首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Hepatitis C virus (HCV) infection is common among people who inject drugs, including those managed with maintenance opioids. Pharmacokinetic interactions between opioids and emerging oral HCV antivirals merit evaluation. Daclatasvir is a potent pangenotypic inhibitor of the HCV NS5A replication complex recently approved for HCV treatment in Europe and Japan in combination with other antivirals. The effect of steady-state daclatasvir (60 mg daily) on stable plasma exposure to oral opioids was assessed in non-HCV-infected subjects receiving methadone (40 to 120 mg; n = 14) or buprenorphine plus naloxone (8 to 24 mg plus 2 to 6 mg; n = 11). No relevant interaction was inferred if the 90% confidence interval (CI) of the geometric mean ratio (GMR) of opioid area under the plasma concentration-time curve over the dosing interval (AUCτ) or maximum concentration in plasma (Cmax) with versus without daclatasvir was within literature-derived ranges of 0.7 to 1.43 (R- and S-methadone) or 0.5 to 2.0 (buprenorphine and norbuprenorphine). Dose-normalized AUCτ for R-methadone (GMR, 1.08; 90% CI, 0.94 to 1.24), S-methadone (1.13; 0.99 to 1.30), and buprenorphine (GMR, 1.37; 90% CI, 1.24 to 1.52) were within the no-effect range. The norbuprenorphine AUCτ was slightly elevated in the primary analysis (GMR, 1.62; 90% CI, 1.30 to 2.02) but within the no-effect range in a supplementary analysis of all evaluable subjects. Dose-normalized Cmax for both methadone enantiomers, buprenorphine and norbuprenorphine, were within the no-effect range. Standardized assessments of opioid pharmacodynamics were unchanged throughout daclatasvir administration with methadone or buprenorphine. Daclatasvir pharmacokinetics were similar to historical data. Coadministration of daclatasvir and opioids was generally well tolerated. In conclusion, these data suggest that daclatasvir can be administered with buprenorphine or methadone without dose adjustments.  相似文献   

2.
The effects of steady-state faldaprevir on the safety, pharmacokinetics, and pharmacodynamics of steady-state methadone and buprenorphine-naloxone were assessed in 34 healthy male and female subjects receiving stable addiction management therapy. Subjects continued receiving a stable oral dose of either methadone (up to a maximum dose of 180 mg per day) or buprenorphine-naloxone (up to a maximum dose of 24 mg-6 mg per day) and also received oral faldaprevir (240 mg) once daily (QD) for 8 days following a 480-mg loading dose. Serial blood samples were taken for pharmacokinetic analysis. The pharmacodynamics of the opioid maintenance regimens were evaluated by the objective and subjective opioid withdrawal scales. Coadministration of faldaprevir with methadone or buprenorphine-naloxone resulted in geometric mean ratios for the steady-state area under the concentration-time curve from 0 to 24 h (AUC0–24,ss), the steady-state maximum concentration of the drug in plasma (Cmax,ss), and the steady-state concentration of the drug in plasma at 24 h (C24,ss) of 0.92 to 1.18 for (R)-methadone, (S)-methadone, buprenorphine, norbuprenorphine, and naloxone, with 90% confidence intervals including, or very close to including, 1.00 (no effect), suggesting a limited overall effect of faldaprevir. Although individual data showed moderate variability in the exposures between subjects and treatments, there was no evidence of symptoms of opiate overdose or withdrawal either during the coadministration of faldaprevir with methadone or buprenorphine-naloxone or after faldaprevir dosing was stopped. Similar faldaprevir exposures were observed in the methadone- and buprenorphine-naloxone-treated subjects. In conclusion, faldaprevir at 240 mg QD can be coadministered with methadone or buprenorphine-naloxone without dose adjustment, although given the relatively narrow therapeutic windows of these agents, monitoring for opiate overdose and withdrawal may still be appropriate. (This study has been registered at ClinicalTrials.gov under registration no. NCT01637922.)  相似文献   

3.
4.
BMS-663068 is a prodrug of BMS-626529, a first-in-class attachment inhibitor that binds directly to HIV-1 gp120, preventing initial viral attachment and entry into host CD4+ T cells. This open-label, multiple-dose, four-sequence, crossover study addressed potential two-way drug-drug interactions following coadministration of BMS-663068 (BMS-626529 is a CYP3A4 substrate), atazanavir (ATV), and ritonavir (RTV) (ATV and RTV are CYP3A4 inhibitors). Thirty-six healthy subjects were randomized 1:1:1:1 to receive one of four treatment sequences with three consecutive treatments: BMS-663068 at 600 mg twice daily (BID), BMS-663068 at 600 mg BID plus RTV at 100 mg once daily (QD), ATV at 300 mg QD plus RTV at 100 mg QD (RTV-boosted ATV [ATV/r]), or BMS-663068 at 600 mg BID plus ATV at 300 mg QD plus RTV at 100 mg QD. Compared with the results obtained by administration of BMS-663068 alone, coadministration of BMS-663068 with ATV/r increased the BMS-626529 maximum concentration in plasma (Cmax) and the area under the concentration-time curve in one dosing interval (AUCtau) by 68% and 54%, respectively. Similarly, coadministration of BMS-663068 with RTV increased the BMS-626529 Cmax and AUCtau by 53% and 45%, respectively. Compared with the results obtained by administration of ATV/r alone, ATV and RTV systemic exposures remained similar following coadministration of BMS-663068 with ATV/r. BMS-663068 was generally well tolerated, and there were no adverse events (AEs) leading to discontinuation, serious AEs, or deaths. Moderate increases in BMS-626529 systemic exposure were observed following coadministration of BMS-663068 with ATV/r or RTV. However, the addition of ATV to BMS-663068 plus RTV did not further increase BMS-626529 systemic exposure. ATV and RTV exposures remained similar following coadministration of BMS-663068 with either ATV/r or RTV. BMS-663068 was generally well tolerated alone or in combination with either RTV or ATV/r.  相似文献   

5.
Because studies showed similar viral suppression with lower raltegravir doses and because Asians usually have high antiretroviral concentrations, we explored low-dose raltegravir therapy in Thais. Nineteen adults on raltegravir at 400 mg twice daily (BID) with HIV RNA loads of <50 copies/ml were randomized to receive 400 mg once daily (QD) or 800 mg QD for 2 weeks, followed by the other dosing for 2 weeks. Intensive pharmacokinetic analyses were performed, and HIV RNA was monitored. Two patients were excluded from the 400-mg QD analysis due to inevaluable pharmacokinetic data. The mean patient weight was 58 kg. Mean pharmacokinetic values were as follows: for raltegravir given at 400 mg BID, the area under the concentration-time curve from 0 to 12 h (AUC0-12) was 15.6 mg/liter-h and the minimum plasma drug concentration (Ctrough) was 0.22 mg/liter; for raltegravir given at 800 mg QD, the AUC0-24 was 33.6 mg/liter-h and the Ctrough was 0.06 mg/liter; and for raltegravir given at 400 mg QD, the AUC0-24 was 18.6 mg/liter-h and the Ctrough was 0.08 mg/liter. The HIV RNA load was <50 copies/ml at each dose level. Compared to the adjusted AUC0-24 for Westerners on raltegravir at 400 mg BID, Thais on the same dose had double the AUC0-24 and those on raltegravir at 400 mg QD had a similar AUC0-24. More patients had a Ctrough of <0.021 mg/liter on raltegravir at 400 mg QD (9/17 patients) than on raltegravir at 800 mg QD (1/19 patients) or 400 mg BID (0/19 patients). Seventeen patients used raltegravir at 400 mg QD for a median of 35 weeks; two had confirmed HIV RNA loads between 50 and 200 copies/ml, and both had low Ctrough values. Low-dose raltegravir could be a cost-saving option for maintenance therapy in Asians or persons with low body weight. However, raltegravir at 400 mg QD was associated with a low Ctrough and with a risk for HIV viremia. Raltegravir at 200 or 300 mg BID should be studied, but new raltegravir formulations will be needed.  相似文献   

6.
The objective of this report was to study the pharmacokinetics of rifampin (RMP), isoniazid (INH), and pyrazinamide (PZA) in HIV-infected children with tuberculosis (TB) treated with a thrice-weekly anti-TB regimen in the government program in India. Seventy-seven HIV-infected children with TB aged 1 to 15 years from six hospitals in India were recruited. During the intensive phase of TB treatment with directly observed administration of the drugs, a complete pharmacokinetic study was performed. Drug concentrations were measured by high-performance liquid chromatography. A multivariable regression analysis was done to explore the factors impacting drug levels and treatment outcomes. The proportions of children with subnormal peak concentrations (Cmax) of RMP, INH, and PZA were 97%, 28%, and 33%, respectively. Children less than 5 years old had a lower median Cmax and lower exposure (area under the time-concentration curve from 0 to 8 h [AUC0–8]) of INH (Cmax, 2.5 versus 5.1 μg/ml, respectively [P = 0.016]; AUC0–8, 11.1 versus 22.0 μg/ml · h, respectively [P = 0.047[) and PZA (Cmax, 34.1 versus 42.3 μg/ml, respectively [P = 0.055]; AUC0–8, 177.9 versus 221.7 μg/ml · h, respectively [P = 0.05]) than those more than 5 years old. In children with unfavorable versus favorable outcomes, the median Cmax of RMP (1.0 versus 2.8 μg/ml, respectively; P = 0.002) and PZA (31.9 versus 44.4 μg/ml, respectively; P = 0.045) were significantly lower. Among all factors studied, the PZA Cmax influenced TB treatment outcome (P = 0.011; adjusted odds ratio, 1.094; 95% confidence interval, 1.021 to 1.173). A high proportion of children with HIV and TB had a subnormal RMP Cmax. The PZA Cmax significantly influenced treatment outcome. These findings have important clinical implications and emphasize that drug doses in HIV-infected children with TB have to be optimized.  相似文献   

7.
This open-label, fixed-sequence, phase 1 study evaluated the pharmacokinetic interaction between maraviroc (MVC) and ritonavir-boosted fosamprenavir (FPV/r) in healthy subjects. In period 1, subjects received 300 mg of MVC twice daily (BID; cohort 1) or once daily (QD; cohort 2) for 5 days. In period 2, cohort 1 subjects received 700/100 mg of FPV/r BID alone on days 1 to 10 and then FPV/r at 700/100 mg BID plus MVC at 300 mg BID on days 11 to 20; cohort 2 subjects received FPV/r at 1,400/100 mg QD alone on days 1 to 10 and then FPV/r at 1,400/100 mg QD plus MVC at 300 mg QD on days 11 to 20. Pharmacokinetic parameters, assessed on day 5 of period 1 and on days 10 and 20 of period 2, included the maximum plasma concentration (Cmax), the concentration at end of dosing interval (Cτ), and the area under the curve over dosing interval (AUCτ). Safety and tolerability were also assessed. MVC geometric mean AUCτ, Cmax, and Cτ were increased by 149, 52, and 374%, respectively, after BID dosing with FPV/r, and by 126, 45, and 80%, respectively, after QD dosing. Amprenavir (the active form of the prodrug fosamprenavir) and ritonavir exposures were decreased in the presence of MVC with amprenavir AUCτ, Cmax, and Cτ decreased by 34 to 36% in the presence of FPV/r plus maraviroc BID and by 15 to 30% with FPV/r plus MVC QD both compared to FPV/r alone. The overall all-causality adverse-event (AE) incidence rate was 96.4%; all AEs were of mild or moderate severity. Commonly reported treatment-related AEs (>20% of patients overall) included diarrhea, fatigue, abdominal discomfort, headache, and nausea. No serious AEs or deaths occurred. In summary, maraviroc exposure increased in the presence of FPV/r, whereas MVC coadministration decreased amprenavir and ritonavir exposures. MVC dosed at 300 mg BID with FPV/r is not recommended due to concerns of lower amprenavir exposures; however, no dose adjustment is warranted with MVC at 150 mg BID in combination with FPV/r based on the available clinical data. MVC plus FPV/r was generally well tolerated; no new safety signals were detected.  相似文献   

8.
《Clinical therapeutics》2021,43(6):1051-1065
PurposeCelecoxib-tramadol co-crystal (CTC) is a first-in-class co-crystal of celecoxib and racemic tramadol. This Phase 1 bioavailability study compared single-dose pharmacokinetic (PK) parameters of CTC with those of the individual reference products from the United States, immediate-release celecoxib and tramadol, taken alone and simultaneously to determine their systemic exposure.MethodsThis was a single-center, randomized, single-dose, open-label, 4-period, 4-sequence, crossover study conducted in healthy subjects between October and December 2016. Study treatments included 200-mg CTC (equivalent to 112-mg celecoxib and 88-mg tramadol; Treatment-1); 100-mg tramadol (Treatment-2); 100-mg celecoxib (Treatment-3); and 100-mg celecoxib plus 100-mg tramadol (Treatment-4). The PK parameters of interest were Cmax, AUC0–T, and AUC0–∞, which were also calculated normalized to the dose. Tmax was only considered as supportive. The statistical analysis was based on a parametric analysis of variance model of the PK parameters; the two-sided 90% CI of the ratio of geometric mean values for the Cmax, AUC0–T, and AUC0–∞ was based on ln-transformed data, and Tmax was rank-transformed.FindingsThirty-six subjects aged 18 to 55 years (21 male subjects, 15 female subjects; mean age, 35 years) participated in the study. Celecoxib from CTC presented a lower Cmax, reduced AUCs, and a faster Tmax. The interference in celecoxib absorption when celecoxib and tramadol are administered together was minimized with the CTC. For Treatment-1, -3, and -4, celecoxib PK parameters were 259, 318, and 165 ng/mL (Cmax), respectively; 1930, 2348, and 1929 ng • h/mL (AUC0–T); and 1.5, 3.0, and 2.5 hours (Tmax). Tramadol and its active metabolite O-desmethyl tramadol from CTC presented lower Cmax and AUCs as well as a longer Tmax. Tramadol/O-desmethyl tramadol PK parameters for Treatment-1, -2, and -4 were 214/55, 305/78, and 312/78 ng/mL for Cmax; 2507/846, 2709/965, and 2888/1010 ng • h/mL for AUC0–T; and 3.0/4.0, 2.0/2.5, and 1.9/2.5 hours for Tmax. Reported adverse events (none unexpected) occurred more frequently with Treatment-2 and Treatment-4.ImplicationsThe aim of this study was to compare the PK profile of the US-marketed tramadol and celecoxib products with CTC to determine their systemic exposure and to validate the dosing regimen for a subsequent pivotal factorial Phase 3study. PK parameters of each active component in CTC were favorably modified by co-crystallization and did not result in higher systemic exposure compared with US-marketed celecoxib, tramadol, and their concomitant administration. © 2021 Elsevier HS Journals, Inc.  相似文献   

9.
Oseltamivir is a potent, well-tolerated antiviral for the treatment and prophylaxis of influenza. Although no relationship with treatment could be demonstrated, recent reports of abnormal behavior in young individuals with influenza who were receiving oseltamivir have generated renewed interest in the central nervous system (CNS) tolerability of oseltamivir. This single-center, open-label study explored the pharmacokinetics of oseltamivir and oseltamivir carboxylate (OC) in the plasma and cerebrospinal fluid (CSF) of healthy adult volunteers over a 24-hour interval to determine the CNS penetration of both these compounds. Four Japanese and four Caucasian males were enrolled in the study. Oseltamivir and OC concentrations in CSF were low (mean of observed maximum concentrations [Cmax], 2.4 ng/ml [oseltamivir] and 19.0 ng/ml [OC]) versus those in plasma (mean Cmax, 115 ng/ml [oseltamivir] and 544 ng/ml [OC]), with corresponding Cmax CSF/plasma ratios of 2.1% (oseltamivir) and 3.5% (OC). Overall exposure to oseltamivir and OC in CSF was also comparatively low versus that in plasma (mean area under the concentration-time curve CSF/plasma ratio, 2.4% [oseltamivir] and 2.9% [OC]). No gross differences in the pharmacokinetics of oseltamivir or OC were observed between the Japanese and Caucasian subjects. Oseltamivir was well tolerated. This demonstrates that the CNS penetration of oseltamivir and OC is low in Japanese and Caucasian adults. Emerging data support the idea that oseltamivir and OC have limited potential to induce or exacerbate CNS adverse events in individuals with influenza. A disease- rather than drug-related effect appears likely.  相似文献   

10.
Background: Amlodipine is a third-generation dihydropyridine calcium antagonist for the treatment of angina and hypertension. The relative bioavailability of a newly developed dispersible tablet as compared with an established branded formulation has not been reported in a Chinese population.Objective: The aim of this study was to assess and compare the pharmacokinetic properties, bioavailabili-ty, and bioequivalence of a newly developed dispersi-ble tablet formulation of amlodipine besylate with those of an established branded formulation in healthy Chinese adult male volunteers.Methods: An open-label, single-dose, randomized, 2-way crossover study was conducted in fasted healthy Chinese male volunteers. Eligible participants were randomly assigned in a 1:1 ratio to receive 2 tablets (5 mg each) of the test or reference formulation, followed by a 2-week washout period and administration of the alternate formulation. The study drugs were administered after a 10-hour overnight fast. Serum samples were collected over 120 hours. Amlodipine concentrations in the serum were analyzed by liquid chromatography tandem mass spectrometry with positive ion electrospray ionization using the multiple reaction monitoring mode. The visible detection of the method was in the range of 0.2 to 32.0 ng/mL, and the lower limit of quantification for amlodipine was 0.2 ng/mL. The amlodipine serum concentration-time curves were used to obtain pharmacokinetic parameters including AUC0?t, AUC0?∞), and Cmax. The criteria for bioequivalence were 90% CIs of 80% to 125% for AUC and 70% to 143% for Cmax, according to guidelines of the State Food and Drug Administration of the People's Republic of China. Tolerability was based on the recording of adverse events (AEs), monitoring vital signs, electrocardiograms, and clinical laboratory tests at baseline and completion of the study.Results: A total of 20 healthy Chinese male volunteers (mean [SD] age, 21.4 [2.6] years [range, 1926 years]; weight, 61.3 [5.4] kg [range, 54.0–75.0 kg]; and height, 171.2 [3.6] cm [range, 162.0–177.0 cm) were included in the study. The mean (SD) Cmax, Tmax, AUC0?t, and AUC0?∞) values after administration of the test and reference formulations, respectively, were as follows: 5.46 (1.13) versus 5.88 (1.24) ng/mL, 7.70 (2.08) versus 9.20 (4.18) hours, 284.56 (77.59) versus 311.34 (75.97) ng/mL/h, and 331.37 (111.03) versus 358.74 (101.10) ng/mL/h. The mean (SD) t1/2 was 38.52 (10.51) hours for the test formulation and 38.75 (7.07) hours for the reference formulation. On analysis of variance, no period or sequence effects were observed for any pharmacokinetic property; however, a significant formulation effect was observed for Cmax, AUC0?t, and AUC0?∞). The relative bioavaila-bility of the test formulation was 90.9% by mean AUC0?t and 91.2% by mean AUC0?∞. The 90% CIs for the ratios of Cmax, AUC0?t, and AUC0?∞ were 88.4% to 97.5%, 86.4% to 95.7%, and 85.8% to 97.0%, respectively, meeting the predetermined criteria for bioequivalence. One subject (5%) reported 2 AEs. The AEs were mild, possibly associated with study drug, and resolved spontaneously by the next evaluation. No serious AEs were reported.Conclusions: In this small study in healthy Chinese adult male volunteers, a single 10-mg dose of the dispersible tablet formulation (test) of amlodipine besy-late met the regulatory criteria for bioequivalence to the established tablet formulation (reference) based on the rate and extent of absorption. Both formulations were well tolerated.  相似文献   

11.
Background: Olanzapine is a psychotropic agent that belongs to the thienobenzodiazepine class.Objective: The aim of this study was to assess the bioequivalence of 2 commercial 10-mg tablet formulations of olanzapine by statistical analysis of the pharmacokinetic parameters Cmax, AUC from 0 to 72 hours after dosing (AUC0-72), and AUC0-∞ as required by the Egyptian health authority for the marketing of a generic product.Methods: This bioequivalence study was carried out in healthy male volunteers using a single-dose, randomized, 2-way crossover design under fasting conditions. Statistical analysis of the pharmacokinetic parameters Cmax, AUC0-72, and AUC0-∞ was conducted to determine bioequivalence (after log-transformation of data using analysis of variance and 90% CIs) and to gain marketing approval in Egypt. The formulations were considered to be bioequivalent if the log-transformed ratios of the 3 pharmacokinetic parameters were within the predetermined bioequivalence range (ie, 80%–125%), as established by the US Food and Drug Administration (FDA). Both the test product (Trademark: Integrol® [Global Napi Pharmaceuticals, Cairo, Egypt]) and the reference product (Trademark: Zyprexa® [Eli Lilly and Company, Basingstoke, Hampshire, United Kingdom]) were administered as 10-mg tablets with 240 mL of water after an overnight fast on 2 treatment days, separated by a 2-week washout period. After dosing, serial blood samples were collected for 72 hours. Plasma samples were analyzed using a sensitive, reproducible, and accurate liquid chromatography-tandem mass spectrometry method capable of quantitating olanzapine in the range of 0.167 to 16.7 ng/mL, with a lower limit of quantitation of 0.167 ng/mL. Adverse events were reported by the volunteers as instructed or observed by the resident physician, and were recorded, tabulated, and evaluated.Results: Twenty-four healthy adult male volunteers participated in this study. Their mean (SD) age was 24.7 (6.2) years (range, 19–41 years), mean weight was 73.4 (6.7) kg (range, 64–89 kg), and mean height was 174.25 (4.6) cm (range, 168–186 cm). Values for Cmax, AUC0-72, AUC0-∞, Tmax, t1/2, and the terminal disposition rate constant were found to be in agreement with previously reported values. The differences between the 2 products did not reach statistical significance at P ≤ 0.05 (90% CIs: Cmax, 101.82–124.79; AUC0-72, 93.36–102.04; and AUC0-∞, 88.57–101.77). The test/reference ratio of these parameters was within the acceptance range of the FDA criterion for bioequivalence. Both formulations were apparently well absorbed from the gastrointestinal tract (ie, no specific gastrointestinal tract-related adverse events were reported).Conclusions: In this small study in healthy male volunteers, there were no statistically significant differences in any of the calculated pharmacokinetic parameters between the 10-mg test and reference tablets of olanzapine. The 90% CIs for the ratios of mean Cmax, AUC0-72, and AUC0-∞ were within the range of 80% to 125% (using log-transformed data), meeting the FDA regulatory criterion for bioequivalence. Both formulations were well tolerated.  相似文献   

12.
The safety, tolerability, and pharmacokinetics of an oral solution of itraconazole and its active metabolite hydroxyitraconazole were investigated in an open multicenter study of 26 infants and children aged 6 months to 12 years with documented mucosal fungal infections or at risk for the development of invasive fungal disease. The most frequent underlying illness was acute lymphoblastic leukemia, except in the patients aged 6 months to 2 years, of whom six were liver transplant recipients. The patients were treated with itraconazole at a dosage of 5 mg/kg of body weight once daily for 2 weeks. Blood samples were taken after the first dose, during treatment, and up to 8 days after the last itraconazole dose. On day 1, the mean peak concentrations in plasma after the first and last doses (Cmax) and areas under the concentration-time curve from 0 to 24 h (AUC0–24) for itraconazole and hydroxyitraconazole were lower in the children aged 6 months to 2 years than in children aged 2 to 12 years but were comparable on day 14. The mean AUC0–24-based accumulation factors of itraconazole and hydroxyitraconazole from day 1 to 14 ranged from 3.3 to 8.6 and 2.3 to 11.4, respectively. After 14 days of treatment, Cmax, AUC0–24, and the half-life, respectively, were (mean ± standard deviation) 571 ± 416 ng/ml, 6,930 ± 5,830 ng · h/ml, and 47 ± 55 h in the children aged 6 months to 2 years; 534 ± 431 ng/ml, 7,330 ± 5,420 ng · h/ml, and 30.6 ± 25.3 h in the children aged 2 to 5 years; and 631 ± 358 ng/ml, 8,770 ± 5,050 ng · h/ml, and 28.3 ± 9.6 h in the children aged 5 to 12 years. There was a tendency to have more frequent low minimum concentrations of the drugs in plasma for both itraconazole and hydroxyitraconazole for the children aged 6 months to 2 years. The oral bioavailability of the solubilizer hydroxypropyl-β-cyclodextrin was less than 1% in the majority of the patients. In conclusion, an itraconazole oral solution given at 5 mg/kg/day provides potentially therapeutic concentrations in plasma, which are, however, substantially lower than those attained in adult cancer patients, and is well tolerated and safe in infants and children.  相似文献   

13.
Limited data address the impact of HIV coinfection on the pharmacokinetics (PK) of antituberculosis drugs in sub-Saharan Africa. A total of 47 Malawian adults underwent rich pharmacokinetic sampling at 0, 0.5, 1, 2, 3, 4, 6, 8, and 24 h postdose. Of the subjects, 51% were male, their mean age was 34 years, and 65% were HIV-positive with a mean CD4 count of 268 cells/μl. Antituberculosis drugs were administered as fixed-dose combinations (150 mg rifampin, 75 mg isoniazid, 400 mg pyrazinamide, and 275 mg ethambutol) according to recommended weight bands. Plasma drug concentrations were determined by high-performance liquid chromatography (rifampin and pyrazinamide) or liquid chromatography-mass spectrometry (isoniazid and ethambutol). Data were analyzed by noncompartmental methods and analysis of variance of log-transformed summary parameters. The pharmacokinetic parameters were as follows (median [interquartile range]): for rifampin, maximum concentration of drug in plasma (Cmax) of 4.129 μg/ml (2.474 to 5.596 μg/ml), area under the curve from 0 to 24 h (AUC0–∞) of 21.32 μg/ml · h (13.57 to 28.60 μg/ml · h), and half-life of 2.45 h (1.86 to 3.08 h); for isoniazid, Cmax of 3.97 μg/ml (2.979 to 4.544 μg/ml), AUC0–24 of 22.5 (14.75 to 34.59 μg/ml · h), and half-life of 3.93 h (3.18 to 4.73 h); for pyrazinamide, Cmax of 34.21 μg/ml (30.00 to 41.60 μg/ml), AUC0–24 of 386.6 μg/ml · h (320.0 to 463.7 μg/ml · h), and half-life of 6.821 h (5.71 to 8.042 h); and for ethambutol, Cmax of 2.278 μg/ml (1.694 to 3.098 μg/ml), AUC0–24 of 20.41 μg/ml · h (16.18 to 26.27 μg/ml · h), and half-life of 7.507 (6.517 to 8.696 h). The isoniazid PK data analysis suggested that around two-thirds of the participants were slow acetylators. Dose, weight, and weight-adjusted dose were not significant predictors of PK exposure, probably due to weight-banded dosing. In this first pharmacokinetic study of antituberculosis drugs in Malawian adults, measures of pharmacokinetic exposure were comparable with those of other studies for all first-line drugs except for rifampin, for which the Cmax and AUC0–24 values were notably lower. Contrary to some earlier observations, HIV status did not significantly affect the AUC of any of the drugs. Increasing the dose of rifampin might be beneficial in African adults, irrespective of HIV status. Current co-trimoxazole prophylaxis was associated with an increase in the half-life of isoniazid of 41% (P = 0.022). Possible competitive interactions between isoniazid and sulfamethoxazole mediated by the N-acetyltransferase pathway should therefore be explored further.  相似文献   

14.
The safety and pharmacokinetics of once-daily oral levofloxacin in 16 healthy male volunteers were investigated in a randomized, double-blind, placebo-controlled study. Subjects were randomly assigned to the treatment (n = 10) or placebo group (n = 6). In study period 1, 750 mg of levofloxacin or a placebo was administered orally as a single dose on day 1, followed by a washout period on days 2 and 3; dosing resumed for days 4 to 10. Following a 3-day washout period, 1 g of levofloxacin or a placebo was administered in a similar fashion in period 2. Plasma and urine levofloxacin concentrations were measured by high-pressure liquid chromatography. Pharmacokinetic parameters were estimated by model-independent methods. Levofloxacin was rapidly absorbed after single and multiple once-daily 750-mg and 1-g doses with an apparently large volume of distribution. Peak plasma levofloxacin concentration (Cmax) values were generally attained within 2 h postdose. The mean values of Cmax and area under the concentration-time curve from 0 to 24 h (AUC0–24) following a single 750-mg dose were 7.1 μg/ml and 71.3 μg · h/ml, respectively, compared to 8.6 μg/ml and 90.7 μg · h/ml, respectively, at steady state. Following the single 1-g dose, mean Cmax and AUC0–24 values were 8.9 μg/ml and 95.4 μg · h/ml, respectively; corresponding values at steady state were 11.8 μg/ml and 118 μg · h/ml. These Cmax and AUC0–24 values indicate modest and similar degrees of accumulation upon multiple dosing at the two dose levels. Values of apparent total body clearance (CL/F), apparent volume of distribution (Vss/F), half-life (t1/2), and renal clearance (CLR) were similar for the two dose levels and did not vary from single to multiple dosing. Mean steady-state values for CL/F, Vss/F, t1/2, and CLR following 750 mg of levofloxacin were 143 ml/min, 100 liters, 8.8 h, and 116 ml/min, respectively; corresponding values for the 1-g dose were 146 ml/min, 105 liters, 8.9 h, and 105 ml/min. In general, the pharmacokinetics of levofloxacin in healthy subjects following 750-mg and 1-g single and multiple once-daily oral doses appear to be consistent with those found in previous studies of healthy volunteers given 500-mg doses. Levofloxacin was well tolerated at either high dose level. The most frequently reported drug-related adverse events were nausea and headache.  相似文献   

15.
We have previously shown that methadone maintenance patients are hyperalgesic. Very little is known about the antinociceptive effects of additional opioids in these patients. This study (1) compared the intensity and duration of antinociceptive responses, at two pseudo-steady-state plasma morphine concentrations (C(SS1) and C(SS2)), between four patients on stable, once daily, doses of methadone and four matched control subjects; and (2) determined, in methadone patients, whether the antinociceptive effects of morphine are affected by changes in plasma R(-)-methadone concentration that occur during an inter-dosing interval. Two types of nociceptive stimuli were used: (1) a cold pressor test (CP), (2) electrical stimulation (ES). Morphine was administered intravenously to achieve the two consecutive plasma concentrations. Blood samples were collected, concurrently with nociceptive responses, to determine plasma morphine concentrations. Methadone patients achieved mean C(SS1) and C(SS2) of 16 and 55 ng/ml respectively; those of controls were 11 and 33 ng/ml. Methadone patients were hyperalgesic to pain induced by CP but not ES. Despite significantly greater plasma morphine concentrations, methadone patients experienced minimal antinociception in comparison with controls. Furthermore in methadone patients, the antinociception ceased when the infusion ended. In comparison, the duration of effect in control subjects was 3 h. The fluctuations that occurred in plasma R(-)-methadone concentration during an inter-dosing interval had little effect on patients' responses to morphine. Our findings suggest that methadone patients are cross-tolerant to the antinociceptive effects of morphine, and conventional doses of morphine are likely to be ineffective in managing episodes of acute pain amongst this patient group. Further research is needed to determine whether other drugs are more effective than morphine in managing acute pain in this patient population.  相似文献   

16.
Background: Cross-study comparisons suggest that systemic exposure (AUC) to rosuvastatin calcium, a 3-hydroxy-3-methylglutaryl coenzyme A-reductase inhibitor, may be ~2-fold higher in Asian subjects living in Asian countries than in white subjects living in Western countries.Objective: This study was conducted to determine the pharmacokinetic characteristics of rosuvastatin and its metabolites after single and multiple doses of rosuvastatin in healthy Chinese subjects living in China.Methods: This was an open-label, ascending singleand multiple-dose study. Subjects were randomly assigned to receive rosuvastatin 5, 10, or 20 mg. Each subject received 1 tablet of the assigned treatment on day 1 and days 4 through 10. Plasma concentrations of rosuvastatin, N-desmethyl rosuvastatin, and rosuvastatin lactone were measured through 72 hours after administration of single doses and through 96 hours after administration of multiple doses. Blood samples were obtained within 30 minutes before dosing on days 7, 8, and 9 for the assessment of pharmacokinetic parameters at steady state. Noncompartmental pharmacokinetic analysis was performed to determine the Cmax and AUC0?t for rosuvastatin, N-desmethyl rosuvastatin, and rosuvastatin lactone after single and multiple doses of rosuvastatin. Tolerability assessments were conducted throughout the study.Results: Of the 36 enrolled subjects, only 1 was female. The mean age of subjects in the rosuvastatin 5-, 10-, and 20-mg groups was 22.4, 21.3, and 22.4 years, respectively. Weight and height ranged from 54 to 85 kg and from 161 to 189 cm, respectively. Geometric mean Cmax values for rosuvastatin after administration of single doses of rosuvastatin 5, 10, and 20 mg were 8.33, 10.76, and 19.17 ng/mL, respectively; the corresponding geometric mean AUC0?t values were 57.63, 88.89, and 163.87 ng · h/mL. At steady state, values for Cmax were 8.31, 8.41, and 20.73 ng/mL; the corresponding geometric mean AUC values were 64.87, 77.29, and 178.64 ng · h/mL. After administration of multiple doses of rosuvastatin 5, 10, and 20 mg, the accumulation ratios were 1.23, 0.95, and 1.23, respectively, indicating minimal accumulation of rosuvastatin. Circulating concentrations of N-desmethyl rosuvastatin and rosuvastatin lactone were well below those of rosuvastatin after administration of single and multiple doses of rosuvastatin.Conclusions: Increases in Cmax, AUC0?t, Cmax,ss, and AUCss were observed with increasing single and multiple doses of rosuvastatin 5, 10, and 20 mg. The increase in exposure with increasing doses was lower than would be expected under conditions of strict proportionality. Rosuvastatin exhibited little accumulation on repeated administration. All rosuvastatin doses were well tolerated in these Chinese subjects.  相似文献   

17.
《Clinical therapeutics》2021,43(9):1595-1607
PurposeTo estimate the systemic bioavailability of OC-01 (varenicline) nasal spray, an investigational treatment for dry eye disease, relative to oral varenicline approved for smoking cessation.MethodsThe Study to Evaluate the Relative Bioavailability of Varenicline Administered as OC-01 (Varenicline) Nasal Spray as Compared to Varenicline Administered Orally as Chantix (ZEN study) was a Phase I, open-label, randomized, single-center, 2-way crossover study. On day 1, 22 healthy participants were randomized 1:1 to a single intranasal dose of varenicline 0.12 mg in OC-01 nasal spray or a single oral dose of varenicline 1 mg. On day 15, all participants crossed over to receive a single dose of the alternate treatment. Plasma samples were collected for 6 days after each dose, and pharmacokinetic parameters were estimated using noncompartmental analysis. Tolerability was monitored throughout.FindingsAfter a single dose of intranasal varenicline 0.12 mg in OC-01 nasal spray, peak systemic exposure (mean plasma Cmax) was 0.34 ng/mL, which occurred at a median Tmax of 2.0 hours. In comparison, mean plasma Cmax after oral varenicline 1 mg was 4.63 ng/mL at a median Tmax of 3.0 hours. On the basis of geometric mean ratio point estimates, peak exposure (Cmax) and total exposure (AUC0–∞) after intranasal varenicline 0.12 mg were 7.0% and 7.5%, respectively, of the systemic exposure associated with oral varenicline 1 mg. Dose-normalized Cmax and AUC0–∞ for intranasal varenicline remained 39% and 33% lower versus oral varenicline, respectively. No new or unexpected tolerability signals were detected.ImplicationsAt its highest intended single dose in OC-01 nasal spray, intranasal varenicline delivered less drug to the systemic circulation than oral varenicline at its highest approved single dose. ClinicalTrials.gov identifier: NCT04072146.  相似文献   

18.
Fentanyl buccal tablet (FBT) is indicated for the treatment of breakthrough pain in patients who are already receiving and are tolerant to opioid therapy for underlying, persistent cancer pain. FBT is designed to enhance the rate and efficiency of absorption of fentanyl through the buccal mucosa. FBT was shown to be dose proportional from 100 to 1,300 μg. This analysis provides an overview of the pharmacokinetic profile of FBT based on pooled data from nine pharmacokinetic studies. In all, 365 healthy non‐opioid‐tolerant adults receiving naltrexone were included in the analysis. Single‐dose (100 to 1,300 μg) pharmacokinetic parameters were dose normalized to 100 μg. Pharmacokinetic measures included maximum observed plasma drug concentration (Cmax), plasma drug concentration versus time curve from time zero to infinity (AUC0–∞), time to reach Cmax (Tmax), apparent plasma terminal elimination rate constant, and elimination half‐life. After FBT administration, fentanyl was rapidly absorbed, with Tmax ranging from 20 minutes to 4 hours postdose. Mean AUC0–∞ was 1.49 ng?hour/mL, and mean Cmax was 0.237 ng/mL. However, plasma fentanyl concentration reached 80% of Cmax within 25 minutes and was maintained through 2 hours after administration. Based on the individual studies, bioequivalence was shown for sublingual and buccal tablet placement, and no significant effect of dwell time (duration of FBT presence in the oral cavity) was observed. The pharmacokinetic profile of FBT was characterized by rapid absorption, which is consistent with the rapid‐onset efficacy profile of FBT observed in clinical studies.  相似文献   

19.
Objective: The purpose of this study was to compare the pharmacokinetics and tolerability of single oral doses of cyclobenzaprine extended-release (CER) 15- and 30-mg capsules.Methods: This was a randomized, double-blind, 2-period crossover study in healthy adults aged 18 to 40 years. Subjects were assigned to receive a single dose of either CER 15 mg or 30 mg on days 1 and 15, separated by a 14-day washout. Study comparisons included the plasma cyclobenzaprine AUC to 168 hours after dosing (AUC0–168), AUC0–∞, and Cmax. Plasma cyclobenzaprine Tmax, terminal elimination t1/2, and adverse events (AEs) were also assessed.Results: Sixteen subjects (9 women, 7 men) were randomized to receive cyclobenzaprine 15 mg or 30 mg; 13 (81.3%) were white and 3 (18.8%) were black. Mean age and weight were 30.2 years and 70.7 kg, respectively. The shapes of the pharmacokinetic profiles for CER 15 and 30 mg were parallel. Mean observed values for dose-dependent pharmacokinetic parameters of CER 15 and 30 mg were as follows: AUC0–168, 318.3 and 736.6 ng · h/mL, respectively; AUC0–∞), 354.1 and 779.9 ng · h/mL; and Cmax, 8.3 and 19.9 ng/mL. Dose-independent parameters were comparable across doses. Median observed Tmax was 6.0 hours for both CER doses; mean t1/2 was 33.4 hours for CER 15 mg and 32.0 hours for CER 30 mg. The bioavailability of the 2 doses, as indicated by the least squares mean AUC0–∞, was 330.3 ng · h/mL for CER 15 mg and 755.1 ng · h/mL for CER 30 mg. During the CER 15-mg treatment sequence, 5 subjects experienced 5 AEs (headache, dizziness, musculoskeletal pain, dermatitis, and glossodynia); during the CER 30-mg treatment sequence, 2 subjects experienced 2 AEs (somnolence and dysmenorrhea). All AEs were mild in intensity. No serious AEs occurred during the study.Conclusions: Once-daily CER 15 and 30 mg exhibited similarly shaped pharmacokinetic profiles. AUC0–168, AUC0–∞), and Cmax values for the 30-mg dose were approximately double those for the 15-mg dose, a result consistent with previously reported data on the dose proportionality of cyclobenzaprine immediate release.  相似文献   

20.
Extended-infusion ceftolozane-tazobactam treatment at 1.5 g every 8 h was used to treat multidrug-resistant Pseudomonas aeruginosa in a critically ill patient on continuous venovenous hemofiltration. Serum drug concentrations were measured at 1, 4, 5, 6, and 8 h after the start of infusion. Prefilter levels of ceftolozane produced a maximum concentration of drug (Cmax) of 38.57 μg/ml, concentration at the end of the dosing interval (Cmin) of 31.63 μg/ml, time to Cmax (Tmax) of 4 h, area under the concentration-time curve from 0 to 8 h (AUC0–8) of 284.38 μg · h/ml, and a half-life (t1/2) of 30.7 h. The concentrations were eight times the susceptibility breakpoint for the entire dosing interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号