首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Oscillations are found throughout the physical and biological worlds. Their interactions can result in a systematic process of synchronization called entrainment, which is distinct from a simple stimulus-response pattern. Oscillators respond to stimuli at some times in their cycle and may not respond at others. Oscillators can also be driven if the stimulus is strong (or if the oscillator is weak); i.e., they restart their cycle every time they receive a stimulus. Stimuli can also directly affect rhythms without entraining the underlying oscillator (masking): Drivenness and masking are often difficult to distinguish. Here we use the circadian biological clock to explore properties of entrainment. We confirm previous results showing that the residual circadian system in Neurospora can be entrained in a mutant of the clock gene frequency (frq(9), a strain deficient in producing a functional FRQ protein). This finding has implications for understanding the evolution of circadian programs. By comparing data sets from independent studies, we develop a template for analyzing, modeling, and dissecting the interactions of entrained and masked components. These insights can be applied to oscillators of all periodicities.  相似文献   

2.
Self-sustainable oscillation of KaiC phosphorylation has been reconstituted in vitro, demonstrating that this cycle is the basic time generator of the circadian clock of cyanobacteria. Here we show that the ATPase activity of KaiC satisfies the characteristics of the circadian oscillation, the period length, and the temperature compensation. KaiC possesses extremely weak but stable ATPase activity (15 molecules of ATP per day), and the addition of KaiA and KaiB makes the activity oscillate with a circadian period in vitro. The ATPase activity of KaiC is inherently temperature-invariant, suggesting that temperature compensation of the circadian period could be driven by this simple biochemical reaction. Moreover, the activities of wild-type KaiC and five period-mutant proteins are directly proportional to their in vivo circadian frequencies, indicating that the ATPase activity defines the circadian period. Thus, we propose that KaiC ATPase activity constitutes the most fundamental reaction underlying circadian periodicity in cyanobacteria.  相似文献   

3.
4.
5.
Keyword index     
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号