T3 (P=0.01) and an 18% increase in T4 (P=0.005) levels, without altering rT3 or TBG levels. GHRH and/or GHRP-2 induced a small increase in serum PRL levels. The addition of TRH magnified the PRL response 2.4-fold (P=0.007). GHRP-2 increased basal serum cortisol levels (531±29nmol/l) by 35% (P=0.02); GHRH provoked no additional response, but adding TRH further increased the cortisol response by 20% (P=0.05). CONCLUSIONS The specific character of hypothalamic-pituitary function in critical illness is herewith extended to the responsiveness to GHRH and/or GHRP-2 and TRH. The observation of striking bursts of GH secretion elicited by GHRP-2 and particularly by GHRH+GHRP-2 in patients with low spontaneous GH peaks opens the possibility of therapeutic perspectives for GH secretagogues in critical care medicine.  相似文献   

4.
Prolonged critical illness is characterized by reduced pulsatile TSH secretion, causing reduced thyroid hormone release and profound changes in thyroid hormone metabolism, resulting in low circulating T(3) and elevated rT(3) levels. To further unravel the underlying mechanisms, we investigated the effects of exogenous TRH and GH-releasing peptide-2 (GHRP-2) in an in vivo model of prolonged critical illness. Burn-injured, parenterally fed rabbits were randomized to receive 4-d treatment with saline, 60 microg/kg.h GHRP-2, 60 microg/kg.h TRH, or 60 microg/kg.h TRH plus 60 microg/kg.h GHRP-2 started on d 4 of the illness (n = 8/group). The activities of the deiodinase 1 (D1), D2, and D3 in snap-frozen liver, kidney, and muscle as well as their impact on circulating thyroid hormone levels were studied. Compared with healthy controls, hepatic D1 activity in the saline-treated, ill animals was significantly down-regulated (P = 0.02), and D3 activity tended to be up-regulated (P = 0.06). Infusion of TRH and TRH plus GHRP-2 restored the catalytic activity of D1 (P = 0.02) and increased T(3) levels back within physiological range (P = 0.008). D3 activity was normalized by all three interventions, but only addition of GHRP-2 to TRH prevented the rise in rT(3) seen with TRH alone (P = 0.02). Liver D1 and D3 activity were correlated (respectively, positively and negatively) with the changes in circulating T(3) (r = 0.84 and r = -0.65) and the T(3)/rT(3) ratio (r = 0.71 and r = -0.60). We conclude that D1 activity during critical illness is suppressed and related to the alterations within the thyrotropic axis, whereas D3 activity tends to be increased and under the joint control of the somatotropic and thyrotropic axes.  相似文献   

5.
Brief coronary occlusion followed by reperfusion leads to reversible myocardial dysfunction (stunning) which can induce irreversible damage of other organ systems. We studied the effects of pretreatment with recombinant human GH (rhGH) and the GH-secretagogue GHRP-2 on myocardial stunning in a blood-perfused isolated rabbit heart model. In a first set of experiments, effects of bolus rhGH administration (3.5 mg/kg) (n = 5) into the aortic root of unpretreated animals were compared with those of saline (n = 6). In a second set, animals were pretreated for 14 days with SC rhGH 3.5 mg/kg x day (n = 9) or 160 microg/kg x day GHRP-2 (n = 8) in two divided doses. Body weight and plasma concentrations of rhGH, rabbit GH (rGH) and IGF-I were determined before and at the end of 14 days pretreatment. Hearts were excised and submitted to 15 min ischemia followed by 80 min reperfusion, after which postischemic recovery was compared with nonischemic hearts mounted into the same system. At study end, all hearts were snap-frozen to examine markers of apoptosis. Circulating levels of rabbit GH (rGH) remained identical in all animals. Pretreatment with rhGH for 14 days induced a 142 +/- 116% rise of serum IGF-I vs. 8 +/- 15% with GHRP-2 (P < 0.001) and increased body weight with 6.8 +/- 2.5% vs. 3.4 +/- 3.3% with GHRP-2 (P = 0.01). A bolus injection of rhGH did not alter myocardial function compared with saline allowing data from these experiments to be pooled into one ischemic control group for further analysis of the effect of pretreatment. No difference in postischemic recovery of left ventricular systolic function among the unpretreated, rhGH pretreated and GHRP-2 pretreated hearts was apparent. At the end of reperfusion, a 3-fold higher end-diastolic pressure (EDP) persisted in the unpretreated and rhGH pretreated hearts compared with the nonischemic hearts. In the GHRP-2 pretreated hearts, EDP decreased to half the pressure observed in unpretreated and rhGH pretreated hearts (all P < or = 0.02), a level which was indistinguishable from that in the non-ischemic hearts, suggesting full postischemic recovery of diastolic function. There were no signs of increased apoptosis in the experimental groups. In conclusion, 14 days pretreatment with GHRP-2, but not rhGH, protected selectively against the diastolic dysfunction of myocardial stunning in this model. This observation may open perspectives for GH-secretagogues as cardioprotective agents.  相似文献   

6.
Protracted critical illness is marked by protein wasting resistant to feeding, by accumulation of fat stores, and by suppressed pulsatile release of GH and TSH. We previously showed that the latter can be reactivated by brief infusion of GH-releasing peptide (GHRP-2) and TRH. Here, we studied combined GHRP-2 and TRH infusion for 5 days, which allowed a limited evaluation of the metabolic effectiveness of this novel trophic endocrine strategy. Fourteen patients (mean +/- SD age, 68 +/- 11 yr), critically ill for 40 +/- 28 days, were compared to a matched group of community-living control subjects at baseline and subsequently received 5 days of placebo and 5 days of GHRP-2 plus TRH (1 + 1 microg/kg x h) infusion in random order. At baseline, impaired anabolism, as indicated by biochemical markers (osteocalcin and leptin), was linked to hyposomatotropism [reduced pulsatile GH secretion, as determined by deconvolution analysis, and low GH-dependent insulin-like growth factor and binding protein (IGFBP) levels]. Biochemical markers of accelerated catabolism (increased protein degradation and bone resorption) were related to tertiary hypothyroidism and the serum concentration of IGFBP-1, but not to hyposomatotropism. Metabolic markers were independent of elevated serum cortisol. After 5 days of GHRP-2 plus TRH infusion, osteocalcin concentrations increased 19% vs. -6% with placebo, and leptin had rose 32% vs. -15% with placebo. These anabolic effects were linked to increased IGF-I and GH-dependent IGFBP, which reached near-normal levels from day 2 onward. In addition, protein degradation was reduced, as indicated by a drop in the urea/creatinine ratio, an effect that was related to the correction of tertiary hypothyroidism, with near-normal thyroid hormone levels reached and maintained from day 2 onward. Concomitantly, a spontaneous tendency of IGFBP-1 to rise and of insulin to decrease was reversed. Cortisol concentrations were not detectably altered. In conclusion, 5-day infusion of GHRP-2 plus TRH in protracted critical illness reactivates blunted GH and TSH secretion, with preserved pulsatility, peripheral responsiveness, and feedback inhibition and without affecting serum cortisol, and induces a shift toward anabolic metabolism. This provides the first evidence of the metabolic effectiveness of short term GHRP-2 plus TRH agonism in this particular wasting condition.  相似文献   

7.
唐丹  王峻峰 《中华内科杂志》1997,36(11):754-758
为探讨生长激素治疗对甲状腺功能的影响及其机制,给19例特发性生长激素缺乏症患者每日皮下注射重组人生长激素(rhGH)Genotropin0.1IU/kg体重,治疗1年,观察治疗前后甲状腺功能及血促甲状腺激素(TSH)对静脉推注促甲状腺素释放激素(TRH)的反应。经Genotropin治疗后,患者血清T4及FT4水平较治疗前明显下降(P<0.01);治疗半年后,血清FT3水平亦较治疗前下降(P<0.05);而血清T3、3,3′,5′-三碘甲状腺原氨酸及TSH水平无明显变化(0.2<P<0.3)。治疗1年后,8例患者血清FT4水平降至正常范围以下,依此将患者分为治疗后甲状腺功能正常组及降低组,结果证实甲状腺功能降低组在治疗前或治疗后TSH对TRH兴奋的反应均较甲状腺功能正常组高(P<0.05)。血清TSH对TRH的反应增强提示患者治疗前就已有潜在的TRH缺乏,后者可能是rhGH治疗过程中FT4及T4水平下降的潜在基础。因此在rhGH治疗过程中需监测特发性生长激素缺乏症患者的甲状腺功能,以及时给予替代治疗。  相似文献   

8.
High doses of GH, used to induce anabolism in prolonged critically ill patients, unexpectedly increased mortality. To further explore underlying mechanisms, a valid animal model is needed. Such a model is presented in this study. Seven days after arterial and venous cannulae placement, male New Zealand White rabbits were randomly allocated to a control or a critically ill group. To induce prolonged critical illness, a template controlled 15% deep dermal burn injury was imposed under combined general and regional (paravertebral) anesthesia. Subsequently, critically ill rabbits received supplemental analgesia and were parenterally fed with glucose, insulin, amino acids, and lipids. On d 1 and d 8 after randomization, acute and chronic spontaneous hormonal profiles of GH, TSH, and PRL secretion were obtained by sampling blood every 15 min for 7 h. Furthermore, GH, TSH, and PRL responses to an iv bolus of GH-releasing peptide 2 (GHRP-2) + TRH were documented on d 0, 1, and 8. Hemodynamic status and biochemical parameters were evaluated on d 0, 1, 3, 5, and 8, after which animals were killed and relative wet weight and water content of organs was determined. Compared with controls, critically ill animals exhibited transient metabolic acidosis on d 1 and weight loss, organ wasting, systolic hypertension, and pronounced anemia on d 8. On d 1, pulsatile GH secretion doubled in the critically ill animals compared with controls, and decreased again on d 8 in the presence of low plasma IGF-I concentrations from d 1 to d 8. GH responses to GHRP-2 + TRH were elevated on d 1 and increased further on d 8 in the critically ill animals. Mean TSH concentrations were identical in both groups on d 1 and 8, in the face of dramatically suppressed plasma T(4) and T(3) concentrations in the critically ill animals. PRL secretion was impaired in the critically ill animals exclusively on d 8. TSH and PRL responses to GHRP-2 and TRH were increased only on d 1. In conclusion, this rabbit model of acute and prolonged critical illness reveals several of the clinical, biochemical, and endocrine manifestations of the human counterpart.  相似文献   

9.
To delineate the metabolic fate of thyroid hormone in prolonged critically ill rabbits, we investigated the impact of two dose regimes of thyroid hormone on plasma 3,3'-diiodothyronine (T(2)) and T(4)S, deiodinase type 1 (D1) and D3 activity, and tissue iodothyronine levels in liver and kidney, as compared with saline and TRH. D2-expressing tissues were ignored. The regimens comprised either substitution dose or a 3- to 5- fold higher dose of T(4) and T(3), either alone or combined, targeted to achieve plasma thyroid hormone levels obtained by TRH. Compared with healthy animals, saline-treated ill rabbits revealed lower plasma T(3) (P=0.006), hepatic T(3) (P=0.02), and hepatic D1 activity (P=0.01). Substitution-dosed thyroid hormone therapy did not affect these changes except a further decline in plasma (P=0.0006) and tissue T(4) (P=0.04). High-dosed thyroid hormone therapy elevated plasma and tissue iodothyronine levels and hepatic D1 activity, as did TRH. Changes in iodothyronine tissue levels mimicked changes in plasma. Tissue T(3) and tissue T(3)/reverse T(3) ratio correlated with deiodinase activities. Neither substitution- nor high-dose treatment altered plasma T(2). Plasma T(4)S was increased only by T(4) in high dose. We conclude that in prolonged critically ill rabbits, low plasma T(3) levels were associated with low liver and kidney T(3) levels. Restoration of plasma and liver and kidney tissue iodothyronine levels was not achieved by thyroid hormone in substitution dose but instead required severalfold this dose. This indicates thyroid hormone hypermetabolism, which in this model of critical illness is not entirely explained by deiodination or by sulfoconjugation.  相似文献   

10.
We have examined the interaction of thyroid hormone and TRH on GH release from rat pituitary monolayer cultures and perifused rat pituitary fragments. TRH (10(-9) and 10(-8)M) consistently stimulated the release of TSH and PRL, but not GH, in pituitary cell cultures of euthyroid male rats. Basal and TRH-stimulated TSH secretion were significantly increased in cells from thyroidectomized rats cultured in medium supplemented with hypothyroid serum, and a dose-related stimulation of GH release by 10(-9)-10(-8) M TRH was observed. The minimum duration of hypothyroidism required to demonstrate the onset of this GH stimulatory effect of TRH was 4 weeks, a period significantly longer than that required to cause intracellular GH depletion, decreased basal secretion of GH, elevated serum TSH, or increased basal secretion of TSH by cultured cells. In vivo T4 replacement of hypothyroid rats (20 micrograms/kg, ip, daily for 4 days) restored serum TSH, intracellular GH, and basal secretion of GH and TSH to normal levels, but suppressed only slightly the stimulatory effect of TRH on GH release. The GH response to TRH was maintained for up to 10 days of T4 replacement. In vitro addition of T3 (10(-6) M) during the 4-day primary culture period significantly stimulated basal GH release, but did not affect the GH response to TRH. A GH stimulatory effect of TRH was also demonstrated in cultured adenohypophyseal cells from rats rendered hypothyroid by oral administration of methimazole for 6 weeks. TRH stimulated GH secretion in perifused [3H]leucine-prelabeled anterior pituitary fragments from euthyroid rats. A 15-min pulse of 10(-8) M TRH stimulated the release of both immunoprecipitable [3H]rat GH and [3H]rat PRL. The GH release response was markedly enhanced in pituitary fragments from hypothyroid rats, and this enhanced response was significantly suppressed by T4 replacement for 4 days. The PRL response to TRH was enhanced to a lesser extent by thyroidectomy and was not affected by T4 replacement. These data suggest the existence of TRH receptors on somatotrophs which are suppressed by normal amounts of thyroid hormones and may provide an explanation for the TRH-stimulated GH secretion observed clinically in primary hypothyroidism.  相似文献   

11.
We have studied the changes in thyroid hormone economy that occur in normal pregnant rats between 17-22 days of gestation. T4 and T3 decreased in all extrathyroidal tissues studied, namely plasma, liver, kidney, lung, heart, and skeletal muscle. The exception is the concentration of T3 in cerebral cortex, which remains unchanged, possibly as a consequence of an increase in type II 5'-iodothyronine deiodinase activity. The marked decrease observed in most T4 and T3 pools was not accompanied by a commensurate increase in circulating TSH levels, which at 21 days gestation were either unchanged or actually decreased. The TSH response to TRH appeared to be prolonged. alpha-Glycerophosphate dehydrogenase activity was decreased in the liver, in accordance with its thyroid hormone deficiency. Hepatic type I 5'-iodothyronine deiodinase activity, however, did not decrease, but was slightly increased. Thus, thyroid hormone economy in the pregnant rat near term shows striking similarities with several (but not all) of the changes described in patients with nonthyroidal illness and in several animal models used to study this condition. It is suggested that attenuation of the negative feedback response to the decrease in thyroid hormone pools, leading to low levels of thyroid hormones in most tissues, is the normal physiological response to situations where preservation of energy (and protein) represents a distinct adaptive advantage, as in the case of the pregnant rat and her conceptus.  相似文献   

12.
B B Bercu  S W Yang  R Masuda  R F Walker 《Endocrinology》1992,130(5):2579-2586
The purpose of this study was to evaluate the contribution of endogenous GH-releasing hormone (GHRH) to exogenous GH-releasing hexapeptide (GHRP-6) activity, and to determine whether TRH or GnRH are endogenous analogs of GHRP-6. The activity of GHRP-6, a synthetic GH secretagogue, was significantly attenuated in rats administered GHRH antiserum or alpha-methyl-rho-tyrosine to reduce endogenous GHRH concentrations, and also in rats administered 5-50 micrograms/kg of [N-Ac-Tyr1,D-Arg2]-GRF 1-29 amide to block pituitary GHRH receptors. However, GHRP-6 activity was potentiated in rats administered 150 micrograms/kg [N-Ac-Tyr1,D-Arg2]-GRF 1-29 amide, presumably due to partial agonist activity of the GHRH receptor antagonist at the higher dose. These data show that endogenous GHRH contributes to full expression of exogenous GHRP-6 activity in vivo. Like TRH, a subthreshold dose of GHRP-6 was significantly more effective in hypothyroid rats than in euthyroid rats. However, suprathreshold doses of GHRP-6 were less effective in hypothyroid rats. Unlike TRH, GHRP-6 had no effect on GH and prolactin release from GH3 cells, and TRH and GnRH were poor competitors for 3H-GHRP-6 binding sites on pituitary membranes. A GnRH receptor antagonist did not block GHRP-6 activity in vivo, and GnRH administered alone or in combination with GHRP-6, did not stimulate GH release. The results of this study suggest that synergy between GHRH and GHRP-6 seen in pharmacological studies is physiologically relevant, and that TRH and GnRH are not endogenous analogs of GHRP-6.  相似文献   

13.
Both starvation and critical illness are hallmarked by changes in circulating thyroid hormone parameters with typically low T(3) concentrations in the absence of elevated TSH. This constellation is labeled nonthyroidal illness (NTI). Because critical illness is often accompanied by anorexia and a failing gastrointestinal tract, the NTI of critical illness may be confounded by nutrient deficiency. In an experimental study performed in a rabbit model, we investigated the impact of nutritional deficit on the NTI of sustained critical illness. Critically ill rabbits were randomly allocated to parenteral nutrition (moderate dose 270 kcal/d) initiated on the day after injury and continued until d 7 of illness or to infusing a similar volume of dextrose 1.4% (14 kcal/d). With early parenteral nutrition during illness, the decrease in serum T(3) observed with fasting was reversed, whereas the fall in T(4) was not significantly affected. The rise in T(3) with parenteral nutrition paralleled an increase of liver and kidney type-1 and a decrease of liver and kidney type-3 deiodinase activity and an increase in circulating and central leptin. Nuclear staining of constitutive androstane receptor and its downstream expression of sulfotransferases were reduced in fasting ill animals. TRH expression in the hypothalamus was not different in fasted and fed ill rabbits, although circulating TSH levels were higher with feeding. In conclusion, in this rabbit model of sustained critical illness, reduced circulating T(3), but not T(4), levels could be prevented by parenteral nutrition, which may be mediated by leptin and its actions on tissue deiodinase activity.  相似文献   

14.
The effect on thyroid function of GH administration to 66 adult patients with severe GH deficiency was studied. Seventeen patients were euthyroid, and 49 had central hypothyroidism and were adequately treated with L-T(4). Forty patients were assigned to a low recombinant human GH (rhGH) regimen (3 microg/kg body wt.d for 3 months followed by 6 microg/kg body wt.d for another 3 months) and 26 to a higher one (6 microg/kg body wt.d for 3 months followed by 12 microg/kg body wt.d for another 3 months). Serum IGF-I, TSH, free T(4) (FT(4)), free T(3) (FT(3)), reverse T(3), T(4)-binding globulin, and antithyroid autoantibody (TgAb and TPOAb) were measured in basal condition and after 3 and 6 months of therapy. Normalization of IGF-I levels was obtained after 6-month rhGH treatment in 67% of patients, independently from the dose, whereas a significant reduction in FT(4) and reverse T(3) levels was recorded (P < 0.01), without variations in all the other parameters studied, including serum TSH, FT(3), and T(4)-binding globulin circulating levels. Antithyroid autoantibodies were detected in 11 of 66 patients (16.6%). Eight of 17 (47%) euthyroid subjects and 9 of 49 (18.3%) central hypothyroid patients, despite adequate substitution at baseline, showed FT(4) levels under the normal range at the end of the study. Altogether, 17 of 66 patients (25.7%) worsened their thyroid function. This study shows that GH deficiency masks in a consistent number of adult patients a state of central hypothyroidism. Therefore, during rhGH treatment, a careful monitoring of thyroid function is mandatory to start or adjust L-T(4) substitutive therapy.  相似文献   

15.
Suppression of TSH release from the hypothyroid thyrotrophs is one of the most rapid effects of 3,3',5'-triiodothyronine (T(3)) or thyroxine (T(4)). It is initiated within an hour, precedes the decrease in TSHβ mRNA inhibition and is blocked by inhibitors of mRNA or protein synthesis. TSH elevation in primary hypothyroidism requires both the loss of feedback inhibition by thyroid hormone in the thyrotrophs and the positive effects of TRH. Another event in this feedback regulation may be the thyroid hormone-mediated induction of the TRH-inactivating pyroglutamyl peptidase II (PPII) in the hypothalamic tanycytes. This study compared the chronology of the acute effects of T(3) or T(4) on TSH suppression, TRH mRNA in the hypothalamic paraventricular nucleus (PVN), and the induction of tanycyte PPII. In wild-type mice, T(3) or T(4) caused a 50% decrease in serum TSH in hypothyroid mice by 5 h. There was no change in TRH mRNA in PVN over this interval, but there was a significant increase in PPII mRNA in the tanycytes. In mice with genetic inactivation of the type 2 iodothyronine deiodinase, T(3) decreased serum TSH and increased PPII mRNA levels, while T(4)-treatment was ineffective. We conclude that the rapid suppression of TSH in the hypothyroid mouse by T(3) occurs prior to a decrease in TRH mRNA though TRH inactivation may be occurring in the median eminence through the rapid induction of tanycyte PPII. The effect of T(4), but not T(3), requires the type 2 iodothyronine deiodinase.  相似文献   

16.
The aim of this study was to investigate the effect of two different glucose levels on GH response to the combined administration of GHRH+GHRP-6 in patients with type 2 diabetes. GH response to i.v. bolus of GHRH+GHRP-6 (100 mcg, each) was measured in 12 male patients with type 2 diabetes (mean age: 53.9+/-1.59 years; BMI: 25.58+/-0.39 kg/m(2); mean HbA(1c): 8.7+/-0.42%), during a euglycemic (mean glucose: 4.92+/-0.08 mmol) hyperinsulinemic clamp (insulin infusion rate of 100 mU/kg/h) and a hyperglycemic clamp (mean glucose: 12.19+/-0.11 mmol/l). There was no difference in basal GH levels between the hyperglycemic and euglycemic clamps (2.9+/-0.99 mU/l versus 1.48+/-0.44 mU/l; P>0.05). Peak GH response to GHRH+GHRP-6 during the hyperglycemic clamp was lower than in the englycemic clamp (112.45+/-14.45 mU/l versus 151.06+/-16.87 mU/l; P<0.05). Area under the GH curve was lower in the hyperglycemic than in the euglycemic clamp (6974.49+/-1001.95 mU/l/min versus 9560.75+/-1140.65 mU/l/min; P<0.05). It is concluded that hyperglycemia significantly reduces GH response to combined administration of GHRH+GHRP-6 in normal weight patients with type 2 diabetes. It is suggested that ambient glucose levels should be taken into account during interpretation of GH response to combined administration of GHRH+GHRP-6 in patients with type 2 diabetes.  相似文献   

17.
To evaluate the role of thyroid hormones in regulation of the GH-stimulatory effects of TRH and human pancreatic GH-releasing factor (hpGRF-40), we studied the plasma GH responses to these secretagogues under conditions of thyroid hormone deprivation and replacement in the urethane-anesthetized rat. In euthyroid control rats, TRH (1 microgram/kg) elicited a small transient rise in plasma GH, which peaked at 2-5 min and returned to basal by 20 min. In chronically hypothyroid rats (10 weeks after thyroidectomy), intrapituitary GH was markedly depleted to less than 0.1% of normal, and TRH was completely ineffective in eliciting a plasma GH response to TRH. In chronically hypothyroid rats given T4 (20 micrograms/kg daily) for 4 days, intrapituitary GH was partially repleted, and the GH response to TRH was markedly enhanced compared to that in euthyroid rats. The extent to which the GH response to TRH was enhanced by chronic hypothyroidism, followed by short term T4 treatment, depended on the duration of T4 administration. The plasma GH response was greatest after 1-3 days of T4 treatment; treatment for 7 days, on the other hand, suppressed the GH response to below that of euthyroid rats. The minimal duration of hypothyroidism which, in combination with short term (2 days) T4 treatment, enhanced the plasma GH response to TRH, was 6 weeks, with 8 weeks or longer being optimal. The effect of TRH on plasma GH was dose dependent in thyroidectomized rats given T4 for 2 days; the lowest maximally stimulatory dose was 10 times less than that in the euthyroid rat (1 vs. 10 micrograms/kg). The GH-stimulatory effect of TRH in thyroidectomized rats given T4 for 2 days was abolished by the simultaneous administration of SRIF (40 micrograms/kg). That the failure of TRH to stimulate GH release in the chronically hypothyroid rat may have been the consequence of a depletion of intrapituitary GH available for release was suggested by the finding that in parallel studies, hpGRF-40, a more potent stimulator of GH release in the euthyroid rat, was also without effect. In contrast to the GH response to TRH, the GH response to hpGRF-40 was only partially restored by T4 treatment of chronically hypothyroid rats for 2 days. We conclude that chronic thyroid hormone deficiency selectively sensitizes the somatotroph to TRH. Short term thyroid hormone replacement is needed to replete intrapituitary GH and allow the expression of this enhanced GH secretory response to TRH. More prolonged treatment with T4, on the other hand, appears to desensitize the somatotroph to TRH.  相似文献   

18.
Acutely ill patients typically present with low circulating T3 and increased reverse T3. When illness is severe and prolonged, also pulsatile TSH secretion and circulating T4 levels are low. This constellation of changes within the thyroid axis is referred to as the low T3 syndrome or non-thyroidal illness syndrome (NTI), and comprises both peripheral and central alterations in the thyroid axis. Acute alterations are dominated by changes in thyroid hormone binding, in thyroid hormone uptake by the cell and in the activity of the type-1 and type-3 deiodinase enzymes. Prolonged critical illness is associated with a neuroendocrine dysfunction characterized by suppressed hypothalamic thyrotropin-releasing hormone (TRH) expression, resulting in reduced stimulation of the thyrotropes whereby thyroidal hormone release is impaired. During prolonged critical illness, several tissue responses could be interpreted as compensatory to low thyroid hormone availability, such as increased expression of monocarboxylate transporters, upregulation of type 2 deiodinase activity and increased sensitivity at the receptor level. Whether the low T3 syndrome should be treated and which compound should be used remains to be further studied.  相似文献   

19.
The influence of TRH and TSH injections on plasma concentrations of tri-iodothyronine (T3) and thyroxine (T4) was investigated in neonatal (injection within 0.5 h after delivery) and growing lambs and in normal, pregnant and lactating adult ewes (all 2 years old and originating from Suffolk, Milksheep and Texal crossbreeds). Neonatal lambs had higher levels of T3, T4 and GH compared with all other groups, whereas prolactin and TSH were higher in lactating ewes. In all animals, injections of TRH increased plasma concentrations of prolactin and TSH after 15 min but not of GH at any time. Small increases in T3 and T4 were observed in neonatal lambs, without any effect on the T3 and T4 ratio, after prolactin administration, whereas prolactin did not influence plasma concentrations of T3 or T4 in all other experimental groups. Similar results for thyroid hormones were obtained after TRH or TSH injections. It was therefore concluded that the effects observed after TRH challenge were mediated by the release of TSH. With the possible exception of neonatal lambs, plasma concentrations of T3 after administration of TRH or TSH were always increased before those of T4; the increase in T3 occurred within 0.5-1 h compared with 2-4 h for T4 in all experimental groups. This resulted in an increased ratio of plasma T3 to T4 up to 4 h after injection. It is concluded that, in sheep, TRH and TSH preferentially release T3 from the thyroid gland probably by a stimulatory effect of TSH on the intrathyroidal conversion of T3 to T4.  相似文献   

20.
OBJECTIVE: The diagnosis of GH deficiency in adults should be made using provocative testing of GH secretion. The insulin tolerance test (ITT) is recommended as the gold standard investigation. Because of the risk of serious complications, patients with epilepsy or known ischemic heart disease should not undergo this test. GHRP-6 is a synthetic hexapeptide that releases GH by binding to specific hypothalamic and pituitary receptors. We assessed the diagnostic capability of GH stimulation by GHRP-6 alone or in combination with GHRH in comparison to the results of an ITT. DESIGN: Twenty patients underwent an ITT for suspected pituitary or adrenal disease. Either GHRP-6 (1 microg/kg) alone, or GHRP-6 in combination with GHRH (1 microg/kg) were administered on different days. Blood samples were obtained during a subsequent 90-min period for measurement of GH. RESULTS: Ten patients had a GH peak response of less than 3 microg/l during ITT and were considered growth hormone deficient (GHD). The GH mean peak (+/-S.E.M., range) in this group was 0.7 microg/l (+/-0.3, 0.1-2.9) compared with 14.5 microg/l (+/-3.5, 3.8-40.8) in the group of patients with a GH peak response of more than 3 microg/l (growth hormone sufficient (GS)). For the GHRP-6 test, the GH mean peak was 1.3 microg/l (+/-0.6, 0.1-6.7) in the GHD group versus 25.7 microg/l (+/-5.5, 7.7-54.2) in the GS group. After GHRP-6+GHRH, the GH mean peaks were 4.0 microg/l (+/-1.3, 0.2-11.9) versus 54.7 microg/l (+/-11.1, 13.9-136.0) respectively. During administration of GHRP-6, the only side effects observed were flush symptoms. CONCLUSIONS: Peak GH levels below 7 microg/l for the GHRP-6 test and below 13 microg/l for the combined GHRP-6+GHRH test identified all patients with GH deficiency correctly as defined by ITT. The results suggest that testing with GHRP-6 or GHRP-6+GHRH is as sensitive and specific as an ITT for the diagnosis of adult GH deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号