首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Crustin antimicrobial peptides, identified in crustaceans, are hypothesized to have both antimicrobial and protease inhibitor activity based on their primary structure and in vitro assays. In this study, a reverse genetic approach was utilized to test the hypothesis that crustins are antimicrobial in vivo in response to bacterial and fungal challenge. Injection of double-stranded RNA specific to a 120-bp region of LvABP1, one of the most prominent crustin isoforms, yielded a significant reduction in the expression of both crustin mRNA and protein within the hemocytes. To test the role of crustins in the shrimp immune response, RNAi was first used to suppress crustin expression and animals were subsequently injected with low pathogenic doses of either Vibrio penaeicida or Fusarium oxysporum. A significant increase in mortality in crustin-depleted animals was observed in animals infected with V. penaeicida as compared to controls, whereas no significant change in shrimp mortality was observed following infection with F. oxysporum.  相似文献   

2.
Several isoforms of crustin have been identified in the black tiger shrimp Penaeus monodon. These cationic cysteine-rich antimicrobial peptides contain a single whey acidic protein (WAP) domain at the C-terminus and exhibit antimicrobial activity against both Gram-positive and Gram-negative bacteria. In this paper, we investigate the binding properties and antimicrobial actions of crustinPm1 and crustinPm7, the two most abundant crustin isoforms found in the haemocyte of P. monodon. Previously, crustinPm1 showed strong inhibition against Gram-positive bacteria, whilst crustinPm7 acted against both Gram-positive and Gram-negative bacteria. A binding study showed that both crustins can bind to Gram-positive and Gram-negative bacterial cells. Enzyme-linked immunosorbent (ELISA) assay suggested that crustins bind to the cell wall components, lipoteichoic acid (LTA) and lipopolysaccharide (LPS) with positive cooperativity of Hill slope (H) > 2. This indicates that at least two molecules of crustins interact with one LTA or LPS molecule. In addition, both crustins can induce bacterial agglutination and cause inner membrane permeabilization in Escherichia coli. Scanning Electron Microscopy (SEM) revealed the remarkable change on the cell surface of Staphylococcus aureus, Vibrio harveyi and E. coli after the bacteria were treated with the recombinant crustinPm7. Meanwhile, crustinPm1 can cause a visible change on the cell surface of S. aureus and E. coli only. This is in agreement with the fact that crustinPm1 has shown no antimicrobial activity against V. harveyi. It is likely that the antimicrobial activity of crustins mainly relies on their ability to agglutinate bacterial cells and to disrupt the physiochemical properties of bacterial surface.  相似文献   

3.
Crustins are antibacterial proteins of ca. 7-14 kDa with a characteristic four-disulphide core-containing whey acidic protein (WAP) domain, expressed by the circulating haemocytes of crustaceans. Over 50 crustin sequences have been now reported from a variety of decapods, including crabs, lobsters, shrimp and crayfish. Three main types seem to occur but all possess a signal sequence at the amino terminus and a WAP domain at the carboxyl end. Differences between types lie in the structure of the central region. Those crustins purified as the native protein or expressed recombinantly all kill Gram-positive bacteria, and gene studies have shown that they are constitutively expressed, often at high levels, but show no consistent patterns of change in expression following injection of bacteria. This variable response to infection is enigmatic but indicates that these proteins could perform additional functions, perhaps as immune regulators in recovery from wounding, trauma or physiological stress.  相似文献   

4.
5.
Penaeidins are an important family of antimicrobial peptides (AMPs) in penaeid shrimp. To date, five groups of penaeidins have been identified in penaeid shrimp. All are composed of a proline-rich N-terminus and a C-terminus containing six cysteine residues engaged in three disulfide bridges. In this study, a new type of penaeidin from Marsupenaeus japonicus was identified. The full-length penaeidin contains a unique serine-rich region and a penaeidin domain, which consists of a proline-rich region and a cysteine-rich region. Here, we classify all penaeidins into two subfamilies. All reported penaeidins are in subfamily I, and the new penaeidin identified in M. japonicus is designated as Penaeidin subfamily II (MjPen-II). MjPen-II was expressed in hemocytes, heart, hepatopancreas, gills, stomach and intestine, and was upregulated after bacterial challenge. A liquid bacteriostatic assay showed that MjPen-II had antibacterial activity to some Gram-positive and Gram-negative bacteria. MjPen-II could bind to bacteria by binding to polysaccharides on the surface of bacteria, thus promoting bacterial agglutination. The serine-rich region enhanced the agglutination activity of MjPen-II. The proline-rich domain had a stronger bacterial-binding activity and polysaccharide-binding activity than the cysteine-rich domain. MjPen-II was also found to be involved in the phagocytosis of bacteria and efficiently improved the phagocytosis rate. Therefore, MjPen-II eliminates bacteria through direct bacterial inhibition as well as by promoting phagocytosis in shrimp.  相似文献   

6.
7.
8.
9.
10.
Degenerate PCR was used to isolate a 221-base pair nucleotide sequence of a new crustin-like antibacterial peptide from the haemocytes of the European lobster, Homarus gammarus. Rapid amplification of cDNA ends was used to extend the sequence to determine the complete open reading frame and un-translated regions. The inferred amino acid sequence of this peptide was found to be similar to crustin-like peptides isolated for several species of shrimp as well as the shore crab, Carcinus maenas. The sequence also contains a single-whey-acidic protein (WAP) domain, similar to novel antibacterial single-whey-acidic domain (SWD) peptides that have been recently described in the tiger shrimp, Penaeus monodon, and the Pacific white shrimp, Litopenaeus vannamei. Real-time PCR was used to analyse the expression of the gene coding for this peptide. The gene is up regulated after inoculation with the Gram-positive lobster pathogen Aerococcus viridans var. homari but down regulated after inoculation with the Gram-negative bacteria Listonella anguillarum. Phylogenetic analysis of this new peptide shows that it is most related to other antimicrobial crustin peptides and that the crustins are only distantly related to the antibacterial SWD peptides recently described.  相似文献   

11.
12.
Since whey-acidic-protein domain (WAP) containing protease inhibitors such as SLPI (secretory leukocyte protease inhibitor) and elafin (elastase-specific inhibitor) have antimicrobial activities and are thought to play critical roles in mucosal defenses, we are interested in these protease inhibitors. By accessing the Novartis mouse expression database, we found that the four WAP family members, SLPI, WFDC2, WFDC5, and WFDC12, are highly expressed in the oral organs, such as the trachea, tongue, and salivary glands. Since their WAP domains play pivotal roles in the antimicrobial and/or antiprotease activities and their application in therapeutics are expected to have practical value, we collected 98 WAP homologues and tried to predict their physiological functions by analyzing their amino acid sequence structures. From the multiple alignments of amino acid sequences, we predicted that most of the mammalian N-terminal WAP domains derived from SLPIs and the WAP domains derived from WFDC12s have antimicrobial activities, whereas most of the mammalian C-terminal WAP domains derived from SLPIs and the WAP domains derived from elafins have antiprotease activities. From the phylogenetic tree, it was revealed that an ancestral WAP protein initially diverged into the WFDC5-C WAP domain and the ancestral protein for the other WAP domains. Subsequently, the ancestral protein for the other WAP domains diverged into two ancestral proteins, one for elafin and SLPI-C WAP domains and the other, for SLPI-N, WFDC15b, WFDC12, and WFDC5-N WAP domains, respectively. Moreover, the tree indicated that the WFDC5-N and WFDC12 WAP domains share a common ancestral protein.  相似文献   

13.
We report the purification of a 3.5kDa peptide with antimicrobial activity from the mucosa and epithelial cells of chicken intestine. The peptide contains a pattern of cysteines characteristic of a whey acidic protein (WAP) domain and was identified as the carboxy terminal fragment of a novel 767 amino acid avian protein which has a proposed molecular weight of 81kDa. Using the conserved domain database (CDD) we identified this 81kDa protein to contain multiple amino acid motifs with homology to WAP domains and an amino acid motif with homology to a Kunitz proteinase inhibitor domain. We propose to call this avian protein AWAK (Avian WAP motif containing, Kunitz domain containing). The presence of WAP and Kunitz modules suggests that AWAK has proteinase inhibitor activity. RT-PCR analyses demonstrated expression of the AWAK gene in the chicken intestine.  相似文献   

14.
15.
Pathogenic challenges in decapod crustaceans are combated by innate immune responses, including the production and secretion of soluble antibacterial proteins into the hemolymph. Among the antibacterials that have been identified in decapod species are the crustins, a group of four-disulfide core/whey-acidic-protein (WAP) domain-containing proteins, which target marine/salt tolerant Gram-positive bacteria. To begin to assess the possible role of crustins in combating bacterial invasion in the American lobster Homarus americanus, we identified and sequenced a 744 base pair cDNA that encodes a novel 96 amino acid crustin-like protein. Comparison of H. americanus crustin (Hoa-crustin) with crustins from other decapod species showed that it is most similar to an isoform predicted from the European lobster Homarus gammarus ( approximately 86% identity). With our identification of the Hoa-crustin cDNA, we are positioned to begin molecular and physiological investigations of the regulation and function of this putative antibacterial protein in H. americanus.  相似文献   

16.
17.
NK-lysin is an effector protein of cytotoxic T lymphocytes and natural killer cells. Mammalian NK-lysin is known to possess antibacterial property and antitumor activity. Homologues of NK-lysin have been identified in several teleost species, but the natural function of fish NK-lysin remains essentially unknown. In this study, we identified a NK-lysin, CsNKL1, from half-smooth tongue sole (Cynoglossus semilaevis) and analyzed its expression, genetic organization, and biological effect on pathogen infection. CsNKL1 is composed of 135 residues and shares 33.1–56.5% overall sequence identities with other teleost NK-lysin. CsNKL1 possesses a Saposin B domain and six conserved cysteine residues that in mammals are known to form three intrachain disulfide bonds essential to antimicrobial activity. The genomic sequence of the ORF region of CsNKL1 is 1240 bp in length and, like human NK-lysin, contains five exons and four introns. Expression of CsNKL1 occurred in multiple tissues and was upregulated by bacterial and viral infection in a time dependent manner. When CsNKL1 was overexpressed in tongue sole, significant upregulation of interleukin-1 and chemokines was observed in spleen and head kidney. Following bacterial and viral infection, the pathogen loads in the tissues of CsNKL1-overexpressing fish were significantly lower than those in control fish. These results indicate that CsNKL1 possesses the novel capacities of immunomodulation and enhancing antimicrobial defense against pathogens of both bacterial and viral nature.  相似文献   

18.
An antimicrobial protein, crustin, is involved in the innate immunity of crustacean by defending the host directly against the microbial pathogens. By data mining the Penaeus monodon EST database, two type I crustins, carcininPm1 and 2, and ten type II crustins, crustinPm1–10, were identified. The abundant crustins were crustinPm1, 4 and 7, each with variation in the length of Gly-rich repeat among its members. A few crustinPm1, 4 and 7 with deletion in the Cys-rich region were also observed. Furthermore, the crustinPm4 with the longest N-terminal Gly-rich region was characterized. The crustinPm4 allelic genes were expressed mainly from the hemocytes. Its expression was up-regulated readily by WSSV infection and gradually decreased to normal level afterwards. The recombinant crustinPm4-1 (rcrustinPm4-1) isoform was produced using the Escherichia coli expression system and tested for its antimicrobial activity. The rcrustinPm4-1 was able to inhibit the growth of a Gram-positive bacterium, Bacillus megaterium but not Bacillus subtilis, Micrococcus luteus and Staphylococcus aureus. It also inhibited the growth of two Gram-negative bacteria, E. coli 363 and Vibrio harveyi 639 at lower potency. The rcrustinPm4-1 affected the WSSV infection because the expression of an intermediate early gene ie1 in WSSV-infected hemocyte cell culture was reduced. It was shown further that the rcrustinPm4-1 could delay by about one and a half days the manifestation of disease by WSSV.  相似文献   

19.
20.
The spontaneous host-range mutants 812F1 and K1/420 are derived from polyvalent phage 812 that is almost identical to phage K, belonging to family Myoviridae and genus Kayvirus. Phage K1/420 is used for the phage therapy of staphylococcal infections. Endolysin of these mutants designated LysF1, consisting of an N-terminal cysteine-histidine-dependent aminohydrolase/peptidase (CHAP) domain and C-terminal SH3b cell wall-binding domain, has deleted middle amidase domain compared to wild-type endolysin. In this work, LysF1 and both its domains were prepared as recombinant proteins and their function was analyzed. LysF1 had an antimicrobial effect on 31 Staphylococcus species of the 43 tested. SH3b domain influenced antimicrobial activity of LysF1, since the lytic activity of the truncated variant containing the CHAP domain alone was decreased. The results of a co-sedimentation assay of SH3b domain showed that it was able to bind to three types of purified staphylococcal peptidoglycan 11.2, 11.3, and 11.8 that differ in their peptide bridge, but also to the peptidoglycan type 11.5 of Streptococcus uberis, and this capability was verified in vivo using the fusion protein with GFP and fluorescence microscopy. Using several different approaches, including NMR, we have not confirmed the previously proposed interaction of the SH3b domain with the pentaglycine bridge in the bacterial cell wall. The new naturally raised deletion mutant endolysin LysF1 is smaller than LysK, has a broad lytic spectrum, and therefore is an appropriate enzyme for practical use. The binding spectrum of SH3b domain covering all known staphylococcal peptidoglycan types is a promising feature for creating new chimeolysins by combining it with more effective catalytic domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号