首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane traffic along the endocytic and exocytic pathways relies on the appropriate localization and activation of a series of different Rab GTPases. Rabs are activated by specific guanine nucleotide exchange factors (GEFs) and inactivated by GTPase-activating proteins (GAPs). GEF cascades, in which one Rab in its GTP-bound form recruits the GEF that activates the next Rab along the pathway, can account for the sequential activation of a series of Rabs, but it does not explain how the first Rab is inactivated after the next Rab has been activated. We present evidence for a counter-current GAP cascade that serves to restrict the spatial and temporal overlap of 2 Rabs, Ypt1p and Ypt32p, on the exocytic pathway in Saccharomyces cerevisiae. We show that Gyp1p, a GAP for Ypt1p, specifically interacts with Ypt32p, and that this interaction is important for the localization and stability of Gyp1p. Moreover, we demonstrate that, in WT cells, Ypt1p compartments are converted over time into Ypt32p compartments, whereas in gyp1Δ cells there is a significant increase in compartments containing both proteins that reflects a slower transition from Ypt1p to Ypt32p. GEF cascades working in concert with counter-current GAP cascades could generate a programmed series of Rab conversions responsible for regulating the choreography of membrane traffic.  相似文献   

2.
The oligomeric complex transport protein particle I (TRAPPI) mediates nucleotide exchange on the RAB GTPase RAB1/Ypt1. TRAPPII is composed of TRAPPI plus three additional subunits, Trs120, Trs130, and Trs65. Unclear is whether TRAPPII mediates nucleotide exchange on RAB1/Ypt1, RAB11/Ypt31, or both. In Aspergillus nidulans, RabORAB1 resides in the Golgi, RabERAB11 localizes to exocytic post-Golgi carriers undergoing transport to the apex, and hypA encodes Trs120. RabERAB11, but not RabORAB1, immunoprecipitates contain Trs120/Trs130/Trs65, demonstrating specific association of TRAPPII with RabERAB11 in vivo. hypA1ts rapidly shifts RabERAB11, but not RabORAB1, to the cytosol, consistent with HypATrs120 being specifically required for RabERAB11 activation. Missense mutations rescuing hypA1ts at 42 °C mapped to rabE, affecting seven residues. Substitutions in six, of which four resulted in 7- to 36-fold accelerated GDP release, rescued lethality associated to TRAPPII deficiency, whereas equivalent substitutions in RabORAB1 did not, establishing that the essential role of TRAPPII is facilitating RabERAB11 nucleotide exchange. In vitro, TRAPPII purified with HypATrs120-S-tag accelerates nucleotide exchange on RabERAB11 and, paradoxically, to a lesser yet substantial extent, on RabORAB1. Evidence obtained by exploiting hypA1-mediated destabilization of HypATrs120/HypCTrs130/Trs65 assembly onto the TRAPPI core indicates that these subunits sculpt a second RAB binding site on TRAPP apparently independent from that for RabORAB1, which would explain TRAPPII in vitro activity on two RABs. Using A. nidulans in vivo microscopy, we show that HypATrs120 colocalizes with RabERAB11, arriving at late Golgi cisternae as they dissipate into exocytic carriers. Thus, TRAPPII marks, and possibly determines, the Golgi–to–post-Golgi transition.A conceptual advance in understanding traffic across the Golgi came from the visualization of fungal cisternae as a set of membranous compartments forming by coalescence of endoplasmic reticulum-derived COPII traffic and undergoing changes in composition until they dissipate into carriers destined to the plasma membrane or endosomes (15).RAB GTPases [and, by extension, their GTPase-activating (GAP) and guanine nucleotide exchange factor (GEF) regulators] are major determinants of protein and lipid composition of membranous compartments (6). In fungi, anterograde Golgi traffic is governed by RAB1 and RAB11 homologs. In Saccharomyces cerevisiae and Aspergillus nidulans, RAB1 homologs (Ypt1 and RabO, respectively) (7, 8) mediate biogenesis of Golgi cisternae and anterograde traffic across them, whereas RAB11 homologs (Ypt31/Ypt32 and RabE, respectively) (9, 10) mediate Golgi exit of exocytic carriers and control their trafficking to the plasma membrane. The sharp functional boundary between Ypt1 and Ypt31/Ypt32 is determined, at least in part, by an anticurrent cascade in which Gyp1, the GAP for Ypt1, is an effector of Ypt31/Ypt32, thus ensuring minimal overlap of the GTPases on the same membranes (11). In A. nidulans hyphae, late Golgi cisternae (LGCs) are separated from the apex (the target of exocytic carriers) by a few microns gap (12). When RabE is recruited to LGCs, these lose Golgi identity, engage motors, and break up into post-Golgi carriers that are delivered to the apex, where they accumulate before fusing with the plasma membrane (9). In contrast with RabE predominating in these carriers, RabO preferentially localizes to the Golgi (8), illustrating the sharp boundary between their respective functional domains.The countercurrent Golgi RAB GAP cascade would act in concert with a RAB cascade by which early Ypt1 membranes mature into late Ypt31/Ypt32 membranes. This maturation would involve conversion between two different versions of a multimeric GEF, denoted TRAPPI and TRAPPII (13). [A third version, TRAPPIII, specifically regulates the Ypt1 role in autophagy (14).] TRAPPI mediates Ypt1 activation at the early Golgi; TRAPPII is composed of TRAPPI plus additional subunits, Trs65, Trs120, and Trs130, putatively shifting TRAPP GEF specificity from Ypt1 toward late Golgi-acting Ypt31/Ypt32 (13). However, another report challenged this interpretation by finding that in vitro TRAPPII mediates nucleotide exchange on Ypt1, but not on Ypt31/Ypt32, efficiently (15), leading others to conclude that both TRAPPI and TRAPPII target Ypt1, but the latter mediates Ypt1 activation specifically in the late Golgi (16), thus leaving open the identity of the fungal RAB11 GEF.hypA encodes A. nidulans Trs120 (17). The conditional hypA1ts mutation prevents growth at the restrictive temperature, consistent with hypA playing an essential role in exocytosis. We selected extragenic mutations bypassing this role. Remarkably, with a single exception, these mutations mapped to rabE. Genetic and biochemical analysis of these mutations and nucleotide exchange assays using affinity-purified TRAPPII established that TRAPPII serves, in vivo and in vitro, as GEF for RabE.  相似文献   

3.
The key regulators of intracellular trafficking, Ypt/Rab GTPases, are stimulated by specific upstream activators and, when activated, recruit specific downstream effectors to mediate membrane-transport events. The yeast Ypt1 and its human functional homolog hRab1 regulate both endoplasmic reticulum (ER)-to-Golgi transport and autophagy. However, it is not clear whether the mechanism by which these GTPases regulate autophagy depends on their well-documented function in ER-to-Golgi transport. Here, we identify Atg11, the preautophagosomal structure (PAS) organizer, as a downstream effector of Ypt1 and show that the Ypt1-Atg11 interaction is required for PAS assembly under normal growth conditions. Moreover, we show that Ypt1 and Atg11 colocalize with Trs85, a Ypt1 activator subunit, and together they regulate selective autophagy. Finally, we show that Ypt1 and Trs85 interact on Atg9-containing membranes, which serve as a source for the membrane component of the PAS. Together our results define a Ypt/Rab module--comprising an activator, GTPase, and effector--that orchestrates the onset of selective autophagy, a process vital for cell homeostasis. Furthermore, because Atg11 does not play a role in ER-to-Golgi transport, we demonstrate here that Ypt/Rabs can regulate two independent membrane-transport processes by recruiting process-specific effectors.  相似文献   

4.
Rab3A small G protein is a member of the Rab family and is most abundant in the brain, where it is localized on synaptic vesicles. Evidence is accumulating that Rab3A plays a key role in neurotransmitter release and synaptic plasticity. Rab3A cycles between the GDP-bound inactive and GTP-bound active forms, and this change in activity is associated with the trafficking cycle of synaptic vesicles at nerve terminals. Rab3 GTPase-activating protein (GAP) stimulates the GTPase activity of Rab3A and is expected to determine the timing of the dissociation of Rab3A from synaptic vesicles, which may be coupled with synaptic vesicle exocytosis. Rab3 GAP consists of two subunits: the catalytic subunit p130 and the noncatalytic subunit p150. Recently, mutations in p130 were found to cause Warburg Micro syndrome with severe mental retardation. Here, we generated p130-deficient mice and found that the GTP-bound form of Rab3A accumulated in the brain. Loss of p130 in mice resulted in inhibition of Ca(2+)-dependent glutamate release from cerebrocortical synaptosomes and altered short-term plasticity in the hippocampal CA1 region. Thus, Rab3 GAP regulates synaptic transmission and plasticity by limiting the amount of the GTP-bound form of Rab3A.  相似文献   

5.
6.
Rab8B GTPase and junction dynamics in the testis   总被引:3,自引:0,他引:3  
Lau AS  Mruk DD 《Endocrinology》2003,144(4):1549-1563
Throughout spermatogenesis, germ cells migrate from the basal to the adluminal compartment while remaining attached to Sertoli cells via actin-based adherens and intermediate filament-based anchoring junctions. However, the events that trigger deadhesion and adhesion remain largely unknown. As part of our continued effort in elucidating the mechanism of germ cell movement, we have examined the role of Rab8B, a GTPase probably participating in intracellular trafficking events at the site of the adherens junction. By RT-PCR Rab8B mRNA was found in the brain, testis, heart, kidney, and spleen. Immunohistochemical studies revealed that Rab8B was concentrated predominantly in the basal compartment, localizing to a similar site at which immunoreactive E-cadherin was found. Additional experiments demonstrated that Rab8B associated with the actin, intermediate filament, and microtubule cytoskeletal networks. When Sertoli cells were cultured at high density or germ cells were cocultured with Sertoli cells, Rab8B increased significantly during junction assembly. Moreover, inclusion of germ cell-conditioned medium in Sertoli cell cultures resulted in stimulation of Rab8B expression. Conversely, treatment of adult rats with 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide reduced Rab8B mRNA and protein levels, coinciding with the time of germ cell loss from the epithelium. Taken collectively, these studies suggest that Rab8B participates in adherens junction dynamics in the testis.  相似文献   

7.
Homologues of two major components of the well-characterized erythrocyte plasma-membrane-skeleton, spectrin (a not-yet-cloned isoform, βIΣ* spectrin) and ankyrin (AnkG119 and an ≈195-kDa ankyrin), associate with the Golgi complex. ADP ribosylation factor (ARF) is a small G protein that controls the architecture and dynamics of the Golgi by mechanisms that remain incompletely understood. We find that activated ARF stimulates the in vitro association of βIΣ* spectrin with a Golgi fraction, that the Golgi-associated βIΣ* spectrin contains epitopes characteristic of the βIΣ2 spectrin pleckstrin homology (PH) domain known to bind phosphatidylinositol 4,5-bisphosphate (PtdInsP2), and that ARF recruits βIΣ* spectrin by inducing increased PtdInsP2 levels in the Golgi. The stimulation of spectrin binding by ARF is independent of its ability to stimulate phospholipase D or to recruit coat proteins (COP)-I and can be blocked by agents that sequester PtdInsP2. We postulate that a PH domain within βIΣ* Golgi spectrin binds PtdInsP2 and acts as a regulated docking site for spectrin on the Golgi. Agents that block the binding of spectrin to the Golgi, either by blocking the PH domain interaction or a constitutive Golgi binding site within spectrin’s membrane association domain I, inhibit the transport of vesicular stomatitis virus G protein from endoplasmic reticulum to the medial compartment of the Golgi complex. Collectively, these results suggest that the Golgi-spectrin skeleton plays a central role in regulating the structure and function of this organelle.  相似文献   

8.
Yeast vacuoles undergo priming, docking, and homotypic fusion, although little has been known of the connections between these reactions. Vacuole-associated Vam2p and Vam6p (Vam2/6p) are components of a 65S complex containing SNARE proteins. Upon priming by Sec18p/NSF and ATP, Vam2/6p is released as a 38S subcomplex that binds Ypt7p to initiate docking. We now report that the 38S complex consists of both Vam2/6p and the class C Vps proteins [Reider, S. E. and Emr, S. D. (1997) Mol. Biol. Cell 8, 2307-2327]. This complex includes Vps33p, a member of the Sec1 family of proteins that bind t-SNAREs. We term this 38S complex HOPS, for homotypic fusion and vacuole protein sorting. This unexpected finding explains how Vam2/6p associates with SNAREs and provides a mechanistic link of the class C Vps proteins to Ypt/Rab action. HOPS initially associates with vacuole SNAREs in "cis" and, after release by priming, hops to Ypt7p, activating this Ypt/Rab switch to initiate docking.  相似文献   

9.
10.
Effectors delivered into host cells by the Legionella pneumophila Dot/Icm type IV transporter are essential for the biogenesis of the specialized vacuole that permits its intracellular growth. The biochemical function of most of these effectors is unknown, making it difficult to assign their roles in the establishment of successful infection. We found that several yeast genes involved in membrane trafficking, including the small GTPase Ypt1, strongly suppress the cytotoxicity of Lpg0695(AnkX), a protein known to interfere severely with host vesicle trafficking when overexpressed. Mass spectrometry analysis of Rab1 purified from a yeast strain inducibly expressing AnkX revealed that this small GTPase is modified posttranslationally at Ser(76) by a phosphorylcholine moiety. Using cytidine diphosphate-choline as the donor for phosphorylcholine, AnkX catalyzes the transfer of phosphorylcholine to Rab1 in a filamentation-induced by cAMP(Fic) domain-dependent manner. Further, we found that the activity of AnkX is regulated by the Dot/Icm substrate Lpg0696(Lem3), which functions as a dephosphorylcholinase to reverse AnkX-mediated modification on Rab1. Phosphorylcholination interfered with Rab1 activity by making it less accessible to the bacterial GTPase activation protein LepB; this interference can be alleviated fully by Lem3. Our results reveal reversible phosphorylcholination as a mechanism for balanced modulation of host cellular processes by a bacterial pathogen.  相似文献   

11.
Rab27b regulates number and secretion of platelet dense granules   总被引:4,自引:1,他引:3  
The Rab27 GTPase subfamily consists of two closely related homologs, Rab27a and Rab27b. Rab27a has been shown previously to regulate organelle movement and regulated exocytosis in a wide variety of secretory cells. However, the role of the more restrictedly expressed Rab27b remains unclear. Here we describe the creation of Rab27b knockout (KO) strain that was subsequently crossed with the naturally occurring Rab27a KO line, ashen, to produce double KO (Rab27a(ash/ash) Rab27b(-/-)) mice. Rab27b KO (and double KO) exhibit significant hemorrhagic disease in contrast to ashen mice. In vitro assays demonstrated impaired aggregation with collagen and U46619 and reduced secretion of dense granules in both Rab27b and double KO strains. Additionally, we detected a 50% reduction in the number of dense granules per platelet and diminished platelet serotonin content, possibly due to a dense granule packaging defect into proplatelets during megakaryocyte maturation. The presence of Rab27a partially compensated for the secretory defect but not the reduced granule number. The morphology and function of platelet alpha-granules were unaffected. Our data suggest that Rab27b is a key regulator of dense granule secretion in platelets and thus a candidate gene for delta-storage pool deficiency in humans.  相似文献   

12.
Wang Y  Chen T  Han C  He D  Liu H  An H  Cai Z  Cao X 《Blood》2007,110(3):962-971
Toll-like receptor 4 (TLR4) initiates both myeloid differentiation factor 88 (MyD88)-dependent and Toll/interleukin (IL)-1R domain-containing adapter, inducing interferon (IFN)-beta-dependent signaling, leading to production of proinflammatory mediators and type I interferon (IFN) to eliminate pathogens. However, uncontrolled TLR4 activation may contribute to pathogenesis of autoimmune and inflammatory diseases. TLR4 is transported from the plasma membrane to the endosome for ubiqutination and to the lysosome for degradation, and downregulation of TLR4 expression or promotion of TLR4 degradation are important ways for negative regulation of TLR4 signaling. We previously identified a lysosome-associated small guanosine triphosphatase (GTPase) Rab7b that may be involved in lysosomal trafficking and degradation of proteins. Here we demonstrate that Rab7b can negatively regulate lipopolysaccharide (LPS)-induced production of tumor necrosis factor (TNF)-alpha, IL-6, nitric oxide, and IFN-beta, and potentiate LPS-induced activation of mitogen-activated protein kinase, nuclear factor kappaB, and IFN regulatory factor 3 signaling pathways in macrophages by promoting the degradation of TLR4. Rab7b is localized in LAMP-1-positive subcellular compartments and colocalized with TLR4 after LPS treatment and can decrease the protein level of TLR4. Our findings suggest that Rab7b is a negative regulator of TLR4 signaling, potentially by promoting the translocation of TLR4 into lysosomes for degradation.  相似文献   

13.
14.
15.
16.
Rab5 is a small GTPase known to regulate vesicular trafficking during interphase. Here, we show that Rab5 also plays an unexpected role during mitotic progression. RNAi-mediated silencing of Rab5 caused defects in chromosome congression and extensive prometaphase delay, and it correlated with a severe reduction in the localization of the centromere-associated protein CENP-F to kinetochores. CENP-F is a component of the nuclear matrix required for chromosome congression that, at mitotic entry, localizes to the nuclear envelope and assembles on kinetochores, contributing to the establishment of kinetochore microtubule interactions. We found that Rab5 forms a complex with a subset of CENP-F in mitotic cells and regulates the kinetics of release of CENP-F from the nuclear envelope and its accumulation on kinetochores. Simultaneous depletion of both Rab5 and CENP-F recapitulated the mitotic defects caused by silencing of either Rab5 or CENP-F alone, indicating epistatic roles for these two proteins in the pathway that orchestrates chromosome congression. These results reveal the involvement of Rab5 in the proper execution of mitotic programs whose deregulation can undermine chromosomal stability.  相似文献   

17.
Phagocytosis of apoptotic cells requires recognition of cell corpses followed by internalization and enclosure within plasma membrane-derived phagosomes. Phagosomes undergo maturation to generate phagolysosomes in which cell corpses are degraded; however, regulation of the maturation process is poorly understood. Here, we identified Rab GTPase 14, which regulates apoptotic cell degradation in Caenorhabditis elegans. rab-14 mutants accumulate many persistent cell corpses owing to defective cell corpse clearance. Loss of rab-14 function affects several steps of phagosome maturation including phagosomal acidification and phagolysosome formation. RAB-14 and UNC-108/RAB2 are recruited to phagosomes at a similar stage and function redundantly to regulate phagosome maturation. Three Rabs, RAB-14, UNC-108/RAB2, and RAB-7, act in sequential steps to control phagolysosome formation. RAB-14 and UNC-108 recruit lysosomes, whereas RAB-7 mediates fusion of lysosomes to phagosomes. Our data reveal the sequential action of Rab GTPases in regulating tethering, docking, and fusion of lysosomes to apoptotic cell-containing phagosomes.  相似文献   

18.
Ras/ERK signaling plays an important role in T cell activation and development. We recently reported that endothelial nitric oxide synthase (eNOS)-derived NO regulates T cell receptor (TCR)-dependent ERK activation by a cGMP-independent mechanism. Here, we explore the mechanisms through which eNOS exerts this regulation. We have found that eNOS-derived NO positively regulates Ras/ERK activation in T cells stimulated with antigen on antigen-presenting cells (APCs). Intracellular activation of N-, H-, and K-Ras was monitored with fluorescent probes in T cells stably transfected with eNOS-GFP or its G2A point mutant, which is defective in activity and cellular localization. Using this system, we demonstrate that eNOS selectively activates N-Ras but not K-Ras on the Golgi complex of T cells engaged with APC, even though Ras isoforms are activated in response to NO from donors. We further show that activation of N-Ras involves eNOS-dependent S-nitrosylation on Cys118, suggesting that upon TCR engagement, eNOS-derived NO directly activates N-Ras on the Golgi. Moreover, wild-type but not C118S N-Ras increased TCR-dependent apoptosis, suggesting that S-nitrosylation of Cys118 contributes to activation-induced T cell death. Our data define a signaling mechanism for the regulation of the Ras/ERK pathway based on the eNOS-dependent differential activation of N-Ras and K-Ras at specific cell compartments.  相似文献   

19.
Rab proteins are Ras-related small GTPases that are geranylgeranylated on cysteine residues located at or near their C termini. They differ from other geranylgeranylated small GTPases in several important respects. (i) Most Rab proteins contain two adjacent cysteine residues within one of the following C-terminal sequence motifs: -XXCC, -XCXC, or -CCXX; (ii) a Rab protein that ends in a -XCXC motif has been shown to be geranylgeranylated on both adjacent cysteine residues; and (iii) Rab proteins are substrates of a unique Rab-specific geranylgeranyltransferase. Whether this enzyme catalyzes the geranylgeranylation of both cysteines is unknown. We addressed this question by direct structural analysis of in vitro prenylated proteins. We incubated recombinant Rab geranylgeranyltransferase, Rab escort protein, and [1-3H]geranylgeranyl pyrophosphate with recombinant wild-type Rab1A (-XXCC), Rab3A (-XCXC), or Rab5A (-CCXX) and treated each labeled protein with trypsin. We then analyzed the resulting peptides by HPLC and electrospray mass spectrometry and found that for each protein both C-terminal adjacent cysteines were geranylgeranylated. These results indicate that Rab geranylgeranyltransferase/Rab escort protein catalyzes the geranylgeranylation of both cysteines in Rab proteins with three distinct C-terminal motifs and suggest that other Rab proteins with these motifs may be similarly modified.  相似文献   

20.
Ephrin signaling through Eph receptor tyrosine kinases regulates important morphogenetic events during development and synaptic plasticity in the adult brain. Although Eph-ephrin endocytosis is required for repulsive axon guidance, its role in postnatal brain and synaptic plasticity is unknown. Here, we show that Rin1, a postnatal brain-specific Rab5-GEF, is coexpressed with EphA4 in excitatory neurons and interacts with EphA4 in synaptosomal fractions. The interaction of Rin1 and EphA4 requires Rin1's SH2 domain, consistent with the view that Rin1 targets tyrosine phosphorylated receptors to Rab5 compartments. We find that Rin1 mediates EphA4 endocytosis in postnatal amygdala neurons after engagement of EphA4 with its cognate ligand ephrinB3. Rin1 was shown to suppress synaptic plasticity in the amygdala, a forebrain structure important for fear learning, possibly by internalizing synaptic receptors. We find that the EphA4 receptor is required for synaptic plasticity in the amygdala, raising the possibility that an underlying mechanism of Rin1 function in amygdala is to down-regulate EphA4 signaling by promoting its endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号