首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

BACKGROUND AND PURPOSE

Retinal neurodegeneration is an early and critical event in several diseases associated with blindness. Clinically, therapies that target neurodegeneration fail. We aimed to elucidate the multiple roles by which thioredoxin-interacting protein (TXNIP) contributes to initial and sustained retinal neurodegeneration.

EXPERIMENTAL APPROACH

Neurotoxicity was induced by intravitreal injection of NMDA into wild-type (WT) and TXNIP-knockout (TKO) mice. The expression of apoptotic and inflammatory markers was assessed by immunohistochemistry, elisa and Western blot. Microvascular degeneration was assessed by periodic acid-Schiff and haematoxylin staining and retinal function by electroretinogram.

KEY RESULTS

NMDA induced early (1 day) and significant retinal PARP activation, a threefold increase in TUNEL-positive nuclei and 40% neuronal loss in ganglion cell layer (GCL); and vascular permeability in WT but not TKO mice. NMDA induced glial activation, expression of TNF-α and IL-1β that co-localized with Müller cells in WT but not TKO mice. In parallel, NMDA triggered the expression of NOD-like receptor protein (NLRP3), activation of caspase-1, and release of IL-1β and TNF-α in primary WT but not TKO Müller cultures. After 14 days, NMDA induced 1.9-fold microvascular degeneration, 60% neuronal loss in GCL and increased TUNEL-labelled cells in the GCL and inner nuclear layer in WT but not TKO mice. Electroretinogram analysis showed more significant reductions in b-wave amplitudes in WT than in TKO mice.

CONCLUSION AND IMPLICATIONS

Targeting TXNIP expression prevented early retinal ganglion cell death, glial activation, retinal inflammation and secondary neuro/microvascular degeneration and preserved retinal function. TXNIP is a promising new therapeutic target for retinal neurodegenerative diseases.  相似文献   

2.

Background:

Evidence from both clinical and experimental research indicates that the immune-brain interaction plays a pivotal role in the pathophysiology of depression. A multi-protein complex of the innate immune system, the NLRP3 inflammasome regulates cleavage and secretion of proinflammatory cytokine interleukin-1β. The inflammasome detects various pathogen-associated molecule patterns and damage-associated molecule patterns, which then leads to a series of immune-inflammatory reactions.

Methods:

To explore the role of inflammasome activation in the underlying biological mechanisms of depression, we established a mouse model of depression with unpredictable chronic mild stress.

Results:

Mice subjected to chronic mild stress for 4 weeks had significantly higher serum corticosterone levels, serum interleukin-1β levels, and hippocampal active interleukin-1β protein levels. They also displayed depressive-like symptoms, including decreased sucrose preference and increased immobility time. Moreover, the hippocampi of chronic mild stress-exposed mice had significantly higher activity of caspase-1, which accompanied by higher protein levels of NLRP3 and the apoptotic speck-containing protein with a card. Pretreatment with the NLRP3 inflammasome inhibitor VX-765 decreased serum and hippocampal levels of interleukin-1β protein and significantly moderated the depressive-like behaviors induced by chronic mild stress.

Conclusions:

These data suggest the NLRP3 inflammasome mediates stress-induced depression via immune activation. Future procedures targeting the NLRP3 inflammasome may have promising effects in the prevention and treatment of depression.  相似文献   

3.
Heart disease is a leading cause of death worldwide. In many forms of heart disease, including heart failure, ischaemic heart disease and diabetic cardiomyopathies, changes in cardiac mitochondrial energy metabolism contribute to contractile dysfunction and to a decrease in cardiac efficiency. Specific metabolic changes include a relative increase in cardiac fatty acid oxidation rates and an uncoupling of glycolysis from glucose oxidation. In heart failure, overall mitochondrial oxidative metabolism can be impaired while, in ischaemic heart disease, energy production is impaired due to a limitation of oxygen supply. In both of these conditions, residual mitochondrial fatty acid oxidation dominates over mitochondrial glucose oxidation. In diabetes, the ratio of cardiac fatty acid oxidation to glucose oxidation also increases, although primarily due to an increase in fatty acid oxidation and an inhibition of glucose oxidation. Recent evidence suggests that therapeutically regulating cardiac energy metabolism by reducing fatty acid oxidation and/or increasing glucose oxidation can improve cardiac function of the ischaemic heart, the failing heart and in diabetic cardiomyopathies. In this article, we review the cardiac mitochondrial energy metabolic changes that occur in these forms of heart disease, what role alterations in mitochondrial fatty acid oxidation have in contributing to cardiac dysfunction and the potential for targeting fatty acid oxidation to treat these forms of heart disease.

LINKED ARTICLES

This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8  相似文献   

4.
Excessive activation of NLRP3 inflammasome is associated with the pathogenesis of inflammatory diseases. Pristimerin (Pri) is a quinonoid triterpene derived from traditional Chinese medical herb Celastraceae and Hippocrateaceae. Pri has shown antifungal, antibacterial, antioxidant, and anticancer activities. In this study we investigated whether NLRP3 inflammasome was associated with the anti-inflammatory activity of Pri. We showed that Pri (0.1−0.4 μM) dose-dependently blocked caspase-1 activation and IL-1β maturation in LPS-primed mouse bone-marrow-derived macrophages (BMDMs). Pri specifically inhibited NLRP3 inflammasome activation, had no visible effects on NLRC4 and AIM2 inflammasome activation. Furthermore, we demonstrated that Pri blocked the assembly of the NLRP3 inflammasome via disturbing the interaction between NEK7 and NLRP3; the α, β-unsaturated carbonyl moiety of Pri was essential for NLRP3 inflammasome inactivation. In LPS-induced systemic inflammation mouse model and MSU-induced mouse peritonitis model, preinjection of Pri (500 μg/kg, ip) produced remarkable therapeutic effects via inhibition of NLRP3 inflammasome in vivo. In HFD-induced diabetic mouse model, administration of Pri (100 μg· kg−1 ·d−1, ip, for 6 weeks) reversed HFD-induced metabolic disorders via suppression of NLRP3 inflammasome activation. Taken together, our results demonstrate that Pri acts as a NLRP3 inhibitor, suggesting that Pri might be useful for the treatment of NLRP3-associated diseases.  相似文献   

5.
6.
Metabolic reprogramming is associated with NLRP3 inflammasome activation in activated macrophages, contributing to inflammatory responses. Tanshinone IIA (Tan-IIA) is a major constituent from Salvia miltiorrhiza Bunge, which exhibits anti-inflammatory activity. In this study, we investigated the effects of Tan-IIA on inflammation in macrophages in focus on its regulation of metabolism and redox state. In lipopolysaccharides (LPS)-stimulated mouse bone marrow-derived macrophages (BMDMs), Tan-IIA (10 μM) significantly decreased succinate-boosted IL-1β and IL-6 production, accompanied by upregulation of IL-1RA and IL-10 release via inhibiting succinate dehydrogenase (SDH). Tan-IIA concentration dependently inhibited SDH activity with an estimated IC50 of 4.47 μM in LPS-activated BMDMs. Tan-IIA decreased succinate accumulation, suppressed mitochondrial reactive oxygen species production, thus preventing hypoxia-inducible factor-1α (HIF-1α) induction. Consequently, Tan-IIA reduced glycolysis and protected the activity of Sirtuin2 (Sirt2), an NAD+-dependent protein deacetylase, by raising the ratio of NAD+/NADH in activated macrophages. The acetylation of α-tubulin was required for the assembly of NLRP3 inflammasome; Tan-IIA increased the binding of Sirt2 to α-tubulin, and thus reduced the acetylation of α-tubulin, thus impairing this process. Sirt2 knockdown or application of Sirt2 inhibitor AGK-2 (10 μM) neutralized the effects of Tan-IIA, suggesting that Tan-IIA inactivated NLRP3 inflammasome in a manner dependent on Sirt2 regulation. The anti-inflammatory effects of Tan-IIA were observed in mice subjected to LPS challenge: pre-administration of Tan-IIA (20 mg/kg, ip) significantly attenuated LPS-induced acute inflammatory responses, characterized by elevated IL-1β but reduced IL-10 levels in serum. The peritoneal macrophages isolated from the mice displayed similar metabolic regulation. In conclusion, Tan-IIA reduces HIF-1α induction via SDH inactivation, and preserves Sirt2 activity via downregulation of glycolysis, contributing to suppression of NLRP3 inflammasome activation. This study provides a new insight into the anti-inflammatory action of Tan-IIA from the respect of metabolic and redox regulation.  相似文献   

7.

BACKGROUND AND PURPOSE

Sublesional osteoporosis predisposes individuals with spinal cord injury (SCI) to an increased risk of low-trauma fracture. The aim of the present work was to investigate the effect of treatment with resveratrol (RES) on sublesional bone loss in spinal cord-injured rats.

EXPERIMENTAL APPROACH

Complete SCI was generated by surgical transaction of the cord at the T10–12 level. Treatment with RES (400 mg·kg−1 body mass per day−1, intragastrically) was initiated 12 h after the surgery for 10 days. Then, blood was collected and femurs and tibiae were removed for evaluation of the effects of RES on bone tissue after SCI.

KEY RESULTS

Treatment of SCI rats with RES prevented the reduction of bone mass including bone mineral content and bone mineral density in tibiae, preserved bone structure including trabecular bone volume fraction, trabecular number, and trabecular thickness in tibiae, and preserved mechanical strength including ultimate load, stiffness, and energy in femurs. Treatment of SCI rats with RES enhanced femoral total sulfhydryl content, reduced femoral malondialdehyde and IL-6 mRNA levels. Treatment of SCI rats with RES suppressed the up-regulation of mRNA levels of PPARγ, adipose-specific fatty-acid-binding protein and lipoprotein lipase, and restored mRNA levels of Wnt1, low-density lipoprotein-related protein 5, Axin2, ctnnb1, insulin-like growth factor 1 (IGF-1) and receptor for IGF-1 in femurs and tibiae.

CONCLUSIONS AND IMPLICATIONS

Treatment with RES attenuated sublesional bone loss in spinal-cord-injured rats, associated with abating oxidative stress, attenuating inflammation, depressing PPARγ signalling, and restoring Wnt/β-catenin and IGF-1 signalling.  相似文献   

8.
Myocardial fibrosis (MF) is the result of persistent and repeated aggravation of myocardial ischemia and hypoxia, leading to the gradual development of heart failure of chronic ischemic heart disease. Triptolide (TPL) is identified to be involved in the treatment for MF. This study aims to explore the mechanism of TPL in the treatment of MF. The MF rat model was established, subcutaneously injected with isoproterenol and treated by subcutaneous injection of TPL. The cardiac function of each group was evaluated, including LVEF, LVFS, LVES, and LVED. The expressions of ANP, BNP, inflammatory related factors (IL-1β, IL-18, TNF-α, MCP-1, VCAM-1), NLRP3 inflammasome factors (NLRP3, ASC) and fibrosis related factors (TGF-β1, COL1, and COL3) in rats were dete cted. H&E staining and Masson staining were used to observe myocardial cell inflammation and fibrosis of rats. Western blot was used to detect the p-P65 and t-P65 levels in nucleoprotein of rat myocardial tissues. LVED and LVES of MF group were significantly upregulated, LVEF and LVFS were significantly downregulated, while TPL treatment reversed these trends; TPL treatment downregulated the tissue injury and improved the pathological damage of MF rats. TPL treatment downregulated the levels of inflammatory factors and fibrosis factors, and inhibited the activation of NLRP3 inflammasome. Activation of NLRP3 inflammasome or NF-κB pathway reversed the effect of TPL on MF. Collectively, TPL inhibited the activation of NLRP3 inflammasome by inhibiting NF-κB pathway, and improved MF in MF rats.  相似文献   

9.

Background and purpose:

Nutrient overload leads to obesity and insulin resistance. Pioglitazone, a selective peroxisome proliferator-activated receptor (PPAR)γ agonist, is currently used to manage insulin resistance, but the specific molecular mechanisms activated by PPARγ are not yet fully understood. Recent studies suggest the involvement of suppressor of cytokine signalling (SOCS)-3 in the pathogenesis of insulin resistance. This study aimed to investigate the hepatic signalling pathway activated by PPARγ activation in a non-genetic insulin-resistant animal model.

Experimental approach:

Male Wistar rats were maintained on a high-cholesterol fructose (HCF) diet for 15 weeks. Pioglitazone (3 mg·kg−1) was administered orally for the last 4 weeks of this diet. At the end of the treatment, serum was collected for biochemical analysis. Levels of PPARγ, SOCS-3, pro-inflammatory markers, insulin receptor substrate-2 and Akt/glycogen synthase kinase-3β phosphorylation were assesed in rat liver.

Key results:

Rats fed the HCF diet exhibited hyperlipidemia, hyperinsulinemia, impaired glucose tolerance and insulin resistance. Pioglitazone administration evoked a significant improvement in lipid metabolism and insulin responsiveness. This was accompanied by reduced hepatic expression of SOCS-3, interleukin-6, tumour necrosis factor-α and markers of neutrophil infiltration. Diet-induced PPARγ expression was unaffected by the pioglitazone treatment.

Conclusion and implications:

Chronic pioglitazone administration reduced hepatic inflammatory responses in rats fed a HCF diet. These effects were associated with changes in hepatic expression of SOCS-3, which may be a crucial link between the reduced local inflammation and the improved insulin signalling.This article is commented on by Chatterjee, pp. 1889–1891 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00739.x  相似文献   

10.
Bisphenol A (BPA) has been widely reported to exert endocrine disrupting effects, including the induction of adipogenesis in cultured preadipocytes and intact animals. Because of the potential harm to human health, BPA is being substituted by structurally related bisphenols. Whether or not such BPA analogues are safe substitutes, however, remains largely unknown. Here, we investigated the potential of bisphenol B (BPB), bisphenol E (BPE), bisphenol F (BPF), bisphenol S (BPS), and 4‐cumylphenol (4‐CP) to affect lipid and hormone levels in 3 T3‐L1 cells. We found that BPB, BPE, BPF, BPS, and 4‐CP all affected lipid accumulation and leptin levels to the same extent and potencies as BPA. Based on these and other results, we conclude that these BPA analogues and 4‐CP most likely will elicit similar effects on adipocytes as BPA. Using them to substitute BPA in products should be done with caution.  相似文献   

11.
12.
ContextAtherosclerosis predisposes individuals to adverse cardiovascular events. Clinacanthus nutans L. (Acanthaceae) is a traditional remedy used for diabetes and inflammatory conditions.ObjectivesTo investigate the anti-atherosclerotic activity of a C. nutans leaf methanol extract (CNME) in a type 2 diabetic (T2D) rat model induced by a high-fat diet (HFD) and low-dose streptozotocin.Materials and methodsSixty male Sprague-Dawley rats were divided into five groups: non-diabetic fed a standard diet (C), C + CNME (500 mg/kg, orally), diabetic fed an HFD (DM), DM + CNME (500 mg/kg), and DM + Metformin (DM + Met; 300 mg/kg). Treatment with oral CNME and metformin was administered for 4 weeks. Fasting blood glucose (FBG), serum lipid profile, atherogenic index (AI), aortic tissue superoxide dismutase levels (SOD), malondialdehyde (MDA), and tumour necrosis factor-alpha (TNF-α) were measured. The rats’ aortas were stained for histological analysis and intima-media thickness (IMT), a marker of subclinical atherosclerosis.ResultsThe CNME-treated diabetic rats had reduced serum total cholesterol (43.74%; p = 0.0031), triglycerides (80.91%; p = 0.0003), low-density lipoprotein cholesterol (56.64%; p = 0.0008), AI (51.32%; p < 0.0001), MDA (60.74%; p = 0.0026), TNF-α (61.78%; p = 0.0002), and IMT (39.35%; p < 0.0001) compared to untreated diabetic rats. SOD level, however, increased (53.36%; p = 0.0326). These CNME effects were comparable to those in the metformin-treated diabetic rats.ConclusionsC. nutans possesses anti-atherosclerotic properties, which may be due to reductions in vascular tissue oxidative stress, inflammation, and serum AI. Continued studies on atherosclerotic animal models are suggested.  相似文献   

13.
14.

Aim:

Interleukin-22 (IL-22) exhibits both proinflammatory and anti-inflammatory properties in various biological processes. In this study we explored the effects of exogenous recombinant IL-22 (rIL-22) on cigarette smoke (CS)-induced airway inflammation in mice.

Methods:

Male C57BL/6 mice were divided into groups: (1) CS group exposed to tobacco smoke for 3 consecutive days, (2) rIL-22 group received rIL-22 (100 mg/kg, ip), and (3) CS plus rIL-22 group, received rIL-22 (100 mg/kg, ip) before the CS exposure. The airway resistance (Rn), lung morphology, inflammatory cells in the airways, and inflammatory cytokines and CXCR3 ligands in both bronchoalveolar lavage (BAL) fluids and lung tissues were analyzed.

Results:

CS alone significantly elevated IL-22 level in the BAL fluid. Both CS and rIL-22 significantly augmented airway resistance, an influx of inflammatory cells into the airways and lung parenchyma, and significantly elevated levels of pro-inflammatory cytokines (TGFβ1 and IL-17A) and CXCR3 chemokines (particularly CXCL10) at the mRNA and/or protein levels. Furthermore, the effects of rIL-22 on airway resistance and inflammation were synergistic with those of CS, as demonstrated by a further increased Rn value, infiltration of greater numbers of inflammatory cells into the lung, higher levels of inflammatory cytokines and chemokines, and more severe pathological changes in CS plus rIL-22 group as compared to those in CS group.

Conclusion:

Exogenous rIL-22 exacerbates the airway inflammatory responses to CS exposure in part by inducing expression of several proinflammatory cytokines and CXCR3 ligands.  相似文献   

15.
  1. In RAW 264.7 murine macrophages and rat aortic smooth muscle (RASM) cells lipopolysaccharide (LPS) alone or in combination with interferon γ (IFNγ) or forskolin, respectively, stimulated the expression of the 130 kDa inducible isoform of nitric oxide synthase (iNOS) in both a time- and concentration-dependent manner.
  2. Incubation with the direct activator of protein kinase C (PKC), phorbol 12-myristate 13-acetate (PMA) alone, did not result in detectable iNOS expression in either cell type.
  3. Chronic PMA pretreatment resulted in significant down-regulation of α, β and ε isoforms of PKC in RAW 264.7 macrophages and corresponded to a 20–30% reduction in LPS-induced iNOS expression. In contrast, IFNγ alone or in combination with LPS stimulated an approximate 20% and 50% potentiation, respectively.
  4. Pre-incubation with PKC inhibitors (calphostin C and H-7) showed similar effects upon stimulated induction of iNOS.
  5. In RASM cells chronic PMA pretreatment resulted in down-regulation of α and ε PKC isoforms and corresponded to potentiation of iNOS expression in response to LPS alone or in combination with forskolin.
  6. Co-incubation of RASM cells in the presence of PMA, angiotensin II (AII) or foetal calf serum (FCS) resulted in the inhibition of iNOS expression in response to LPS alone or in combination with forskolin.
  7. Differential sensitivity to PKC inhibitors (calphostin C and H-7) was observed in RASM cells and exhibited both negative and positive modulation of stimulated induction.
  8. In addition the PKC inhibitor compound Ro-31-8220 abolished stimulated induction in both cell types in response to all treatments.
  9. These results suggest that PKC activation is required for induction of the 130 kDa isoform of NOS in both RAW 264.7 macrophages and RASM cells. However, individual PKC isoforms regulate iNOS expression in both a positive and negative manner.
  相似文献   

16.

Aim:

(±)Doxazosin is a long-lasting inhibitor of α1-adrenoceptors that is widely used to treat benign prostatic hyperplasia and lower urinary tract symptoms. In this study we investigated the stereoselective binding of doxazosin enantiomers to the plasma proteins of rats, dogs and humans in vitro.

Methods:

Human, dog and rat plasma were prepared. Equilibrium dialysis was used to determine the plasma protein binding of each enantiomer in vitro. Chiral HPLC with fluorescence detection was used to measure the drug concentrations on each side of the dialysis membrane bag.

Results:

Both the enantiomers were highly bound to the plasma proteins of rats, dogs and humans [(−)doxazosin: 89.4%–94.3%; (+)doxazosin: 90.9%–95.4%]. (+)Doxazosin exhibited significantly higher protein binding capacities than (−)doxazosin in all the three species, and the difference in the bound concentration (Cb) between the two enantiomers was enhanced as their concentrations were increased. Although the percentage of the plasma protein binding in the dog plasma was significantly lower than that in the human plasma at 400 and 800 ng/mL, the corrected percentage of plasma protein binding was dog>human>rat.

Conclusion:

(−)Doxazosin and (+)doxazosin show stereoselective plasma protein binding with a significant species difference among rats, dogs and humans.  相似文献   

17.
The liver is an important organ for drugs disposition, and thus how to accurately evaluate hepatic clearance is essential for proper drug dosing. However, there are many limitations in drug dosage adjustment based on liver function and pharmacogenomic testing. In this study, we evaluated the ability of endogenous glycochenodeoxycholate-3-sulfate (GCDCA-S) and 4β-hydroxycholesterol (4β-HC) plasma levels to evaluate organic anion-transporting polypeptide (Oatps)-mediated hepatic uptake and Cyp3a-meidated metabolism of atorvastatin (ATV) in rats. The concentration of ATV and its metabolites, 2-OH ATV and 4-OH ATV, was markedly increased after a single injection of rifampicin (RIF), an inhibitor of Oatps. Concurrently, plasma GCDCA-S levels were also elevated. After a single injection of the Cyp3a inhibitor ketoconazole (KTZ), plasma ATV concentrations were significantly increased and 2-OH ATV concentrations were decreased, consistent with the metabolism of ATV by Cyp3a. However, plasma 4β-HC was not affected by KTZ treatment despite it being a Cyp3a metabolite of cholesterol. After repeated oral administration of RIF, plasma concentrations of ATV, 2-OH ATV and 4-OH ATV were markedly increased and the hepatic uptake ratio of ATV and GCDCA-S was decreased. KTZ did not affect plasma concentrations of ATV, 2-OH ATV and 4-OH ATV, but significantly decreased the metabolic ratio of total and 4-OH ATV. However, the plasma level and hepatic metabolism of 4β-HC were not changed by KTZ. The inhibition of hepatic uptake of GCDCA-S by RIF was fully reversed after a 7-d washout of RIF. Plasma concentration and hepatic uptake ratio of GCDCA-S were correlated with the plasma level and hepatic uptake of ATV in rats with ANIT-induced liver injury, respectively. These results demonstrate that plasma GCDCA-S is a sensitive probe for the assessment of Oatps-mediated hepatic uptake of ATV. However, Cyp3a-mediated metabolism of ATV was not predicted by plasma 4β-HC levels in rats.  相似文献   

18.

Objectives:

The objective of present study was to evaluate the effect of active principle (Cg-1) from Cassia glauca leaf on serum glucose and lipid profile in normal and diabetic rats.

Materials and Methods:

Diabetes was induced by streptozotocin in neonates. Oral administration of petroleum ether, chloroform, acetone, and methanol of C. glauca leaf (100 mg/kg, p.o.) for 21 days caused a decrease in fasting blood glucose (FBG) in diabetic rats. Among all the extracts, acetone extract was found to lower the FBG level significantly in diabetic rats. Glibenclamide was used as standard antidiabetic drug (5 mg/kg, p.o). Acetone extract was subjected to column chromatography that led to isolation of an active principle, which was given trivial name Cg-1. Cg-1 (50 mg/kg, p.o.) was studied for its hypoglycemic and hypolipidemic potential. The unpaired t-test and analysis of variance (ANOVA) followed by post hoc test was used for statistical analysis.

Results:

Cg-1 caused a significant reduction in FBG level. It also caused reduction in cholesterol, triglycerides, and LDL levels and improvement in the atherogenic index and HDL level in diabetic rats.

Conclusion:

Improvement in the FBG and the atherogenic index by Cg-1 indicates that Cg-1 has cardioprotective potential along with antidiabetic activity and provides a scientific rationale for the use as an antidiabetic agent.  相似文献   

19.
  1. Antioxidants can exert protective effects in endotoxic shock by either a reduction of the oxidant damage or attenuation of Tumour Necrosis Factor (TNF-α) production.
  2. Lazaroids are a family of compounds that inhibit lipid peroxidation. Besides, they can also reduce TNF-α. U-83836E is a new lazaroid lacking the glucocorticoid ring.
  3. Aim of our study was to investigate the effect of U-83836E on TNF-α production either in vivo or in vitro. Endotoxic shock was produced in male rats by a single intravenous (i.v.) injection of 20 mg kg−1 of S. enteritidis lipopolysaccharide (LPS). LPS administration reduced survival rate (0% survival, 72 h after endotoxin administration), decreased mean arterial blood pressure, increased serum and macrophage TNF-α and enhanced plasma malonylaldehyde (MAL) levels. Furthermore aortic rings from shocked rats showed a marked hyporeactivity to phenylephrine (PE 1 nM–10 μM).
  4. Treatment with U-83836E (7.5, 15 and 30 mg kg−1, i.v.) 5 min after endotoxin challenge significantly protected against LPS induced lethality (90% survival rate and 80% survival rate 24 h and 72 h after LPS injection respectively, following the highest dose of the drug), reduced hypotension, blunted plasma MAL, decreased serum and macrophage TNF-α and restored the hyporeactivity of aortic rings to control values. In vitro LPS stimulation (50 μg ml−1 for 4 h) significantly increased cytokine production in macrophages (MΦ) harvested from untreated normal rats. Pretreatment with pertussis toxin (PT; 0.1, 1 and 10 ng ml−1 4 h before LPS) significantly increased TNF-α production. PT effects on these LPS responses were correlated with a PT mediated ADP ribosylation of a 41 kDa protein. U-83836E (50 μM) reduced, in a dose dependent manner, LPS induced TNF-α production and inhibited the PT effects on cytokine production and on ADP ribosylation of the protein.
  5. Our data suggest that lazaroids may affect the early events associated with LPS receptor mediated activation of a G protein in LPS induced TNF-α production. These molecular events may explain, at least in part, the in vivo inhibition of cytokine production and reversal of endotoxic shock.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号