首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corticostriatal and thalamostriatal projection systems have been shown to utilize glutamate as a neurotransmitter in mammals and birds. Although corticostriatal and thalamostriatal projection systems have been demonstrated in turtles, it is uncertain whether they too use glutamate as their neurotransmitter. Immunohistochemical localization of glutamate and of NMDA- and AMPA-type ionotropic glutamate receptor subunits (NMDAR2A/B, GluR1, GluR2/3, and GluR4) were used to address this issue. Numerous medium-sized neurons that were rich in NMDAR2A/B and GluR2/3 were observed in the striatal part of the basal ganglia of red-eared turtles. Smaller numbers of medium-sized neurons and some large neurons rich in the GluR1 and GluR4 subunits were also observed in the striatum. The striatal neuropil was notably rich in GluR1, GluR2/3 and NMDAR2A/B subunits. The pallidal region was specifically rich in large neurons possessing GluR4 subunits. Consistent with the glutamate receptors on striatal and pallidal neurons, sources of input to the striatum and pallidum in turtle such as the dorsomedial and dorsolateral thalamic nuclei (which appear to correspond to intralaminar thalamic nuclei), telencephalic pallial cell groups, and the apparent subthalamic nucleus homologue were rich in glutamatergic neurons. The results show that the thalamostriatal, corticostriatal and subthalamo-pallidal projection systems of turtles are glutamatergic and that similar basal ganglia cell types in turtles and mammals have largely similar glutamate receptor characteristics. Copyright (R) 2000 S.Karger AG, Basel  相似文献   

2.
Glutamate is required for the transmission of inspiratory drive in respiratory premotor and motor neurons. The glutamate receptors (GluRs) responsible for this essential function have yet to be anatomically characterized. We mapped the GluR subtypes expressed by respiratory premotor and motor neurons by using combined immunohistochemistry and retrograde labeling in adult rats. Phrenic motoneurons and bulbospinal ventral respiratory group (VRG) neurons were retrogradely labeled and immunolabeled with subunit-specific antibodies against the N-methyl-D-aspartate (NMDA) receptor subtype (NMDAR1) and the non-NMDA receptor subtypes, α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA; GluR1, GluR2/3, GluR4) and kainate (GluR5–7). Phrenic motoneurons and bulbospinal VRG neurons showed positive immunolabeling for all five GluR subunits. These results support the hypothesis that NMDA and non-NMDA receptor subtypes underlie the excitation of bulbospinal VRG neurons and phrenic motoneurons. Furthermore, immunolabeling for each receptor subtype demonstrated a unique distribution along the neuronal membrane. Immunoreactivity for AMPA receptor subunits was distributed throughout somata and proximal dendrites, NMDAR1 subunit immunolabeling was localized to somata, and GluR5–7 subunit immunolabeling was confined largely to dendrites. The differential distribution of AMPA, kainate, and NMDA receptors on the somal and dendritic surface of respiratory neurons suggests that the location of glutamatergic synapses along the neuronal surface is an important determinant of glutamate-mediated postsynaptic currents. Consequently, different patterns of glutamatergic excitation of respiratory neurons could be achieved by selective activation of different profiles of GluR subtypes on different portions of the neuronal membrane. J. Comp. Neurol. 389:94–116, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Excitatory amino acid neurotoxicity has been proposed as a mechanism underlying selective neuronal death in glaucoma. The relationships between the cellular distribution of glutamate receptor subunit proteins GluR2 and NMDAR1 and the vulnerability of restricted retinal neuron subpopulations was explored in experimental glaucoma in macaque monkeys, produced by treating the trabecular meshwork in one eye with argon or diode laser burns. Immunostaining of retinal segments was performed using specific monoclonal antibodies to the GluR2 and NMDAR1 subunit proteins as well as neurofilament protein. The distribution of immunoreactivity was qualitatively assessed in the retina, and ganglion cells were counted in the paracentral and peripheral regions of each retinal segment. Immunoreactivity for both of these glutamate receptor subunit proteins was widely distributed in most retinal neuron types in control eyes and was colocalized with neurofilament protein in ganglion cells. In the glaucomatous eyes, densities of GluR2- and NMDAR1-immunoreactive ganglion cells were dramatically reduced compared to unaffected fellow eyes, but GluR2- and NMDAR1-immunoreactive populations of horizontal, bipolar, and amacrine cells were not affected. These data parallel previous observations on the selective vulnerability of ganglion cells in this experimental model of glaucoma. However, GluR2 and NMDAR1 subunits do not constitute cell type-specific markers of vulnerability in glaucoma as they are present in neurons prone to degeneration as well as in resistant ones. While retinal pathology in glaucoma involves excitotoxic mechanisms that may be related to glutamate receptor subunits regulating calcium fluxes, the specific pattern of neuronal vulnerability clearly depends on other cellular characteristics such as morphology, connectivity, and other aspects of the neurochemical phenotype.  相似文献   

4.
The excitatory amino acid neurotransmitter glutamate participates in the control of most (and possibly all) neuroendocrine systems in the hypothalamus. This control is exerted by binding to two classes of membrane receptors, the ionotropic and metabotropic receptor families, which differ in their structure and mechanisms of signal transduction. To gain a better understanding about the precise sites of action of glutamate and the subunit compositions of the receptors involved in the glutamatergic neurotransmission in the hypothalamus and septum, in situ hybridization was used with 35S-labeled cRNA probes for the different ionotropic receptor subunits, including glutamate receptor subunits 1-4 (GluR1-GluR4), kainate-2, GluR5-GluR7, N-methyl-D-aspartate (NMDA) receptor 1 (NMDAR1), and NMDAR2A-NMDAR2D. The results showed that subunits of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate-preferring, kainate-preferring, and NMDA-preferring receptor subunits are distributed widely but heterogeneously and that the GluR1, GluR2, kainate-2, NMDAR1, NMDAR2A, and NMDAR2B subunits are the most abundant in the hypothalamus. Thus, GluR1 subunit mRNA was prominent in the lateral septum, preoptic area, mediobasal hypothalamus, and tuberomammillary nucleus, whereas kainate-2 subunit mRNA was abundant in the medial septum-diagonal band, median and anteroventral preoptic nuclei, and supraoptic nuclei as well as the magnocellular portion of the posterior paraventricular nucleus. Regions that contained the highest levels of NMDAR1 subunit mRNA included the septum, the median preoptic nucleus, the anteroventral periventricular nucleus, and the supraoptic and suprachiasmatic nuclei as well as the arcuate nucleus. Together, the extensive distribution of the different GluR subunit mRNAs strengthen the view that glutamate is a major excitatory neurotransmitter in the hypothalamus. The overlap in the distribution of the various subunit mRNAs suggests that many neurons can express GluR channels that belong to different families, which would allow a differential regulation of the target neurons by glutamate.  相似文献   

5.
The hypopthalamic paraventricular nucleus (PVN) coordinates multiple aspects of homeostatic regulation, including pituitary-adrenocortical function, cardiovascular tone, metabolic balance, fluid/electrolyte status, parturition and lactation. In all cases, a substantial component of this function is controlled by glutamate neurotransmission. In this study, the authors performed a high-resolution in situ hybridization analysis of ionotropic glutamate receptor subunit expression in the PVN and its immediate surround. N-methyl-D-aspartate (NMDA) receptor 1 (NMDAR1), NMDAR2A, and NMDAR2B mRNAs were expressed highly throughout the PVN and its perinuclear region as well as in the subparaventricular zone. NMDAR2C/2D expression was limited to subsets of neurons in magnocellular and hypophysiotrophic regions. In contrast with NMDA subunit localization, AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate)-preferring and kainate (KA)-preferring receptor subunit mRNAs were expressed heterogeneously in the PVN and surround. Glutamate receptor 1 (GluR1) mRNA labeling was most intense in preautonomic subregions, whereas GluR2, GluR4, GluR5, and KA2 were expressed in hypophysiotrophic cell groups. It is noteworthy that GluR5 mRNA expression was particularly robust in the dorsolateral region of the medial parvocellular PVN, suggesting localization in corticotropin-releasing hormone neurons. All four AMPA subunits and GluR6 and GluR7 mRNAs were expressed highly in the perinuclear PVN region and the subparaventricular zone. These data suggest the capacity for multifaceted regulation of PVN function by glutamate, with magnocellular neurons preferentially expressing NMDA subunits, preautonomic neurons preferentially expressing AMPA subunits, and hypophysiotrophic neurons preferentially expressing KA subunits. Localization of all species in the perinuclear PVN suggests that glutamate input to the immediate region of the PVN may modulate its function, perhaps by communication with local gamma-aminobutyric acid neurons.  相似文献   

6.
Tegmental cholinergic neurons vary their discharge patterns across the sleep-wake cycle, and glutamate is suggested to play an important role in determining these firing patterns. Cholinergic and noncholinergic neurons in the mesopontine tegmentum have different susceptibilities to various excitotoxins, presumably because of heterogeneity in the expression of glutamate receptor subtypes in this area. By using a double-labeling procedure that combines nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase) histochemistry and avidin-biotin-peroxidase immunocytochemistry with diaminobenzidine as the chromogen, we compared the colocalization of AMPA receptor subunits GluR1, GluR2/3, and GluR4, kainate receptor subunits GluR5/6/7, and an NMDA receptor subunit NMDAR1 on NADPH-diaphorase-positive (cholinergic) neurons in the mesopontine tegmentum. Throughout the brainstem, neurons immunoreactive for GluR2/3 and NMDAR1 were most numerous, whereas neurons labeled for GluR1, GluR4, and GluR5/6/7 were less common. Specifically within the mesopontine tegmentum, the proportion of double-labeled neurons in the diaphorase-containing cell population was highest with GluR1 (43%) and lowest with GluR5/6/7 (12%). Regardless of the receptor subunit type, the greatest numbers of double-labeled neurons were observed in the pedunculopontine tegmental nucleus pars compacta and the fewest in the dorsal aspect of the laterodorsal tegmental nucleus. In addition, there were regional differences in the relative expression of receptor subunits and diaphorase-positive neurons across the subdivisions of the tegmental cholinergic column. Because each ionotropic subunit confers distinctive properties to a receptor channel, the present results suggest that mesopontine cholinergic neurons have nonuniform responses to glutamate and are also discriminable from basal forebrain cholinergic neurons in terms of glutamate receptor configuration. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Cerebral cortical dysplasia (CD) is a common cause of intractable childhood epilepsy. Five cases of CD were analyzed for GABA(A) receptor subunit beta (GABA(Abeta)), glutamate decarboxylase, AMPA receptor subunit 1 (GluR1) and subunit 2/3 (GluR2/3), and NMDA receptor 2 (NMDAR2) immunoreactivity. Antisera to the highly polysialylated neural cell adhesion molecule (PSA-NCAM) and human unc-33-like phosphoprotein 1 (hUlip 1) were used to identify neurons with 'developmentally immature' characteristics. Differences between CD and comparison tissue (n = 3) included: (1) prominent GABA(Abeta) immunoreactivity of the cytoplasm of dysmorphic neurons in the subcortical white matter and cortex in 1 CD case; (2) increased immunolabeling with anti-GluR1 and GluR2/3 antisera in dysmorphic neurons compared with more normal-appearing adjacent neurons and neurons from nondysplastic cortex; (3) varying numbers of cortical dysmorphic neurons stained for NMDAR2 in all 5 CD cases, in contrast to a complete lack of cellular immunoreactivity in 2/3 of the cases of nondysplastic cortex; (4) PSA-NCAM and hUlip 1 expression (usually observed only in populations of neurons that undergo axonal growth) was observed in CD tissue, but not in normal brain tissue. In summary, dysmorphic neurons in cases of CD have increased immunoreactivity for several excitatory neurotransmitter receptor subunits, show variable immunoreactivity for GABA(Abeta) and show expression of several proteins that are normally expressed only in immature neurons or those with the potential for synaptic plasticity. Copyright Copyright 1999 S. Karger AG, Basel  相似文献   

8.
The regional distribution of ionotropic (AMPA and NMDA) and metabotropic (mGluR1alpha) glutamate receptor subunits was examined in the brain stem and cerebellum of the pond turtle, Chrysemys picta, by using immunocytochemistry and light microscopy. Subunit-specific antibodies that recognize NMDAR1, GluR1, GluR4, and mGluR1alpha were used to identify immunoreactive nuclei in the brain stem and cerebellum. Considerable immunoreactivity in the turtle brain stem and cerebellum was observed with regional differences occurring primarily in the intensity of staining with the antibodies. The red nucleus, lateral reticular nucleus and cerebellum labeled intensely for NMDAR1 and moderately for GluR1. The cerebellum also labeled strongly for mGluR1alpha. All of the cranial nerve nuclei labeled intensely for NMDAR1 and to varying degrees for GluR1, GluR4, and mGluR1alpha. Counterstaining revealed the presence of neuronal somata where there were no immunoreactive neurons in individual nuclei. This finding suggests that there are subpopulations of immunoreactive neurons within a given nucleus that bear different glutamate receptor subunit compositions. The results suggest that the glutamate receptor subunit distribution in the brain stem and cerebellum of turtles is similar to that reported for rats. Additionally, there is considerable colocalization of NMDA and AMPA receptors as revealed by light microscopy. These results have implications for the organization of neural circuits that control motor behavior in turtles, and, generally, for the function of brain stem and cerebellar neural circuits in vertebrates.  相似文献   

9.
Previous physiological and pharmacological evidence has suggested a neurotransmitter role for the excitatory amino acid glutamate in the leech central nervous system (CNS). In the present study, we sought to localize glutamate receptor (GluR) subunits (GluR 5/6/7, GluR 2/3 and N-methyl-D-aspartate receptor 1 [NMDAR 1]) and a glutamate transporter subtype [GLT-1] within the leech CNS using mono- and polyclonal antibodies. In whole-mounted tissue, small cells of the outer capsule and putative microglia labeled with both GluR 5/6/7 and GluR 2/3 but not NMDAR 1 subunit antisera. In general, GluR 5/6/7-like immunofluorescence was both more intense and more widespread than GluR 2/3-like immunolabeling. Cryostat-sectioned tissue revealed extensive GluR 5/6/7-like immunoreactivity throughout the neuropil as well as labeling within a few neuronal somata. GLT-1-like immunoreactivity localized to the inner capsule, which is the interface between neuronal somata and the neuropil and is deeply invested by processes of neuropil glia. These results complement previous physiological and pharmacological findings indicating that the leech CNS possesses the cellular machinery to respond to glutamate and to transport glutamate from extracellular spaces. Together, they provide further evidence for glutamate's role as a neurotransmitter within the leech CNS.  相似文献   

10.
There is considerable controversy whether aberrant fascia dentata (FD) mossy fiber sprouting is an epiphenomena related to neuronal loss or a pathologic abnormality responsible for spontaneous limbic seizures. If mossy fiber sprouting contributes to seizures, then reorganized axon circuits should alter postsynaptic glutamate receptor properties. In the pilocarpine-status rat model, this study determined if changes in alpha amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) and n-methyl-D-aspartic acid (NMDA) receptor subunit mRNA levels correlated with mossy fiber sprouting. Sprague-Dawley rats were injected with pilocarpine (320 mg/kg; i.p.) and maintained in status epilepticus for 6 to 8 hours (pilocarpine-status). Rats were killed during the: (1) latent phase after neuronal loss but before spontaneous limbic seizures (day 11 poststatus; n = 7); (2) early seizure phase after their first seizures (day 25; n = 7); and (3) chronic seizure phase after many seizures (day 85; n = 9). Hippocampi were studied for neuron counts, inner molecular layer (IML) neo-Timm's staining, and GluR1–3 and NMDAR1–2b mRNA levels. Compared with controls, pilocarpine-status rats in the: (1) latent phase showed increased FD GluR3, NMDAR1, and NMDAR2b; greater CA4 and CA1 NMDAR1; and decreased subiculum GluR1 hybridization densities; (2) early seizure phase showed increased FD GluR3, increased CA1 NMDAR1, and decreased subiculum NMDAR2b densities; and (3) chronic seizure phase showed increased FD GluR2; increased FD and CA4 GluR3; decreased CA1 GluR2; and decreased subiculum GluR1, GluR2, NMDAR1, and NMDAR2b levels. In multivariate analyses, greater IML neo-Timm's staining: (1) positively correlated with FD GluR3 and NMDAR1 and (2) negatively correlated with CA1 and subiculum GluR1 and GluR2 mRNA levels. These results indicate that: (1) hippocampal AMPA and NMDA receptor subunit mRNA levels changed as rats progressed from the latent to chronic seizure phase and (2) certain subunit alterations correlated with mossy fiber sprouting. Our findings support the hypothesis that aberrant axon circuitry alters postsynaptic hippocampal glutamate receptor subunit stoichiometry; this may contribute to limbic epileptogenesis. J. Neurosci. Res. 54:734–753, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Tse YC  Yung KK 《Brain research》2000,854(1-2):57-69
In order to characterize the expression of ionotropic glutamate receptor immunoreactivity in subpopulations of neurons in the rat substantia nigra pars reticulata (SNr), double labeling experiments were performed. Neurons in the reticulata were found to display GluR1, GluR2, GluR2/3, GluR4, N-methyl-D-aspartate receptor 1 (NMDAR1) and NMDAR2B immunoreactivity. Some of the reticulata neurons were shown to display GluR1 and GluR2 immunoreactivity or GluR2 and GluR4 immunoreactivity at the single cell level. In addition, subpopulations of reticulata neurons were characterized on the basis of the strong expression of parvalbumin (PV) and GABA transaminase immunoreactivity. All of the reticulata neurons that displayed strong immunoreactivity for PV or GABA transaminase also displayed immunoreactivity for GluR1, GluR2/3, GluR4, NMDAR1 and NMDAR2B. A tiny portion (around 15%) of reticulata neurons that display NMDAR1 immunoreactivity was found to be PV- or GABA-transaminase-negative. The present results indicate that native alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA)-type receptors and NMDA-type receptors in the rat substantia nigra are composed of heteromeric receptor subunits. The present findings further demonstrate that most of the AMPA-type and NMDA-type glutamate receptor subunits are primarily expressed by subpopulations of neurons in the rat SNr.  相似文献   

12.
Magnocellular cholinergic neurons in the basal forebrain have long been recognized as vulnerable to the pathology of Alzheimer's disease. Despite numerous anatomical, pharmacological, behavioral, and physiological investigations of these neurons the cellular mechanism that underlines their selective vulnerability remains unclear. As part of an ongoing investigation into the molecular mechanism(s) underlying neuronal vulnerability in Alzheimer's disease and normal aging, we employed immunocytochemical techniques and examined the cellular localization of the alpha-amino-3-hydroxy-5-methyl-4-isoaxolepropionate (AMPA) glutamate receptor subunits GluR1 and GluR2/3 in the basal forebrain of eight nondemented elderly human subjects (66-102 years). For each case we observed GluR1-positive magnocellular cells darkly labeled within all main divisions of the basal forebrain (Ch1-Ch4). Double-labeling immunohistochemical techniques confirmed that the overwhelming majority (94%) of these neurons were also positive for the p75NGFr antibody, thus substantiating the cholinergic nature of these neurons. In contrast, GluR2/3 immunolabeling upon magnocellular neurons was relatively faint or nonexistent. The latter observations were most apparent in cases of advanced age and in the posterior part of the nucleus basalis of Meynert (NBM) (i.e., Ch4). In contrast, in adjacent structures (e.g., globus pallidus), a number of robustly labeled GluR2/3-positive cells were observed. In addition to the eight elderly subjects, we examined GluR1 and GluR2/3 immunostaining in the NBM of five younger cases, 5, 33, 36, 47, and 48 years of age. Although practical considerations limited our observations to the Ch4 region, we observed both GluR1 and GluR2/3 labeling upon NBM neurons in this latter region. On average, the distribution of labeled cells and intensity of immunoreaction were comparable between GluR1 and GluR2/3. The presence of GluR2/3- and GluR1-labeled neurons in the Ch4 region of younger cases but primarily GluR1 in cases of advanced age suggests an age-related decrease in GluR2/3. Functionally, the loss of GluR2 from the AMPA receptor complex results in ion channels highly permeable to Ca(2+). These alterations in cation permeability of the AMPA receptor together with the occurrence of a number of other intrinsic and extrinsic events (i.e., decrease Ca(2+)-binding protein) likely contribute to the vulnerability of these neurons in aging and in AD.  相似文献   

13.
Fan XD  Li XM  Juorio AV 《Brain research》2000,867(1-2):40-51
The substantia nigra pars reticulata (SNpr) has been proposed to play an important role in the control of the propagation and/or the generation of epileptic seizures. Earlier studies have shown differential effects of the lesion of the SNpr on seizure genesis that demonstrated a regional difference in the anterior and posterior parts of the SNpr in preconvulsive behavior induced by unilateral reticulata injection of dopamine (DA). This study was aimed to investigate some of the underlying mechanisms of the preconvulsive behavior elicited by unilateral SNpr DA injection by the study of changes in the gene expression of glutamate receptor subunits (GluR1, GluR2 and NMDAR1) and of changes in animal behavior following coinfusion of DA and a DA D1 antagonist SCH 23390 into the SNpr. Unilateral injection of exogenous DA into the anterior region of the SNpr induced rapid and short lasting preconvulsive behavior up to wet dog shakes stage and a significant reduction of gene expression for GluR1, GluR2 and NMDAR1 subunits in rat hippocampal subfields including CA1 through CA4 and dentate gyrus (DG) at 1 day after nigral DA injection. The effect was long lasting and persisted for at least 3 weeks. Both preconvulsive behavior and downregulation of glutamate receptor subunit genes were completely blocked by simultaneous coinfusion of DA and SCH 23390. The results suggest, for the first time, that DA D1 receptor in the SNpr may mediate the nigral-involved seizure development. Glutamate desensitization, and/or selective early neuronal damage might be responsible for the downregulation of glutamate receptor subunits by transient preconvulsive activity.  相似文献   

14.
Alzheimer's disease transgenic mice overexpressing human amyloid precursor protein (hAPP) with the Swedish double mutation (hAPP(Sw)) develop age-related amyloid deposition and behavioral and electrophysiologic changes by an unknown mechanism. Analysis of glutamatergic receptor subtypes in 4- and 15-month-old heterozygous hAPP(Sw) transgenic mice revealed a selective increase in AMPA receptor binding in the hippocampus of 15-month-old transgenic mice, which have established cortical and hippocampal amyloid deposits. There were no significant alterations of GluR1, GluR2, and GluR4 protein expression by semiquantitative confocal analysis or GluR1 mRNA by in situ hybridization. There was no significant alteration in NMDA, in group I and II metabotropic glutamate and in muscarinic receptor binding, or in striatal dopamine and adenosine receptor binding in 15-month-old mice. These data suggest that mutant APP overexpression or age-related amyloid deposition produce a subtle specific alteration in hippocampal glutamate receptors with aging.  相似文献   

15.
Corticostriatal and thalamostriatal projections utilize glutamate as a neurotransmitter in mammals and birds. The influence on striatum is mediated, in part, by ionotropic AMPA-type glutamate receptors, which are heteromers composed of GluR1-4 subunits. Although the cellular localization of AMPA-type subunits has been well characterized in mammalian basal ganglia, their localization in avian basal ganglia has not. We thus carried out light microscopic single- and double-label and electron microscopic single-label immunohistochemical studies of GluR1-4 distribution and cellular localization in pigeon basal ganglia. Single-label studies showed that the striatal neuropil is rich in GluR1, GluR2, and GluR2/3 immunolabeling, suggesting the localization of GluR1, GluR2 and/or GluR3 to the dendrites and spines of striatal projection neurons. Double-label studies and perikaryal size distribution determined from single-label material indicated that about 25% of enkephalinergic and 25% of substance P-containing striatal projection neuron perikarya contained GluR1, whereas GluR2 was present in about 75% of enkephalinergic neurons and all substance-P -containing neurons. The perikaryal size distribution for GluR2 compared to GluR2/3 suggested that enkephalinergic neurons might more commonly contain GluR3 than do substance P neurons. Parvalbuminergic and calretininergic striatal interneurons were rich in GluR1 and GluR4, a few cholinergic striatal interneurons possessed GluR2, but somatostatinergic striatal interneurons were devoid of all subunits. The projection neurons of globus pallidus all possessed GluR1, GluR2, GluR2/3 and GluR4 immunolabeling. Ultrastructural analysis of striatum revealed that GluR1 was preferentially localized to dendritic spines, whereas GluR2/3 was found in spines, dendrites, and perikarya. GluR2/3-rich spines were generally larger than GluR1 spines and more frequently possessed perforated post-synaptic densities. These results show that the diverse basal ganglia neuron types each display different combinations of AMPA subunit localization that shape their responses to excitatory input. For striatal projection neurons and parvalbuminergic interneurons, the combinations resemble those for the corresponding cell types in mammals, and thus their AMPA responses to glutamate are likely to be similar.  相似文献   

16.
Immunohistochemical studies were conducted to assess the subunits of ionotropic and metabotropic glutamate receptor present in the rostral ventrolateral medulla (RVLM) of the rat. Double labeling the medullary sections with polyclonal GluR1, GluR2/3, GluR4, NMDAR1, NMDAR2A/B, mGluR1alpha, and mGluR2/3 antiserum and monoclonal tyrosine hydroxylase (TH) antiserum revealed nearly all TH immunoreactive (irTH) cells and many TH-negative neurons were immunoreactive to GluR2/3 (irGluR2/3), NMDAR1 (irNMDAR1), and NMDAR2A/B (irNMDAR2A/B). A few RVLM neurons were immunoreactive to GluR1 (irGluR1) and GluR4 (irGluR4), but they were generally TH-negative. Immunoreactivity to mGluR1alpha (irmGluR1alpha) appeared to be localized exclusively to fiber-like elements in the RVLM area. Our results show that neurons in the RVLM, including irTH, are endowed mainly with GluR2/3 and NMDAR1 or NMDAR2A/B ionotropic receptor subunits, and that irmGluR1alpha splice variant appears to be located on nerve fibers ramifying within the RVLM. Moreover, TH-negative neurons in the RVLM appear to bear similar subunits of ionotropic glutamate receptors.  相似文献   

17.
The effects of ovarian steroid hormones on gonadotropin-releasing hormone (GnRH) neurons have been studied for many years. In addition to their regulation by sex steroids, GnRH neurons are affected by inputs from neurotransmitters such as glutamate, acting via the NMDA receptor (NMDAR). Moreover, the NMDAR itself is subject to estrogen regulation. Thus, effects of ovarian steroids on GnRH neurons and the NMDAR, and their interactions, are under intense investigation. Messenger RNA and protein levels of GnRH and NMDAR subunits were measured in neuroendocrine brain regions in response to estrogen treatment, or across the reproductive cycle. Stimulatory effects of ovarian steroids on GnRH gene expression occur during the preovulatory LH surge in young adult rats, and this is abolished in middle-aged rats that have an attenuated LH surge. Effects of estrogen on GnRH neurons have also been studied in the ovariectomized, estrogen-primed rat, and while results vary between laboratories, there appear to be age-related changes in the sensitivity of GnRH neurons to estrogen. Estrogen also has effects on NMDAR mRNA levels. In intact rats, mRNA levels of NMDAR decrease during reproductive aging in the preoptic area, the site of GnRH perikarya, while in the medial basal hypothalamus-median eminence, the site of GnRH neuroterminals, levels of NMDAR subunit mRNAs increase with aging. Thus, glutamatergic inputs to GnRH perikarya and neuroterminals and other neuroendocrine cells may change during reproductive aging in intact rats. In ovariectomized rats, NMDAR subunit mRNA levels also undergo age-related changes, and respond to estrogen replacement in a subunit- and age-specific manner. Notably, there are major differences in NMDAR gene expression during aging between intact and ovariectomized rats, suggesting that ovarian factors other than estrogen play a role in the regulation of this receptor.  相似文献   

18.
Systemic administration of kainic acid in C57BL/6 and FVB/N mice induces a comparable level of seizure induction yet results in differential susceptibility to seizure-induced cell death. While kainate administration causes severe hippocampal damage in mice of the FVB/N strain, C57BL/6 mice display no demonstrable cell loss or damage. At present, while the cellular mechanisms underlying strain-dependent differences in susceptibility remain unclear, some of this variation is assumed to have a genetic basis. As glutamate receptors are thought to participate in seizure induction and the subsequent neuronal degeneration that ensues, previous studies have proposed that variation in the precise subunit composition of glutamate receptors may result in differential susceptibility to excitotoxic cell death. Thus, we chose to examine the relationship between the cellular distribution and expression of glutamate receptor subunit proteins and cell loss within the hippocampus in mouse strains resistant and susceptible to kainate-induced excitotoxicity. Using semi-quantitative Western blot techniques and immunohistochemistry with the use of antibodies that recognize subunits of the KA (GluR5,6,7), AMPA (GluR1, GluR2, and GluR4), and NMDA (NMDAR1 and NMDAR2A/2B) receptors, we found no significant strain-dependent differences in the expression or distribution of these glutamate receptor subunits in the intact hippocampus. Following kainate administration, expression changes in ionotropic glutamate receptor subunits paralleled the development of susceptibility to cell death in the FVB/N strain only. Strain differences in hippocampal vulnerability to kainate-induced status epilepticus are not due to glutamate receptor protein expression.  相似文献   

19.
We studied the expression and distribution of glutamate receptor subtypes in the spinal cord of mnd mice, a model of motor neuron disorders and neuronal ceroid lipofuscinosis, and control mice using immunocytochemistry and in situ hybridization. The constitutive subunit of the NMDA ionotropic glutamate receptor, NMDAR1, was expressed in all neurons of the grey matter and was not modified in the spinal cord of mnd mice in either its normal or phosphorylated form. The immunoreactivity of GluR2, but not its mRNA, was increased mainly in the substantia gelatinosa both in presymptomatic and in 8-month-old symptomatic mice, suggesting compensatory changes aimed at reducing the Ca2+ permeability of the receptor channel. In spinal cord of mnd mice, mRNA, and protein levels of GluR3 were low only at the symptomatic stage, possibly as a consequence of motor neuron dysfunction. This was not due to motoneuron degeneration, because the number of choline acetyltransferase (ChAT) immunopositive lumbar motor neurons and the ChAT activity in the spinal cord and hind leg muscles of symptomatic mnd mice were no different from control mice. GluR4 mRNA was increased throughout the grey matter, presumably in relation to the marked microglia activation reported in the grey matter of the lumbar spinal cord in mnd mice. These changes in ionotropic glutamate receptors may alter glutamatergic neurotransmission and play some role in the pathology of mnd mice.  相似文献   

20.
Overactivation of glutamate receptors leading to excitotoxicity has been implicated in the neurodegenerative alterations of a range of central nervous system (CNS) disorders. We have investigated the cell-type-specific changes in glutamate receptor localization in developing cortical neurons in culture, as well as the relationship between glutamate receptor subunit distribution with synapse formation and susceptibility to excitotoxicity. Glutamate receptor subunit clustering was present prior to the formation of synapses. However, different receptor types showed distinctive temporal patterns of subunit clustering, localization to spines, and apposition to presynaptic terminals. N-methyl-D-aspartate (NMDA) receptor subunit immunolabelling was present in puncta along dendrites prior to the formation of synapses, with relatively little localization to spines. Vulnerability to NMDA receptor-mediated excitotoxicity occurred before receptor subunits became localized in apposition to presynaptic terminals. Clustering of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors occurred concurrently with development of vulnerability to excitotoxicity and was related to localization of AMPA receptors at synapses and in spines. Different AMPA receptor subunits demonstrated cell-type-specific localization as well as distribution to spines, dendrites, and extrasynaptic subunit clusters. A subclass of neurons demonstrated substantial perineuronal synaptic innervation, and these neurons expressed relatively high levels of GluR1 and/or GluR4 at receptor puncta, indicating the presence of calcium-permeable AMPA receptors and suggesting alternative synaptic signalling mechanisms and vulnerability to excitotoxicity. These data demonstrate the relationship between glutamate receptor subunit expression and localization with synaptogenesis and development of neuronal susceptibility to excitotoxicity. These data also suggest that excitotoxicity can be mediated through extrasynaptic receptor subunit complexes along dendrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号