首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 315 毫秒
1.
Mycobacterium tuberculosis (Mtb) restrains immune responses well enough to escape eradication but elicits enough immunopathology to ensure its transmission. Here we provide evidence that this host–pathogen relationship is regulated in part by a cytosolic, membrane-associated protein with a unique structural fold, encoded by the Mtb gene rv0431. The protein acts by regulating the quantity of Mtb-derived membrane vesicles bearing Toll-like receptor 2 ligands, including the lipoproteins LpqH and SodC. We propose that rv0431 be named “vesiculogenesis and immune response regulator.”Mycobacterium tuberculosis (Mtb) has coevolved with its human hosts from the time of our hominid ancestors (1, 2). Millions of years of pathogenicity and an estimated cumulative toll of one billion human lives (3, 4) reflect Mtb’s ability to elicit a balanced immune response. The host response to Mtb is vigorous enough to facilitate aerosol transmission by liquefying infected lung in 5–10% of those infected but is insufficient to sterilize infection in the remainder of the one-third of the human population that is estimated to carry Mtb in a latent form (5, 6).Mtb infection illustrates the complex balance between immunity and immunopathology that can dictate the host’s fate in infectious disease (7, 8). Unlike most bacterial pathogens, Mtb devotes the most conserved sequences in its genome to encode human T-cell epitopes (9). Mtb activates macrophages, its primary niche, to a heightened antimicrobial and proinflammatory state but not maximally, as evidenced by the fact that knocking out particular genes in the host (1012) or the pathogen (1315) can lead to a greater level of macrophage activation (16).Recently, a forward genetic screen using a library of more than 10,000 loss-of-function transposon mutants of Mtb identified rv0431 as an endogenous regulator of Mtb’s immunostimulatory potential (17). Infection with Mtb rv0431:Tn led to markedly increased release of TNF-α, IL-12 p40, and IL-6 from primary mouse macrophages. Mtb rv0431:Tn grew normally in vitro but was attenuated in mice, suggesting that its proliferation may have been suppressed by a heightened host inflammatory or immune response. However, as with most other Mtb genes that have been found to restrain the host response, the mechanism by which rv0431 did so was unknown.Mtb communicates with host cells by binding cellular receptors and by releasing products that do so. Toll-like receptor 2 (TLR2) is one prominent host-cell receptor through which Mtb and products such as the 19-kDa lipoprotein LpqH trigger macrophage responses (18). Mtb secretes proteins through four known pathways: general secretion SecA1, general secretion SecA2, twin arginine transport (Tat), and type VII (19, 20). Lipids released from Mtb can traffic out of infected macrophages in macrophage-derived exosomes (21). Recently, Mtb was discovered to be among the various bacteria that can release membrane vesicles (MV) (22). Mtb’s MV are spheres, 60–200 nm in diameter, that are rich in immunomodulatory factors (22), including LpqH, and another TLR2 agonist, SodC (23). Little is known about how bacteria form and release MV, although the formation of MV may involve the packaging of proteins and lipoproteins secreted by one or more of the canonical pathways. To our knowledge, no genes have yet been identified that regulate the quantity or content of mycobacterial MV.Here, we identify Rv0431 as a regulator of Mtb’s MV. Through this means, Rv0431 exerts extensive control over the extent of TLR2-dependent stimulation of macrophages and over TLR2-dependent restriction of Mtb’s growth in the host. Based on evidence presented below, we propose that rv0431 be named “vesiculogenesis and immune response regulator” (virR). Characterization of VirR as a protein that controls Mtb’s MV and their inflammatory and immunostimulatory potential sets the stage for studies to explore the molecular machinery involved and the implications for immunization.  相似文献   

2.
3.
Existing drugs are slow to eradicate Mycobacterium tuberculosis (Mtb) in patients and have failed to control tuberculosis globally. One reason may be that host conditions impair Mtb’s replication, reducing its sensitivity to most antiinfectives. We devised a high-throughput screen for compounds that kill Mtb when its replication has been halted by reactive nitrogen intermediates (RNIs), acid, hypoxia, and a fatty acid carbon source. At concentrations routinely achieved in human blood, oxyphenbutazone (OPB), an inexpensive anti-inflammatory drug, was selectively mycobactericidal to nonreplicating (NR) Mtb. Its cidal activity depended on mild acid and was augmented by RNIs and fatty acid. Acid and RNIs fostered OPB’s 4-hydroxylation. The resultant 4-butyl-4-hydroxy-1-(4-hydroxyphenyl)-2-phenylpyrazolidine-3,5-dione (4-OH-OPB) killed both replicating and NR Mtb, including Mtb resistant to standard drugs. 4-OH-OPB depleted flavins and formed covalent adducts with N-acetyl-cysteine and mycothiol. 4-OH-OPB killed Mtb synergistically with oxidants and several antituberculosis drugs. Thus, conditions that block Mtb’s replication modify OPB and enhance its cidal action. Modified OPB kills both replicating and NR Mtb and sensitizes both to host-derived and medicinal antimycobacterial agents.Some bacterial infections can be cured with a single dose of an antibiotic, and most others can be cured with administration of one drug over several days or weeks. In contrast, routine treatment of drug-sensitive tuberculosis (TB) takes 2 mo of therapy with four drugs and an additional 4 mo with two drugs to reduce the 2-y relapse rate below 5%. The difficulty of completing prolonged treatment is a major reason for emergence of drug resistance. When the infecting strain is resistant to isoniazid and rifampin, the two drugs recommended for all 6 mo of treatment, cure often requires 2 y of daily administration of toxic, expensive, second-line agents that are often unavailable at the point of care. When the causative strain is additionally resistant to a quinolone and an aminoglycoside, the resultant “extensively drug-resistant” TB was fatal to 80% of patients in a leading center (1), although complex multidrug regimens have achieved higher cure rates in populations not previously exposed to the additional drugs (2). In addition to sharing air with someone with TB, leading risk factors for contracting the disease are malnutrition, HIV infection, diabetes, and exposure to smoke from cigarettes or cooking fires (3). These epidemiological challenges exacerbate problems of inadequate diagnostic technology and limited access to drug susceptibility testing and to drugs. Control of the pandemic is not in sight (3).It is widely hypothesized that treatment of TB is protracted because nonreplicating (NR) subpopulations of bacilli are phenotypically tolerant to drugs that were selected for activity against replicating (R) Mycobacterium tuberculosis (Mtb) (4). Mtb can occupy diverse microenvironments in the host. Evidence from auxotrophs, analyses of gene expression, and direct and indirect biochemical measurements in vivo or ex vivo in experimental animals and people suggest that such environments expose Mtb to acid, hypoxia, reactive nitrogen intermediates (RNIs), oxidative stress, carbohydrate deficiency, and metal starvation or intoxication, and require Mtb to metabolize fatty acids or cholesterol (517). In vitro, many of the same conditions can make Mtb relatively refractory to killing by the standard agents, except for pyrazinamide, which is only effective at a low pH.Thus, there is a need for a high-throughput screen (HTS) for compounds that kill Mtb when the Mtb has been rendered NR by a combination of physiologically relevant host-imposed conditions. We were encouraged to devise such a screen by recent discoveries of a class of compounds that kill Mtb only when it is NR (18), an antibiotic in clinical use for other infections that kills NR Mtb better than R Mtb (19), and a compound that kills NR and R Mtb equally well (20). Unfortunately, only one of those compounds is an approved drug, and even if it were of proven utility in TB, its price would preclude its use by most of those who need it. We decided to screen other existing drugs that are not regarded as antiinfectives for those that kill NR Mtb. Here, we report finding such a drug in an HTS that combined four host-imposed conditions, some of which converted the drug into a form active on both R and NR Mtb.  相似文献   

4.
A series of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing the hydrophilic oligo(para-phenylene ethynylene) with two 3,6,9-trioxadec-1-yloxy chains was designed and synthesized. The mononuclear alkynylplatinum(II) terpyridine complex was found to display a very strong tendency toward the formation of supramolecular structures. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would lead to the formation of nanotubes or helical ribbons. These desirable nanostructures were found to be governed by the steric bulk on the platinum(II) terpyridine moieties, which modulates the directional metal−metal interactions and controls the formation of nanotubes or helical ribbons. Detailed analysis of temperature-dependent UV-visible absorption spectra of the nanostructured tubular aggregates also provided insights into the assembly mechanism and showed the role of metal−metal interactions in the cooperative supramolecular polymerization of the amphiphilic platinum(II) complexes.Square-planar d8 platinum(II) polypyridine complexes have long been known to exhibit intriguing spectroscopic and luminescence properties (154) as well as interesting solid-state polymorphism associated with metal−metal and π−π stacking interactions (114, 25). Earlier work by our group showed the first example, to our knowledge, of an alkynylplatinum(II) terpyridine system [Pt(tpy)(C ≡ CR)]+ that incorporates σ-donating and solubilizing alkynyl ligands together with the formation of Pt···Pt interactions to exhibit notable color changes and luminescence enhancements on solvent composition change (25) and polyelectrolyte addition (26). This approach has provided access to the alkynylplatinum(II) terpyridine and other related cyclometalated platinum(II) complexes, with functionalities that can self-assemble into metallogels (2731), liquid crystals (32, 33), and other different molecular architectures, such as hairpin conformation (34), helices (3538), nanostructures (3945), and molecular tweezers (46, 47), as well as having a wide range of applications in molecular recognition (4852), biomolecular labeling (4852), and materials science (53, 54). Recently, metal-containing amphiphiles have also emerged as a building block for supramolecular architectures (4244, 5559). Their self-assembly has always been found to yield different molecular architectures with unprecedented complexity through the multiple noncovalent interactions on the introduction of external stimuli (4244, 5559).Helical architecture is one of the most exciting self-assembled morphologies because of the uniqueness for the functional and topological properties (6069). Helical ribbons composed of amphiphiles, such as diacetylenic lipids, glutamates, and peptide-based amphiphiles, are often precursors for the growth of tubular structures on an increase in the width or the merging of the edges of ribbons (64, 65). Recently, the optimization of nanotube formation vs. helical nanostructures has aroused considerable interests and can be achieved through a fine interplay of the influence on the amphiphilic property of molecules (66), choice of counteranions (67, 68), or pH values of the media (69), which would govern the self-assembly of molecules into desirable aggregates of helical ribbons or nanotube scaffolds. However, a precise control of supramolecular morphology between helical ribbons and nanotubes remains challenging, particularly for the polycyclic aromatics in the field of molecular assembly (6469). Oligo(para-phenylene ethynylene)s (OPEs) with solely π−π stacking interactions are well-recognized to self-assemble into supramolecular system of various nanostructures but rarely result in the formation of tubular scaffolds (7073). In view of the rich photophysical properties of square-planar d8 platinum(II) systems and their propensity toward formation of directional Pt···Pt interactions in distinctive morphologies (2731, 3945), it is anticipated that such directional and noncovalent metal−metal interactions might be capable of directing or dictating molecular ordering and alignment to give desirable nanostructures of helical ribbons or nanotubes in a precise and controllable manner.Herein, we report the design and synthesis of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing hydrophilic OPEs with two 3,6,9-trioxadec-1-yloxy chains. The mononuclear alkynylplatinum(II) terpyridine complex with amphiphilic property is found to show a strong tendency toward the formation of supramolecular structures on diffusion of diethyl ether in dichloromethane or dimethyl sulfoxide (DMSO) solution. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would result in nanotubes or helical ribbons in the self-assembly process. To the best of our knowledge, this finding represents the first example of the utilization of the steric bulk of the moieties, which modulates the formation of directional metal−metal interactions to precisely control the formation of nanotubes or helical ribbons in the self-assembly process. Application of the nucleation–elongation model into this assembly process by UV-visible (UV-vis) absorption spectroscopic studies has elucidated the nature of the molecular self-assembly, and more importantly, it has revealed the role of metal−metal interactions in the formation of these two types of nanostructures.  相似文献   

5.
6.
Background and objectives: Natriuretic peptides have been suggested to be of value in risk stratification in dialysis patients. Data in patients on peritoneal dialysis remain limited.Design, setting, participants, & measurements: Patients of the ADEMEX trial (ADEquacy of peritoneal dialysis in MEXico) were randomized to a control group [standard 4 × 2L continuous ambulatory peritoneal dialysis (CAPD); n = 484] and an intervention group (CAPD with a target creatinine clearance ≥60L/wk/1.73 m2; n = 481). Natriuretic peptides were measured at baseline and correlated with other parameters as well as evaluated for effects on patient outcomes.Results: Control group and intervention group were comparable at baseline with respect to all measured parameters. Baseline values of natriuretic peptides were elevated and correlated significantly with levels of residual renal function but not with body size or diabetes. Baseline values of N-terminal fragment of B-type natriuretic peptide (NT-proBNP) but not proANP(1–30), proANP(31–67), or proANP(1–98) were independently highly predictive of overall survival and cardiovascular mortality. Volume removal was also significantly correlated with patient survival.Conclusions. NT-proBNP have a significant predictive value for survival of CAPD patients and may be of value in guiding risk stratification and potentially targeted therapeutic interventions.Plasma levels of cardiac natriuretic peptides are elevated in patients with chronic kidney disease, owing to impairment of renal function, hypertension, hypervolemia, and/or concomitant heart disease (17). Atrial natriuretic peptide (ANP) and particularly brain natriuretic peptide (BNP) levels are linked independently to left ventricular mass (35,816) and function (3,617) and predict total and cardiovascular mortality (1,3,8,10,12,18) as well as cardiac events (12,19). ANP and BNP decrease significantly during hemodialysis treatment but increase again during the interdialytic interval (1,2,4,6,7,14,17,2023). Levels in patients on peritoneal dialysis (PD) have been found to be lower than in patients on hemodialysis (11,2426), but the correlations with left ventricular function and structure are maintained in both types of dialysis modalities (11,15,27,28).The high mortality of patients on peritoneal dialysis and the failure of dialytic interventions to alter this mortality (29,30) necessitate renewed attention into novel methods of stratification and identification of patients at highest risk to be targeted for specific interventions. Cardiac natriuretic peptides are increasingly considered to fulfill this role in nonrenal patients. Evaluations of cardiac natriuretic peptides in patients on PD have been limited by small numbers (3,9,11,12,15,2426) and only one study examined correlations between natriuretic peptide levels and outcomes (12). The PD population enrolled in the ADEMEX trial offered us the opportunity to evaluate cardiac natriuretic peptides and their value in predicting outcomes in the largest clinical trial ever performed on PD (29,30). It is hoped that such an evaluation would identify patients at risk even in the absence of overt clinical disease and hence facilitate or encourage interventions with salutary outcomes.  相似文献   

7.
8.
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by extraskeletal bone formation through endochondral ossification. FOP patients harbor point mutations in ACVR1 (also known as ALK2), a type I receptor for bone morphogenetic protein (BMP). Two mechanisms of mutated ACVR1 (FOP-ACVR1) have been proposed: ligand-independent constitutive activity and ligand-dependent hyperactivity in BMP signaling. Here, by using FOP patient-derived induced pluripotent stem cells (FOP-iPSCs), we report a third mechanism, where FOP-ACVR1 abnormally transduces BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling but not BMP signaling. Activin-A enhanced the chondrogenesis of induced mesenchymal stromal cells derived from FOP-iPSCs (FOP-iMSCs) via aberrant activation of BMP signaling in addition to the normal activation of TGF-β signaling in vitro, and induced endochondral ossification of FOP-iMSCs in vivo. These results uncover a novel mechanism of extraskeletal bone formation in FOP and provide a potential new therapeutic strategy for FOP.Heterotopic ossification (HO) is defined as bone formation in soft tissue where bone normally does not exist. It can be the result of surgical operations, trauma, or genetic conditions, one of which is fibrodysplasia ossificans progressiva (FOP). FOP is a rare genetic disease characterized by extraskeletal bone formation through endochondral ossification (16). The responsive mutation for classic FOP is 617G > A (R206H) in the intracellular glycine- and serine-rich (GS) domain (7) of ACVR1 (also known as ALK2), a type I receptor for bone morphogenetic protein (BMP) (810). ACVR1 mutations in atypical FOP patients have been found also in other amino acids of the GS domain or protein kinase domain (11, 12). Regardless of the mutation site, mutated ACVR1 (FOP-ACVR1) has been shown to activate BMP signaling without exogenous BMP ligands (constitutive activity) and transmit much stronger BMP signaling after ligand stimulation (hyperactivity) (1225).To reveal the molecular nature of how FOP-ACVR1 activates BMP signaling, cells overexpressing FOP-ACVR1 (1220), mouse embryonic fibroblasts derived from Alk2R206H/+ mice (21, 22), and cells from FOP patients, such as stem cells from human exfoliated deciduous teeth (23), FOP patient-derived induced pluripotent stem cells (FOP-iPSCs) (24, 25) and induced mesenchymal stromal cells (iMSCs) from FOP-iPSCs (FOP-iMSCs) (26) have been used as models. Among these cells, Alk2R206H/+ mouse embryonic fibroblasts and FOP-iMSCs are preferred because of their accessibility and expression level of FOP-ACVR1 using an endogenous promoter. In these cells, however, the constitutive activity and hyperactivity is not strong (within twofold normal levels) (22, 26). In addition, despite the essential role of BMP signaling in development (2731), the pre- and postnatal development and growth of FOP patients are almost normal, and HO is induced in FOP patients after physical trauma and inflammatory response postnatally, not at birth (16). These observations led us to hypothesize that FOP-ACVR1 abnormally responds to noncanonical BMP ligands induced by trauma or inflammation.Here we show that FOP-ACVR1 transduced BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling (10, 3234) and contributes to inflammatory responses (35, 36). Our in vitro and in vivo data indicate that activation of TGF-β and aberrant BMP signaling by Activin-A in FOP-cells is one cause of HO in FOP. These results suggest a possible application of anti–Activin-A reagents as a new therapeutic tool for FOP.  相似文献   

9.
Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor.Protein toxins from venomous organisms have been invaluable tools for studying the ion channel proteins they target. For example, in the case of voltage-activated potassium (Kv) channels, pore-blocking scorpion toxins were used to identify the pore-forming region of the channel (1, 2), and gating modifier tarantula toxins that bind to S1–S4 voltage-sensing domains have helped to identify structural motifs that move at the protein–lipid interface (35). In many instances, these toxin–channel interactions are highly specific, allowing them to be used in target validation and drug development (68).Tarantula toxins are a particularly interesting class of protein toxins that have been found to target all three families of voltage-activated cation channels (3, 912), stretch-activated cation channels (1315), as well as ligand-gated ion channels as diverse as acid-sensing ion channels (ASIC) (1621) and transient receptor potential (TRP) channels (22, 23). The tarantula toxins targeting these ion channels belong to the inhibitor cystine knot (ICK) family of venom toxins that are stabilized by three disulfide bonds at the core of the molecule (16, 17, 2431). Although conventional tarantula toxins vary in length from 30 to 40 aa and contain one ICK motif, the recently discovered double-knot toxin (DkTx) that specifically targets TRPV1 channels contains two separable lobes, each containing its own ICK motif (22, 23).One unifying feature of all tarantula toxins studied thus far is that they act on ion channels by modifying the gating properties of the channel. The best studied of these are the tarantula toxins targeting voltage-activated cation channels, where the toxins bind to the S3b–S4 voltage sensor paddle motif (5, 3236), a helix-turn-helix motif within S1–S4 voltage-sensing domains that moves in response to changes in membrane voltage (3741). Toxins binding to S3b–S4 motifs can influence voltage sensor activation, opening and closing of the pore, or the process of inactivation (4, 5, 36, 4246). The tarantula toxin PcTx1 can promote opening of ASIC channels at neutral pH (16, 18), and DkTx opens TRPV1 in the absence of other stimuli (22, 23), suggesting that these toxin stabilize open states of their target channels.For many of these tarantula toxins, the lipid membrane plays a key role in the mechanism of inhibition. Strong membrane partitioning has been demonstrated for a range of toxins targeting S1–S4 domains in voltage-activated channels (27, 44, 4750), and for GsMTx4 (14, 50), a tarantula toxin that inhibits opening of stretch-activated cation channels in astrocytes, as well as the cloned stretch-activated Piezo1 channel (13, 15). In experiments on stretch-activated channels, both the d- and l-enantiomers of GsMTx4 are active (14, 50), implying that the toxin may not bind directly to the channel. In addition, both forms of the toxin alter the conductance and lifetimes of gramicidin channels (14), suggesting that the toxin inhibits stretch-activated channels by perturbing the interface between the membrane and the channel. In the case of Kv channels, the S1–S4 domains are embedded in the lipid bilayer and interact intimately with lipids (48, 51, 52) and modification in the lipid composition can dramatically alter gating of the channel (48, 5356). In one study on the gating of the Kv2.1/Kv1.2 paddle chimera (53), the tarantula toxin VSTx1 was proposed to inhibit Kv channels by modifying the forces acting between the channel and the membrane. Although these studies implicate a key role for the membrane in the activity of Kv and stretch-activated channels, and for the action of tarantula toxins, the influence of the toxin on membrane structure and dynamics have not been directly examined. The goal of the present study was to localize a tarantula toxin in membranes using structural approaches and to investigate the influence of the toxin on the structure of the lipid bilayer.  相似文献   

10.
Sequential activity of multineuronal spiking can be observed during theta and high-frequency ripple oscillations in the hippocampal CA1 region and is linked to experience, but the mechanisms underlying such sequences are unknown. We compared multineuronal spiking during theta oscillations, spontaneous ripples, and focal optically induced high-frequency oscillations (“synthetic” ripples) in freely moving mice. Firing rates and rate modulations of individual neurons, and multineuronal sequences of pyramidal cell and interneuron spiking, were correlated during theta oscillations, spontaneous ripples, and synthetic ripples. Interneuron spiking was crucial for sequence consistency. These results suggest that participation of single neurons and their sequential order in population events are not strictly determined by extrinsic inputs but also influenced by local-circuit properties, including synapses between local neurons and single-neuron biophysics.A hypothesized hallmark of cognition is self-organized sequential activation of neuronal assemblies (1). Self-organized neuronal sequences have been observed in several cortical structures (25) and neuronal models (67). In the hippocampus, sequential activity of place cells (8) may be induced by external landmarks perceived by the animal during spatial navigation (9) and conveyed to CA1 by the upstream CA3 region or layer 3 of the entorhinal cortex (10). Internally generated sequences have been also described in CA1 during theta oscillations in memory tasks (4, 11), raising the possibility that a given neuronal substrate is responsible for generating sequences at multiple time scales. The extensive recurrent excitatory collateral system of the CA3 region has been postulated to be critical in this process (4, 7, 12, 13).The sequential activity of place cells is “replayed” during sharp waves (SPW) in a temporally compressed form compared with rate modulation of place cells (1420) and may arise from the CA3 recurrent excitatory networks during immobility and slow wave sleep. The SPW-related convergent depolarization of CA1 neurons gives rise to a local, fast oscillatory event in the CA1 region (“ripple,” 140–180 Hz; refs. 8 and 21). Selective elimination of ripples during or after learning impairs memory performance (2224), suggesting that SPW ripple-related replay assists memory consolidation (12, 13). Although the local origin of the ripple oscillations is well demonstrated (25, 26), it has been tacitly assumed that the ripple-associated, sequentially ordered firing of CA1 neurons is synaptically driven by the upstream CA3 cell assemblies (12, 15), largely because excitatory recurrent collaterals in the CA1 region are sparse (27). However, sequential activity may also emerge by local mechanisms, patterned by the different biophysical properties of CA1 pyramidal cells and their interactions with local interneurons, which discharge at different times during a ripple (2830). A putative function of the rich variety of interneurons is temporal organization of principal cell spiking (2932). We tested the “local-circuit” hypothesis by comparing the probability of participation and sequential firing of CA1 neurons during theta oscillations, natural spontaneous ripple events, and “synthetic” ripples induced by local optogenetic activation of pyramidal neurons.  相似文献   

11.
Distinguishing tumor from normal glandular breast tissue is an important step in breast-conserving surgery. Because this distinction can be challenging in the operative setting, up to 40% of patients require an additional operation when traditional approaches are used. Here, we present a proof-of-concept study to determine the feasibility of using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) for identifying and differentiating tumor from normal breast tissue. We show that tumor margins can be identified using the spatial distributions and varying intensities of different lipids. Several fatty acids, including oleic acid, were more abundant in the cancerous tissue than in normal tissues. The cancer margins delineated by the molecular images from DESI-MSI were consistent with those margins obtained from histological staining. Our findings prove the feasibility of classifying cancerous and normal breast tissues using ambient ionization MSI. The results suggest that an MS-based method could be developed for the rapid intraoperative detection of residual cancer tissue during breast-conserving surgery.Breast cancer is the most commonly diagnosed carcinoma in women in the United States and Western countries. Breast conservation surgery (BCS) has become the preferred treatment option for many women with early-stage breast cancer (1). BCS entails resection of the tumor, with a clean margin of normal tissue around it. Surgery is usually followed by radiation therapy. Results from seven large randomized prospective studies, with the largest two having over 20 y of follow-up, have shown equal survival when comparing BCS coupled with whole-breast radiation and mastectomy (2, 3).Normally, breast surgeons aim to remove a patient’s tumor, along with a rim of normal tissue that is free of cancer. Preoperative mammography, ultrasonography, or MRI may be used by the surgeon to guide adequate resection (46). Despite numerous improvements in imaging and surgical technique, the need for reexcision to achieve complete tumor resection in the United States typically ranges from 20–40% (715), and has been reported as being as high as 60% (16). The importance of reexcision is underscored by numerous studies, which have shown that incomplete resection of tumor and positive margins are associated with increased locoregional recurrence compared with negative margins (12, 1720). Furthermore, the landmark meta-analysis performed by the Early Breast Cancer Trialists’ Collaborative Group (18, 21) directly linked local recurrence to survival, placing great emphasis on the surgeon’s role in minimizing local recurrence by obtaining adequate margins.Breast tumor reexcisions are accompanied by a number of undesirable problems: The completion of therapy is delayed, infection rates are increased, cost is increased, there can be a negative psychological impact on the patient, and there can be diminished aesthetic outcomes (2224). The development of an intraoperative technique that allows the fast and accurate identification of residual tumor at surgical resection margins could decrease the reexcision rate, and therefore improve the care delivered to patients with cancer who are receiving BCS.To this end, multiple intraoperative methods have been explored, with various benefits as well as limitations. These methods include touch frozen section analysis (25), touch preparation cytology (26), specimen radiography (27, 28), rf spectroscopy (29, 30), Raman spectroscopy (31), radioguided occult lesion localization (32), near-IR fluorescence (33, 34), and high-frequency ultrasound (3537). The intraoperative application of MRI, which has been successfully applied in brain surgery (3842), is limited in its application in BCS. These limitations include MRI interpretation in the presence of acute surgical changes; lack of real-time imaging, requiring the interruption of surgery; and accurate localization of tumor based on images requiring development of fiducials (4346).Mass spectrometry imaging (MSI) has been applied to investigate the molecular distribution of proteins, lipids, and metabolites without the use of labels (47, 48). In particular, the newly developed ambient ionization technique of desorption electrospray ionization (DESI) allows direct tissue analysis with little to no sample preparation (49, 50). Therefore, with the advantage of easy use, DESI-MSI has great potential in the application of intraoperative tumor assessment. The development of DESI-MSI enables the correlation of lipid distribution in two or three dimensions with tissue morphology (47, 51) and the distinction of cancerous from noncancerous tissues based on lipidomic information (5254). Distinctive lipid profiles associated with different human cancers have been investigated by DESI-MSI (5558). Moreover, the grades and subtypes of human brain tumors have been discriminated using this technique. Additionally, tumor margins have been delineated using DESI-MSI, and the results have been correlated with histopathological examination (59, 60).It has been reported that breast cancer demonstrates metabolic profiles that are distinct from those metabolic profiles found in normal breast tissue. This finding suggests a potential for using metabolite information for breast cancer diagnosis and tumor margin identification (61, 62). Here, we demonstrate an MS-based methodology for using lipidomic information to distinguish cancerous from noncancerous tissue and to delineate tumor boundaries.  相似文献   

12.
13.
Antiretroviral therapy (ART) reduces the infectiousness of HIV-infected persons, but only after testing, linkage to care, and successful viral suppression. Thus, a large proportion of HIV transmission during a period of high infectiousness in the first few months after infection (“early transmission”) is perceived as a threat to the impact of HIV “treatment-as-prevention” strategies. We created a mathematical model of a heterosexual HIV epidemic to investigate how the proportion of early transmission affects the impact of ART on reducing HIV incidence. The model includes stages of HIV infection, flexible sexual mixing, and changes in risk behavior over the epidemic. The model was calibrated to HIV prevalence data from South Africa using a Bayesian framework. Immediately after ART was introduced, more early transmission was associated with a smaller reduction in HIV incidence rate—consistent with the concern that a large amount of early transmission reduces the impact of treatment on incidence. However, the proportion of early transmission was not strongly related to the long-term reduction in incidence. This was because more early transmission resulted in a shorter generation time, in which case lower values for the basic reproductive number (R0) are consistent with observed epidemic growth, and R0 was negatively correlated with long-term intervention impact. The fraction of early transmission depends on biological factors, behavioral patterns, and epidemic stage and alone does not predict long-term intervention impacts. However, early transmission may be an important determinant in the outcome of short-term trials and evaluation of programs.Recent studies have confirmed that effective antiretroviral therapy (ART) reduces the transmission of HIV among stable heterosexual couples (13). This finding has generated interest in understanding the population-level impact of HIV treatment on reducing the rate of new HIV infections in generalized epidemic settings (4). Research, including mathematical modeling (510), implementation research (11), and major randomized controlled trials (1214), are focused on how ART provision might be expanded strategically to maximize its public health benefits (15, 16).One concern is that if a large fraction of HIV transmission occurs shortly after a person becomes infected, before the person can be diagnosed and initiated on ART, this will limit the potential impact of HIV treatment on reducing HIV incidence (9, 17, 18). Data suggest that persons are more infectious during a short period of “early infection” after becoming infected with HIV (1922), although there is debate about the extent, duration, and determinants of elevated infectiousness (18, 23). The amount of transmission that occurs also will depend on patterns of sexual behavior and sexual networks (17, 2427). There have been estimates for the contribution of early infection to transmission from mathematical models (7, 17, 21, 2426) and phylogenetic analyses (2831), but these vary widely, from 5% to above 50% (23).In this study, we use a mathematical model to quantify how the proportion of transmission that comes from persons who have been infected recently affects the impact of treatment scale-up on HIV incidence. The model is calibrated to longitudinal HIV prevalence data from South Africa using a Bayesian framework. Thus, the model accounts for not only the early epidemic growth rate highlighted in previous research (5, 9, 18), but also the heterogeneity and sexual behavior change to explain the peak and decline in HIV incidence observed in sub-Saharan African HIV epidemics (32, 33).The model calibration allows uncertainty about factors that determine the amount of early transmission, including the relative infectiousness during early infection, heterogeneity in propensity for sexual risk behavior, assortativity in sexual partner selection, reduction in risk propensity over the life course, and population-wide reductions in risk behavior in response to the epidemic (32, 33). This results in multiple combinations of parameter values that are consistent with the observed epidemic and variation in the amount of early transmission. We simulated the impact of a treatment intervention and report how the proportion of early transmission correlates with the reduction in HIV incidence from the intervention over the short- and long-term.  相似文献   

14.
To dissect the kinetics of structural transitions underlying the stepping cycle of kinesin-1 at physiological ATP, we used interferometric scattering microscopy to track the position of gold nanoparticles attached to individual motor domains in processively stepping dimers. Labeled heads resided stably at positions 16.4 nm apart, corresponding to a microtubule-bound state, and at a previously unseen intermediate position, corresponding to a tethered state. The chemical transitions underlying these structural transitions were identified by varying nucleotide conditions and carrying out parallel stopped-flow kinetics assays. At saturating ATP, kinesin-1 spends half of each stepping cycle with one head bound, specifying a structural state for each of two rate-limiting transitions. Analysis of stepping kinetics in varying nucleotides shows that ATP binding is required to properly enter the one-head–bound state, and hydrolysis is necessary to exit it at a physiological rate. These transitions differ from the standard model in which ATP binding drives full docking of the flexible neck linker domain of the motor. Thus, this work defines a consensus sequence of mechanochemical transitions that can be used to understand functional diversity across the kinesin superfamily.Kinesin-1 is a motor protein that steps processively toward microtubule plus-ends, tracking single protofilaments and hydrolyzing one ATP molecule per step (16). Step sizes corresponding to the tubulin dimer spacing of 8.2 nm are observed when the molecule is labeled by its C-terminal tail (710) and to a two-dimer spacing of 16.4 nm when a single motor domain is labeled (4, 11, 12), consistent with the motor walking in a hand-over-hand fashion. Kinesin has served as an important model system for advancing single-molecule techniques (710) and is clinically relevant for its role in neurodegenerative diseases (13), making dissection of its step a popular ongoing target of study.Despite decades of work, many essential components of the mechanochemical cycle remain disputed, including (i) how much time kinesin-1 spends in a one-head–bound (1HB) state when stepping at physiological ATP concentrations, (ii) whether the motor waits for ATP in a 1HB or two-heads–bound (2HB) state, and (iii) whether ATP hydrolysis occurs before or after tethered head attachment (4, 11, 1420). These questions are important because they are fundamental to the mechanism by which kinesins harness nucleotide-dependent structural changes to generate mechanical force in a manner optimized for their specific cellular tasks. Addressing these questions requires characterizing a transient 1HB state in the stepping cycle in which the unattached head is located between successive binding sites on the microtubule. This 1HB intermediate is associated with the force-generating powerstroke of the motor and underlies the detachment pathway that limits motor processivity. Optical trapping (7, 19, 21, 22) and single-molecule tracking studies (4, 811) have failed to detect this 1HB state during stepping. Single-molecule fluorescence approaches have detected a 1HB intermediate at limiting ATP concentrations (11, 12, 14, 15), but apart from one study that used autocorrelation analysis to detect a 3-ms intermediate (17), the 1HB state has been undetectable at physiological ATP concentrations.Single-molecule microscopy is a powerful tool for studying the kinetics of structural changes in macromolecules (23). Tracking steps and potential substeps for kinesin-1 at saturating ATP has until now been hampered by the high stepping rates of the motor (up to 100 s−1), which necessitates high frame rates, and the small step size (8.2 nm), which necessitates high spatial precision (7). Here, we apply interferometric scattering microscopy (iSCAT), a recently established single-molecule tool with high spatiotemporal resolution (2427) to directly visualize the structural changes underlying kinesin stepping. By labeling one motor domain in a dimeric motor, we detect a 1HB intermediate state in which the tethered head resides over the bound head for half the duration of the stepping cycle at saturating ATP. We further show that at physiological stepping rates, ATP binding is required to enter this 1HB state and that ATP hydrolysis is required to exit it. This work leads to a significant revision of the sequence and kinetics of mechanochemical transitions that make up the kinesin-1 stepping cycle and provides a framework for understanding functional diversity across the kinesin superfamily.  相似文献   

15.
In humans, spontaneous movements are often preceded by early brain signals. One such signal is the readiness potential (RP) that gradually arises within the last second preceding a movement. An important question is whether people are able to cancel movements after the elicitation of such RPs, and if so until which point in time. Here, subjects played a game where they tried to press a button to earn points in a challenge with a brain–computer interface (BCI) that had been trained to detect their RPs in real time and to emit stop signals. Our data suggest that subjects can still veto a movement even after the onset of the RP. Cancellation of movements was possible if stop signals occurred earlier than 200 ms before movement onset, thus constituting a point of no return.It has been repeatedly shown that spontaneous movements are preceded by early brain signals (18). As early as a second before a simple voluntary movement, a so-called readiness potential (RP) is observed over motor-related brain regions (13, 5). The RP was found to precede the self-reported time of the “‘decision’ to act” (ref. 3, p. 623). Similar preparatory signals have been observed using invasive electrophysiology (8, 9) and functional MRI (7, 10), and have been demonstrated also for choices between multiple-response options (6, 7, 10), for abstract decisions (10), for perceptual choices (11), and for value-based decisions (12). To date, the exact nature and causal role of such early signals in decision making is debated (1220).One important question is whether a person can still exert a veto by inhibiting the movement after onset of the RP (13, 18, 21, 22). One possibility is that the onset of the RP triggers a causal chain of events that unfolds in time and cannot be cancelled. The onset of the RP in this case would be akin to tipping the first stone in a row of dominoes. If there is no chance of intervening, the dominoes will gradually fall one-by-one until the last one is reached. This has been coined a ballistic stage of processing (23, 24). A different possibility is that participants can still terminate the process, akin to taking out a domino at some later stage in the chain and thus preventing the process from completing. Here, we directly tested this in a real-time experiment that required subjects to terminate their decision to move once a RP had been detected by a brain–computer interface (BCI) (2531).  相似文献   

16.
Global analysis of gene expression via RNA sequencing was conducted for trisomics for the left arm of chromosome 2 (2L) and compared with the normal genotype. The predominant response of genes on 2L was dosage compensation in that similar expression occurred in the trisomic compared with the diploid control. However, the male and female trisomic/normal expression ratio distributions for 2L genes differed in that females also showed a strong peak of genes with increased expression and males showed a peak of reduced expression relative to the opposite sex. For genes in other autosomal regions, the predominant response to trisomy was reduced expression to the inverse of the altered chromosomal dosage (2/3), but a minor peak of increased expression in females and further reduced expression in males were also found, illustrating a sexual dimorphism for the response to aneuploidy. Moreover, genes with sex-biased expression as revealed by comparing amounts in normal males and females showed responses of greater magnitude to trisomy 2L, suggesting that the genes involved in dosage-sensitive aneuploid effects also influence sex-biased expression. Each autosomal chromosome arm responded to 2L trisomy similarly, but the ratio distributions for X-linked genes were distinct in both sexes, illustrating an X chromosome-specific response to aneuploidy.Changes in chromosomal dosage have long been known to affect the phenotype or viability of an organism (14). Altering the dosage of individual chromosomes typically has a greater impact than varying the whole genome (57). This general rule led to the concept of “genomic balance” in that dosage changes of part of the genome produce a nonoptimal relationship of gene products. The interpretation afforded these observations was that genes on the aneuploid chromosome produce a dosage effect for the amount of gene product present in the cell (8).However, when gene expression studies were conducted on aneuploids, it became known that transacting modulations of gene product amounts were also more prevalent with aneuploidy than with whole-genome changes (914). Assays of enzyme activities, protein, and RNA levels revealed that any one chromosomal segment could modulate in trans the expression of genes throughout the genome (915). These modulations could be positively or negatively correlated with the changed chromosomal segment dosage, but inverse correlations were the most common (1013). For genes on the varied segment, not only were dosage effects observed, but dosage compensation was also observed, which results from a cancelation of gene dosage effects by inverse effects operating simultaneously on the varied genes (9, 10, 1418). This circumstance results in “autosomal” dosage compensation (14, 1618). Studies of trisomic X chromosomes examining selected endogenous genes or global RNA sequencing (RNA-seq) studies illustrate that the inverse effect can also account for sex chromosome dosage compensation in Drosophila (15, 1921). In concert, autosomal genes are largely inversely affected by trisomy of the X chromosome (15, 19, 21).The dosage effects of aneuploidy can be reduced to the action of single genes whose functions tend to be involved in heterogeneous aspects of gene regulation but which have in common membership in macromolecular complexes (8, 2224). This fact led to the hypothesis that genomic imbalance effects result from the altered stoichiometry of subunits that affects the function of the whole and that occurs from partial but not whole-genome dosage change (8, 2225). Genomic balance also affects the evolutionary trajectory of duplicate genes differently based on whether the mode of duplication is partial or whole-genome (22, 23).Here we used RNA-seq to examine global patterns of gene expression in male and female larvae trisomic for the left arm of chromosome 2 (2L). The results demonstrate the strong prevalence of aneuploidy dosage compensation and of transacting inverse effects. Furthermore, because both trisomic males and females could be examined, a sexual dimorphism of the aneuploid response was discovered. Also, the response of the X chromosome to trisomy 2L was found to be distinct from that of the autosomes, illustrating an X chromosome-specific effect. Genes with sex-biased expression, as determined by comparing normal males and females, responded more strongly to trisomy 2L. Collectively, the results illustrate the prevalence of the inverse dosage effect in trisomic Drosophila and suggest that the X chromosome has evolved a distinct response to genomic imbalance as would be expected under the hypothesis that X chromosome dosage compensation uses the inverse dosage effect as part of its mechanism (15).  相似文献   

17.
Exposure to a novel environment enhances the extinction of contextual fear. This has been explained by tagging of the hippocampal synapses used in extinction, followed by capture of proteins from the synapses that process novelty. The effect is blocked by the inhibition of hippocampal protein synthesis following the novelty or the extinction. Here, we show that it can also be blocked by the postextinction or postnovelty intrahippocampal infusion of the NMDA receptor antagonist 2-amino-5-phosphono pentanoic acid; the inhibitor of calcium/calmodulin-dependent protein kinase II (CaMKII), autocamtide-2–related inhibitory peptide; or the blocker of L-voltage–dependent calcium channels (L-VDCCs), nifedipine. Inhibition of proteasomal protein degradation by β-lactacystin has no effect of its own on extinction or on the influence of novelty thereon but blocks the inhibitory effects of all the other substances except that of rapamycin on extinction, suggesting that their action depends on concomitant synaptic protein turnover. Thus, the tagging-and-capture mechanism through which novelty enhances fear extinction involves more molecular processes than hitherto thought: NMDA receptors, L-VDCCs, CaMKII, and synaptic protein turnover.Frey and Morris (1, 2) and their collaborators (37) proposed a mechanism whereby relatively “weak” hippocampal long-term potentiation (LTP) or long-term depression (LTD) lasting only a few minutes can nevertheless “tag” the synapses involved with proteins synthesized ad hoc, so that other plasticity-related proteins (PRPs) produced at other sets of synapses by other LTPs or LTDs can be captured by the tagged synapses and strengthen their activity to “long” LTPs or LTDs lasting hours or days (8). LTDs and LTPs can “cross”-tag each other; that is, LTDs can enhance both LTDs and LTPs, and vice versa (6, 8). Because many learned behaviors rely on hippocampal LTP or LTD (79), among them the processing of novelty (9, 10) and the making of extinction (1113), interactions between consecutive learnings can also be explained by the “tagging-and-capture” hypothesis (9, 10, 13), whose application to behavior became known as “behavioral tagging and capture” (5, 7, 9, 13). Typically, exposure to a novel environment [e.g., a nonanxiogenic 50 × 50 × 40-cm open field (OF) (5, 7, 9, 10, 14)] is interpolated before testing for another task, which becomes enhanced (410, 13). The usual reaction to novelty is orienting and exploration (14), followed by habituation of this response (1416). Habituation is perhaps the simplest form of learning, and it consists of inhibition of the orienting/exploratory response (14, 16).We recently showed that the brief exposure of rats to a novel environment (the OF) within a limited time window enhances the extinction of contextual fear conditioning (CFC) through a mechanism of synaptic tagging and capture (13), which is a previously unidentified example of behavioral tagging of inhibitory learning. Fear extinction is most probably due to LTD in the hippocampus (11, 12), although the possibility that it may also involve LTP is not discarded (13). The enhancement of extinction by novelty probably relies on the habituation to the novel environment, which is also probably due to LTD (15, 16). The enhancement of extinction by the exposure to novelty depends on hippocampal gene expression and ribosomal protein synthesis following extinction training and on both ribosomal and nonribosomal protein synthesis caused by the novel experience (13). Nonribosomal protein synthesis that can be blocked by rapamycin is believed to be dendritic (13, 17), so it would be strategically located for tagging-and-capture processes, but it has not been studied in synaptic tagging to date (38) or in other forms of behavioral tagging (710). As occurs with the interactions between LTPs and/or LTDs (4), the enhancement of extinction by novelty relies on hippocampal but not amygdalar processes (13).Recent findings indicate that several hippocampal processes related to learning and memory, such as the reconsolidation of spatial learning, are highly dependent on NMDA glutamate receptors, calcium/calmodulin protein kinase II (CaMKII), and long-term voltage channel blockers (L-VDCCs), which, in turn, rely on the proteasomal degradation of proteins (18). Here, we study the effects of an NMDA blocker, 2-amino-5-phosphono pentanoic acid (AP5); the L-VDCC blocker nifedipine (Nife); a CaMKII inhibitor, the autocamtide-2–related inhibitory peptide (AIP); and the irreversible proteasome blocker β-lactacystin (12, 13) on the interaction between novelty and extinction (11). As will be seen, we found that both the setting up of tags by extinction and the presumable production of PRPs by the processing of novelty are dependent on NMDA receptors, CaMKII, and L-VDCCs. This endorses and expands the hypothesis that the novelty–extinction interaction relies on synaptic tagging and capture (13).  相似文献   

18.
19.
It is unknown whether anatomical specializations in the endbrains of different vertebrates determine the neuronal code to represent numerical quantity. Therefore, we recorded single-neuron activity from the endbrain of crows trained to judge the number of items in displays. Many neurons were tuned for numerosities irrespective of the physical appearance of the items, and their activity correlated with performance outcome. Comparison of both behavioral and neuronal representations of numerosity revealed that the data are best described by a logarithmically compressed scaling of numerical information, as postulated by the Weber–Fechner law. The behavioral and neuronal numerosity representations in the crow reflect surprisingly well those found in the primate association cortex. This finding suggests that distantly related vertebrates with independently developed endbrains adopted similar neuronal solutions to process quantity.Birds show elaborate quantification skills (13) that are of adaptive value in naturalistic situations like nest parasitism (4), food caching (5), or communication (6). The neuronal correlates of numerosity representations have only been explored in humans (79) and primates (1018), and they have been found to reside in the prefrontal and posterior parietal neocortices. In contrast to primates, birds lack a six-layered neocortex. The birds’ lineage diverged from mammals 300 Mya (19), at a time when the neocortex had not yet developed from the pallium of the endbrain. Instead, birds developed different pallial parts as dominant endbrain structures (20, 21) based on convergent evolution, with the nidopallium caudolaterale (NCL) as a high-level association area (2226). Where and how numerosity is encoded in vertebrates lacking a neocortex is unknown. Here, we show that neurons in the telencephalic NCL of corvid songbirds respond to numerosity and show a specific code for numerical information.  相似文献   

20.
Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme–substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.Since the invention of the Haber–Bosch process, the amount of fixed nitrogen in soils and waters has been increasing, and this trend has significant impact on the global environment (1, 2). Fixed nitrogen is oxidized to nitrite (NO2) or nitrate (NO3) by nitrification and then converted to gaseous dinitrogen (N2) by microbial denitrification, which closes the nitrogen cycle. Microorganisms involved in denitrification couple their respiratory systems to stepwise reduction of nitrogen oxides to N2 (NO3 → NO2 → NO → N2O → N2) (3, 4). The reduction of NO2 to toxic nitric oxide (NO2 + 2H+ + e → NO + H2O) is referred to as the key step in denitrification and catalyzed by either cd1-heme nitrite reductase (cd1NiR) or copper nitrite reductase (CuNiR) (3, 4). Although the catalytic mechanism of cd1NiR is well understood (5, 6), that of CuNiR is controversial (7). CuNiR is a homotrimeric protein containing two distinct Cu sites per monomer (SI Appendix, Fig. S1). Type 1 Cu (T1Cu) with a Cys–Met–His2 ligand set is an electron acceptor incorporated near the molecular surface, whereas type 2 Cu (T2Cu) with a His3 ligand set is a catalytic center, which is ∼12 Å distant from the molecular surface and located between two adjacent monomers (7, 8). Spaced ∼12.5 Å apart, the two Cu sites are linked by a Cys–His bridge and a sensor loop. Whereas the Cys–His bridge is an electron pathway, the sensor loop is thought to control electron distribution between T1Cu and T2Cu (9).Two conserved residues, Asp98 and His255 (Alcaligenes faecalis numbering), are located above the T2Cu site and bridged by a water molecule called bridging water (SI Appendix, Fig. S1). They are essential to the CuNiR activity because they assist proton transfer (PT) to the substrate (1012). Although intramolecular electron transfer (ET) from T1Cu to T2Cu can occur in the resting state (RS) (13, 14), the differences in the redox potentials of T2Cu minus T1Cu are small and sometimes negative in the absence of NO2, meaning that intramolecular ET before NO2 binding is not energetically favorable (15, 16). By contrast, intramolecular ET is dramatically accelerated in the presence of NO2 (15, 17). An explanation for this gating-like phenomenon is that substrate binding raises the redox potential of T2Cu and shifts the equilibrium of the ET reaction (16). However, pH dependence of intramolecular ET in the presence of NO2 cannot be explained by such a change of redox potentials (15). Instead, Kobayashi et al. (15) proposed that reduction-induced structural change of His255 is responsible for the gating-like mechanism. Because it has been recently proven that intramolecular ET in CuNiR is accompanied by PT and hence proton-coupled ET (PCET) (17, 18), one can readily speculate that intramolecular ET contributes PT to NO2 and that the structural change of His255 is involved in PCET. Crystal structures of CuNiR from Rhodobacter sphaeroides (RhsNiR) implies this possibility because His287 in RhsNiR, which corresponds to His255, seems to show pH- and redox-dependent conformational changes (19, 20). However, presumably because of X-ray radiation damages implied by rerefinement of RhsNiR structures (21), electron density around His287 was so unusual that interpretation of it is difficult (SI Appendix, Fig. S2).Crystal structures determined by synchrotron radiation crystallography (SRX) have provided insights into the enzymatic mechanism of CuNiR (2225), and these studies are summarized elsewhere (7). High-resolution nitrite complex (NC) structures revealed an O-coordination of NO2 showing a near face-on binding mode (22, 23), whereas Cu(II)-NO2 model complexes show a vertical binding mode (7, 2629). The near face-on coordination manner is thought to facilitate its conversion to side-on NO, which was observed in the crystal structures of CuNiR exposed to NO (22, 23, 25). Skeptical eyes have, however, been cast on these CuNiR structures because SRX data might be affected by some problems connected to the high radiation dose delivered on the crystals. First, strong synchrotron X-rays cause not only radiation damages to amino acid residues but also photoreduction of metalloproteins (30, 31). Although a comparison between oxidized and reduced states is necessary to closely investigate redox reactions, completely oxidized structures are almost impossible to determine by SRX. Indeed, the Cu centers in CuNiR are rapidly reduced by exposure to synchrotron X-rays (21, 32). Second, following the photoreduction of T2Cu, NO2 is easily reduced and produces NO and water in SRX (21). Consequently, electron density at the catalytic site of an NC structure is derived from the mixture of both substrate and product, making interpretation of data complicated and unreliable. Third, cryogenic manipulations for reducing radiation damages in SRX have also been focused as a factor that changes the population of amino acid residues (33, 34) and enzyme–substrate complexes (35). Crystallographic (36), computational (37), and spectroscopic (3840) studies actually show that binding modes of NO2 and NO in CuNiR crystal structures can differ from those in physiological environments.We here ventured to use photoreduction in SRX to initiate a chemical reaction and to trap an enzymatically produced intermediary state (30, 31). Furthermore, to visualize intact CuNiR structures in the resting and NC states, we applied serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) (41), which enables damage-free structural determination of metalloproteins (42, 43) and evaluation of the native conformational population at room temperature (RT) (44). By comparing SRX and SFX data, we discuss PCET and nitrite reduction in CuNiR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号