首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombospondin-1 (TSP-1) is upregulated in several inflammatory diseases. Recent data have shown that macrophages from TSP-1-deficient mice have a reduced inflammatory phenotype, suggesting that TSP-1 plays a part in macrophage activation. DNA microarray approach revealed that Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) may induce the enhanced TSP-1 expression in human monocytes, suggesting a role of TSP-1-mediated pathogenesis in periodontitis. Until recently, the function of TSP-1 has been a matter of debate. In this study, we explored the role of TSP-1 in inflammatory cytokine secretions and its putative mechanism in pathogenesis of periodontitis. We demonstrated that TSP-1 expression was significantly upregulated in gingival tissues with periodontitis and in P. gingivalis LPS-stimulated THP-1 cells. Deficiency of TSP-1 by transfecting siRNAs decreased IL-6, IL-1β, and TNF-α secretions in THP-1 cells, whereas overexpression of TSP-1 resulted in an upregulation of IL-6, IL-1β, and TNF-α productions. Additional experiments showed that Pyrrolidine dithiocarbamate (PDTC) inhibited IL-6, IL-1β, and TNF-α expression induced by overexpression of TSP-1, accompanying with downregulation of phosphorylated p65 and IκBα protein levels in response to P. gingivalis LPS. These results indicated that TSP-1 played a significant role in P. gingivalis LPS-initiated inflammatory cytokines (IL-6, IL-1β, and TNF-α) secretions of THP-1 cells, and the NF-κB signaling is involved in its induction of expression. Thus, TSP-1 effectively elevated P. gingivalis LPS-induced inflammation mediated by the NF-κB pathway and may be critical for pathology of periodontitis.  相似文献   

2.
Background: The mixed lineage kinase domain-like protein (MLKL) has recently been identified as a key RIP3 (receptor interacting protein 3) downstream component of tumor necrosis factor (TNF)-induced necroptosis. Objective: To evaluate the expression and clinical significance of MLKL in cervical squamous cell carcinoma.Methods: The expression of MLKL in 54 cervical squamous carcinoma samples was detected by immuneohistochemical method. Chi-square, correlation analysis and kaplan-Meier method were used to analyze the data. Results: The MLKL expression in cervical squamous cell carcinoma was higher than that in normal cervical tissues (P = 0.004). The MLKL expression was negatively correlated with histological grade, lymphatic metastasis (P<0.05). Survival analysis showed the low expression of MLKL indicated poor prognosis. Conclusion: MLKL was a prognostic biomarker for cervical squamous cell carcinoma.  相似文献   

3.
Necroptosis不同于坏死和凋亡,具有坏死的细胞形态特点和自噬的活化,并且是主动耗能的,是被一系列信号传导通路所调控的细胞死亡机制.Necroptosis的发现和确认为细胞死亡的逆转和治疗开创了一个新的研究和应用途经.RIP1激酶是调控Necroptosis 形成的关键酶,Necrostatins则是一类小分子化合物,它通过特异性地抑制细胞RIP1激酶而抑制Necroptosis 的形成.  相似文献   

4.
Tanshinone IIA (TSA), a pharmacologically active component isolated from Danshen, may prevent cardiovascular diseases due to its anti-inflammatory, anti-oxidative, and anti-adipogenic effects. Porphyromonas gingivalis, a major periodontal pathogen, may contribute to the progression of atherosclerosis. Here, we studied the effects of TSA on atherosclerosis in ApoE?/? mice with P. gingivalis infection. Eight-week-old ApoE?/? mice were randomized to (a) phosphate-buffered saline (PBS), (b) P. gingivalis, and (c) P. gingivalis + TSA (60 mg kg?1 day?1). The mice were injected with (a) PBS, or (b) and (c) P. gingivalis 3 times per week for a total of 10 times. After 8 weeks, atherosclerotic risk factors in serum and in heart, aorta, and liver tissues were analyzed in all mice using Oil Red O, atherosclerosis cytokine antibody arrays, enzyme-linked immunosorbent assay (ELISA), real-time PCR, and microRNA array. CD40, G-CSF, IFN-γ, interleukin (IL)-1β, IL-6, MCP-1, MIP-3α, tumor necrosis factor-α (TNF-α), and VEGF were attenuated by TSA in atherosclerosis cytokine antibody arrays. TSA-treated mice showed a significant reduction of C-reactive protein (CRP), ox-LDL, IL-1β, IL-6, IL-12, and TNF-α in ELISA data. Real-time PCR analyses showed that TSA decreased the expression of CCL-2, CD40, IL-1β, IL-6, TNF-α, and MMP-2 in heart and aorta tissues. Moreover, hepatic CRP was downregulated by TSA, although FASN and HMG-CoA were not. The relative expressions of miR-146b and miR-155 were elevated by P. gingivalis infection and were downregulated by TSA treatment. These results suggest that TSA was a potential therapeutic agent that may have the ability to prevent P. gingivalis-induced atherosclerosis associated with anti-inflammatory and anti-oxidative effects.  相似文献   

5.
Receptor-interacting protein 3 (RIP3) plays an important role in the necroptosis signaling pathway. Our previous studies have shown that the RIP3/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis occurs in retinal ganglion cell line 5 (RGC-5) following oxygen-glucose deprivation (OGD). However, upstream regulatory pathways of RIP3 are yet to be uncovered. The purpose of the present study was to investigate the role of p90 ribosomal protein S6 kinase 3 (RSK3) in the phosphorylation of RIP3 in RGC-5 cell necroptosis following OGD. Our results showed that expression of RSK3, RIP3, and MLKL was upregulated in necroptosis of RGC-5 after OGD. A computer simulation based on our preliminary results indicated that RSK3 might interact with RIP3, which was subsequently confirmed by co-immunoprecipitation. Further, we found that the application of a specific RSK inhibitor, LJH685, or rsk3 small interfering RNA (siRNA), downregulated the phosphorylation of RIP3. However, the overexpression of rip3 did not affect the expression of RSK3, thereby indicating that RSK3 could be a possible upstream regulator of RIP3 phosphorylation in OGD-induced necroptosis of RGC-5 cells. Moreover, our in vivo results showed that pretreatment with LJH685 before acute high intraocular pressure episodes could reduce the necroptosis of retinal neurons and improve recovery of impaired visual function. Taken together, our findings suggested that RSK3 might work as an upstream regulator of RIP3 phosphorylation during RGC-5 necroptosis.  相似文献   

6.
The Gram-negative bacterium Porphyromonas gingivalis is strongly associated with periodontitis. We previously demonstrated that P2X7 receptor activation by extracellular ATP (eATP) triggers elimination of intracellular pathogens, such as Leishmania amazonensis, Toxoplasma gondii and Chlamydia trachomatis. We also showed that eATP-induced IL-1β secretion via the P2X7 receptor is impaired by P. gingivalis fimbriae. Furthermore, enhanced P2X7 receptor expression was detected in the maxilla of P. gingivalis-orally infected mice as well as in human periodontitis patients. Here, we examined the effect of P2X7-, caspase-1/11- and IL-1 receptor-mediated responses during P. gingivalis infection. P2X7 receptor played a large role in controlling P. gingivalis infection and P. gingivalis-induced recruitment of inflammatory cells, especially neutrophils. In addition, IL-1β secretion was detected at different time points only when P2X7 receptor was expressed and in the presence of eATP treatment ex vivo. Activation of P2X7 receptor and IL-1 receptor by eATP and IL-1β, respectively, promoted P. gingivalis elimination in macrophages. Interestingly, eATP-induced P. gingivalis killing was inhibited by the IL-1 receptor antagonist (IL-1RA), consistent with autocrine activation of the IL-1 receptor for P. gingivalis elimination. In vivo, caspase-1/11 and IL-1 receptor were also required for bacterial clearance, leukocyte recruitment and IL-1β production after P. gingivalis infection. Our data demonstrate that the P2X7-IL-1 receptor axis activation is required for effective innate immune responses against P. gingivalis infection.  相似文献   

7.
Necroptosis-一种新的程序性死亡的研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
细胞的死亡机制一直是生物医学研究的核心热点之一.目前公认的主要细胞死亡类型有3种.第1种是"坏死",第2种是"凋亡",第3种是"自噬".凋亡和自噬均需要能量和合成新的蛋白质,是一个细胞自我调控的主动过程,因此也被称为"程序性死亡" [1-3].  相似文献   

8.
The prevention and treatment of periodontitis requires not only the control of causative pathogens, especially Porphyromonas gingivalis, but also the regulation of inflammatory immune response. Investigating auxiliary drugs for periodontitis during conventional treatments is, thus, quite important. Capsaicin, an agonist for the vanilloid receptor subtype 1 (TRPV1), due to its bacteriostatic activity against Gram-negative bacteria and anti-inflammatory effects, appears to be a promising drug. In this work, the antimicrobial activity of capsaicin against P. gingivalis and biofilm formation, inflammatory cytokine levels in experimental periodontitis, osteoclast precursor proliferation, and osteoclastogenesis in vitro were fully investigated. The results showed that capsaicin inhibited P. gingivalis growth with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) of 16 and 64 mg/l, respectively. Capsaicin also inhibited P. gingivalis biofilm formation, with minimum biofilm inhibition concentrations MBIC50 and MBIC90 of 16 and 32 mg/l, respectively, and reduced pre-formed biofilms’ viability with a minimum biofilm reduction concentration MBRC50 of 64 mg/l, as demonstrated by confocal laser scanning microscopy. In experimental periodontitis, except for IL-10, TNF-α, IL-1β, IL-6, IL-12, and iNOS were depressed after capsaicin treatment. Moreover, capsaicin also suppressed osteoclast precursor proliferation and osteoclastogenesis, as demonstrated by NF-?B p65. However, this favorable effect was attenuated by the TRPV1 antagonist, camphor. It, thus, suggests that capsaicin is a potential drug for the auxiliary treatment of periodontitis. TRPV1 activation may involve in beneficial roles of capsaicin on periodontitis.  相似文献   

9.
可调节性细胞死亡在组织稳态中发挥至关重要的作用。最新发现:程序性坏死作为一种调节途径,其涉及RIPK3和MLKL蛋白的参与,且由死亡受体、干扰素、Toll样受体、细胞内RNA和DNA感应器体或其他介质诱发。RIPK1具有激酶依赖性支架功能,可抑制或激发细胞坏死和凋亡。小鼠模型研究显示了程序性坏死在炎症中所发挥的重要作用,这对于研究许多人类的炎性疾病发病原理有重要意义。本文讨论了程序性坏死调节机制及其在炎症和疾病中发挥的潜在作用。  相似文献   

10.
To investigate whether oligomerization domains (NODs) are involved in Porphyromonas gingivalis-induced interleukin (IL)-6, IL-8, and vascular cell adhesion molecule (VCAM)-1 expression beyond Toll-like receptors (TLRs), we investigated the role of NOD1/2 in P. gingivalis-induced IL-6, IL-8, and VCAM-1 expression in human gingival fibroblasts (hGFs) and periodontal ligament cells (hPDLCs). The mechanism was explored by activation and silence of NODs, electrophoretic mobility shift assay (EMSA), and pathway blockade assays. Results showed that P. gingivalis could induce NOD1, NOD2, IL-6, IL-8, and VCAM-1 expression in hGFs and hPDLs at mRNA and protein levels. Activation of NOD1/2 by agonists could clearly upregulate the expression of these genes, while silence of NOD1/2 could remarkably attenuate them. EMSA and blockade of NF-κB and extracellular-signal-regulated kinase (ERK)1/2 pathway assays also verified that the two pathways were involved in NOD1/2-mediated IL-6, IL-8, and VCAM-1 expression. In conclusion, our findings demonstrated that P. gingivalis induced IL-6, IL-8, and VCAM-1 expression in hGFs and hPDLCs through NOD1/2-mediated NF-κB and ERK1/2 signaling pathways beyond TLRs.  相似文献   

11.
《Mucosal immunology》2021,14(5):1160-1171
Regulation of epithelial cell death has emerged as a key mechanism controlling immune homeostasis in barrier surfaces. Necroptosis is a type of regulated necrotic cell death induced by receptor interacting protein kinase 3 (RIPK3) that has been shown to cause inflammatory pathologies in different tissues. The role of regulated cell death and particularly necroptosis in lung homeostasis and disease remains poorly understood. Here we show that mice with Airway Epithelial Cell (AEC)-specific deficiency of Fas-associated with death domain (FADD), an adapter essential for caspase-8 activation, developed exacerbated allergic airway inflammation in a mouse model of asthma induced by sensitization and challenge with house dust mite (HDM) extracts. Genetic inhibition of RIPK1 kinase activity by crossing to mice expressing kinase inactive RIPK1 as well as RIPK3 or MLKL deficiency prevented the development of exaggerated HDM-induced asthma pathology in FADDAEC-KO mice, suggesting that necroptosis of FADD-deficient AECs augmented the allergic immune response. These results reveal a role of AEC necroptosis in amplifying airway allergic inflammation and suggest that necroptosis could contribute to asthma exacerbations caused by respiratory virus infections inducing AEC death.  相似文献   

12.
Fulminant hepatic failure (FHF) is a life-threatening clinical syndrome results in massive inflammation and hepatocyte death. Necroptosis is a regulated form of necrotic cell death that is emerging as a crucial control point for inflammatory diseases. The kinases receptor interacting protein (RIP) 1 and RIP3 are known as key modulators of necroptosis. In this study, we investigated the impact of necroptosis in the pathogenesis of FHF and molecular mechanisms, particularly its linkage to damage-associated molecular pattern (DAMP)-mediated pattern recognition receptor (PRR) signaling pathways. Male C57BL/6 mice were given an intraperitoneal injection of necrostatin-1 (Nec-1, RIP1 inhibitor; 1.8 mg/kg; dissolved in 2% dimethyl sulfoxide in phosphate-buffered saline) 1 h before receiving d-galactosamine (GalN; 800 mg/kg)/lipopolysaccharide (LPS; 40 μg/kg). Hepatic RIP1, RIP3 protein expression, their phosphorylation, and RIP1/RIP3 complex formation upregulated in the GalN/LPS group were attenuated by Nec-1. Nec-1 markedly reduced the increases in mortality and serum alanine aminotransferase activity induced by GalN/LPS. Increased serum high mobility group box 1 (HMGB1) and interleukin (IL)-33 release, HMGB1-toll-like receptor 4 and HMGB1-receptor for advanced glycation end products (RAGE) interaction, and nuclear protein expressions of NF-κB and early growth response protein-1 (egr-1) were attenuated by Nec-1. Our finding suggests that necroptosis is responsible for GalN/LPS-induced liver injury through DAMP-activated PRR signaling.  相似文献   

13.
14.
15.
We investigated the involvement of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the pathogenesis of heat-killedS. aureus-induced arthritis. TNF-α and IL-1β peaked at 2 and 24 hr after the injection, respectively. Leukocyte infiltration within 12 hr of the inflammation was significantly inhibited (80%) by coinjection of anti-TNF-α mAb and IL-1 receptor antagonist (IL-1Ra) withS. aureus;however, leukocyte infiltration at 24 hr and thereafter was not inhibited by these agents. The loss of proteoglycan inS. aureus-induced arthritis was also unchanged either by anti-TNF-α mAb, IL-1Ra, or their combination. These results indicate that direct participation of TNF-α and IL-1 in the pathogenesis ofS. aureus-induced arthritis may be limited to the early stage of inflammation and blocking of these cytokines did not result in diminishing the severity of inflammation. Thus, therapeutic approaches with the objective to suppress TNF-α and IL-1 may not be effective in the clinical treatment of gram-positive bacteria-induced arthritis.  相似文献   

16.
The effect of interleukin-8 (IL)-8 on human B cell growth, as determined by thymidine uptake and viable cell numbers was studied. IL-8 inhibited IL-4-induced growth of B cells costimulated with anti-μ antibodies (Ab) or Staphylococcus aureus Cowan strain I (SAC) in a dose-dependent fashion. In contrast, IL-8 did not inhibit IL-2-induced growth of B cells. The IL-8-mediated inhibition was specific, since it was blocked by anti-IL-8 mAb but not by control IgG1. Moreover, anti-tumor necrosis factor-α (anti-TNF-α) Ab blocked IL-8-mediated inhibition. On the other hand, TNF-α, but not other cytokines including IL-1β, IL-3, IL-5, IL-6, interferon-α (IFN-α) or IFN-γ, inhibited IL-4-mediated growth, and inhibition by TNF-α was blocked by anti-TNF-α Ab but not by control IgG. IL-4 had no effect on TNF-α binding by B cells while it decreased TNF-α production by B cells. IL-8 had no effect in binding of IL-4, IL-2 or TNF-α by B cells, however, it enhanced TNF-α production by B cells. These results indicate that IL-8 inhibited IL-4-induced human B cell growth by enhancement of endogenous TNF-α production.  相似文献   

17.
坏死性凋亡是新近发现的一种程序性坏死途径,在死亡受体信号激活后由RIP1和RIP3调控,并可被化合物necrostatin-1特异性抑制。目前研究证实坏死性凋亡涉及多种中枢神经系统损伤疾病的发生机制,并且通过干预坏死性凋亡信号通路,对诸多因素引起的中枢神经系统损伤具有一定的保护作用。深入研究坏死性凋亡的分子调控机制,有望为中枢神经系统损伤疾病治疗提供更多的潜在新靶点。  相似文献   

18.
目的:研究坏死性凋亡是否介导高糖(HG)诱导的人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)损伤。方法:CCK-8法检测细胞存活率;Western blot法测定受体相互作用蛋白3(RIP3)、cleaved caspase-3的蛋白水平;罗丹明123染色荧光显微镜照相法检测线粒体膜电位(mitochondrial membrane potential,MMP);双氯荧光素(DCFH-DA)染色荧光显微镜照相法测定胞内活性氧簇(reactive oxygen species,ROS)的水平。结果:应用不同浓度葡萄糖(10、20和40 mmol/L)处理HUVECs 24 h,RIP3的蛋白水平随葡萄糖剂量增加而升高,40 mmol/L时达高峰;应用40 mmol/L葡萄糖处理HUVECs 3 h、6 h、9 h、12 h和24 h能上调RIP3的蛋白水平,于9 h达最高峰;应用20μmol/L凋亡蛋白酶抑制剂Z-VAD-FMK预处理HUVECs 30 min促进RIP3表达;应用100μmol/L坏死性凋亡抑制剂necrostatin-1预处理HUVECs 1 h能抑制HG诱导HUVECs的细胞存活率降低,ROS过度生成及MMP丢失,但能升高cleaved caspase-3的蛋白水平。结论:坏死性凋亡介导高糖引起的人脐静脉内皮细胞损伤,但与内皮细胞凋亡存在负相关。  相似文献   

19.
Porphyromonas gingivalis is associated with chronic periodontitis, an inflammatory disease of the tooth''s supporting tissues. Macrophages are important in chronic inflammatory conditions, infiltrating tissue and becoming polarized to an M1 or M2 phenotype. As responses to stimuli differ between these phenotypes, we investigated the effect of P. gingivalis lipopolysaccharide (LPS) on M1 and M2 macrophages. M1 and M2 polarized macrophages were produced from murine bone marrow macrophages (BMMϕ) primed with gamma interferon (IFN-γ) or interleukin-4 (IL-4), respectively, and incubated with a low or high dose of P. gingivalis LPS or control TLR2 and TLR4 ligands. In M1-Mϕ, the high dose of P. gingivalis LPS (10 μg/ml) significantly increased the expression of CD40, CD86, inducible nitric oxide synthase, and nitric oxide secretion. The low dose of P. gingivalis LPS (10 ng/ml) did not induce costimulatory or antibacterial molecules but did increase the secretion of IL-1α, IL-6, IL-12p40, IL-12p70, and tumor necrosis factor alpha (TNF-α). P. gingivalis LPS marginally increased the expression of CD206 and YM-1, but it did enhance arginase expression by M2-Mϕ. Furthermore, the secretion of the chemokines KC, RANTES, eotaxin, and MCP-1 from M1, M2, and nonpolarized Mϕ was enhanced by P. gingivalis LPS. TLR2/4 knockout macrophages combined with the TLR activation assays indicated that TLR2 is the main activating receptor for P. gingivalis LPS and whole cells. In conclusion, although P. gingivalis LPS weakly activated M1-Mϕ or M2-Mϕ compared to control TLR ligands, it induced the secretion of inflammatory cytokines, particularly TNF-α from M1-Mϕ and IL-10 from M2-Mϕ, as well as chemotactic chemokines from polarized macrophages.  相似文献   

20.
坏死性凋亡是不依赖于caspase激活的一种细胞程序性死亡方式,其激活主要依赖于坏死性小体的形成。坏死性凋亡的调控受到多种因素响,RIPK1既可启动坏死性凋亡,也可抑制坏死性凋亡;caspase-8是坏死性凋亡的重要负反馈调节蛋白;CHIP是新发现的坏死性凋亡调控蛋白。坏死性凋亡的触发为对经典凋亡途径抵抗的肿瘤提供了新的治疗策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号