首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.

Aim:

To investigate whether sequestosome 1/p62 (p62), a key cargo adaptor protein involved in both the ubiquitin-proteasome system and the autophagy-lysosome system, could directly regulate autophagy in vitro.

Methods:

HEK 293 cells or HeLa cells were transfected with p62-expressing plasmids or siRNA targeting p62. The cells or the cell lysates were subsequently subjected to immunofluorescence assay, immunoprecipitation assay, or immunoblot analysis. In vitro pulldown assay was used to study the interaction of p62 with Bcl-2.

Results:

Overexpression of p62 significantly increased the basal level of autophagy in both HEK 293 cells and HeLa cells, whereas knockdown of p62 significantly decreased the basal level of autophagy. In vitro pulldown assay showed that p62 directly interacted with Bcl-2. It was observed in HeLa cells that p62 co-localized with Bcl-2. Furthermore, knockdown of p62 in HEK 293 cells significantly increased the amount of Beclin 1 that co-immunoprecipitated with Bcl-2.

Conclusion:

p62 induces autophagy by disrupting the association between Bcl-2 and Beclin 1.  相似文献   

2.

BACKGROUND AND PURPOSE

Glutamate-induced oxidative stress plays a critical role in the induction of neuronal cell death in a number of disease states. We sought to determine the role of the c-Jun NH2-terminal kinase (JNK)-p53-growth arrest and DNA damage-inducible gene (GADD) 45α apoptotic cascade in mediating glutamate-induced oxidative cytotoxicity in hippocampal neuronal cells.

EXPERIMENTAL APPROACH

HT22 cells, a mouse hippocampal neuronal cell line, were treated with glutamate to induce oxidative stress in vitro. Kainic acid-induced oxidative damage to the hippocampus in rats was used as an in vivo model. The signalling molecules along the JNK-p53-GADD45α cascade were probed with various means to determine their contributions to oxidative neurotoxicity.

KEY RESULTS

Treatment of HT22 cells with glutamate increased the mRNA and protein levels of GADD45α, and these increases were suppressed by p53 knock-down. Knock-down of either p53 or GADD45α also prevented glutamate-induced cell death. Glutamate-induced p53 activation was preceded by accumulation of reactive oxygen species, and co-treatment with N-acetyl-cysteine prevented glutamate-induced p53 activation and GADD45α expression. Knock-down of MKK4 or JNK, or the presence of SP600125 (a JNK inhibitor), each inhibited glutamate-induced p53 activation and GADD45α expression. In addition, we also confirmed the involvement of GADD45α in mediating kainic acid-induced hippocampal oxidative neurotoxicity in vivo.

CONCLUSIONS AND IMPLICATIONS

Activation of the JNK-p53-GADD45α cascade played a critical role in mediating oxidative cytotoxicity in hippocampal neurons. Pharmacological inhibition of this signalling cascade may provide an effective strategy for neuroprotection.  相似文献   

3.

BACKGROUND AND PURPOSE

Betulinic acid (BA) is a naturally occurring triterpenoid widely distributed throughout the plant kingdom. We previously reported that BA inhibits lipopolysaccharide (LPS)-induced interleukin-6 production through modulation of nuclear factor κB (NF-κB) in human peripheral blood mononuclear cells (hPBMCs). This study attempted to identify other mechanisms through which BA modulates LPS signalling in mononuclear cells. The effects of BA on signalling pathways downstream were focused on in this study.

EXPERIMENTAL APPROACH

We determined the ability of BA to interfere with p38 and extracellular regulated kinase (ERK) phosphorylation as well as Akt phosphorylation and nuclear factor-κB activation using LPS-activated hPBMCs as an in vitro model. LPS-induced endotoxin shock in mice was the in vivo model employed.

KEY RESULTS

BA inhibited LPS-induced COX-2 protein expression and prostaglandin E2 production and also attenuated LPS-induced ERK and Akt phosphorylation, but not p38 in hPBMCs. BA abolished LPS-induced IκBα phosphorylation and thus normalized the levels of IκBα in cytosol. BA also inhibited LPS-induced reactive oxygen species formation and lactate dehydrogenase release. Interestingly, BA improved the life span of mice in endotoxin shock and also inhibited PGE2 production and myeloperoxidase activity in vivo.

CONCLUSIONS AND IMPLICATIONS

BA modulates LPS-induced COX-2 expression in hPBMCs by inhibiting ERK and Akt pathways as well as by modulating IκBα phosphorylation. At the same time, no cell toxicity was observed. The effect of the drug was confirmed through in vivo experiments. The study gives an insight into the molecular mechanisms of BA.  相似文献   

4.

BACKGROUND AND PURPOSE

Solid lipid nanoparticles containing cholesteryl butyrate (cholbut SLN) can be a delivery system for the anti-cancer drug butyrate. These nanoparticles inhibit adhesion of polymorphonuclear and tumour cells to endothelial cells and migration of tumour cells, suggesting that they may act as anti-inflammatory and anti-tumour agents. Here we have evaluated the effects of cholbut SLN on tumour cell growth using in vitro and in vivo models.

EXPERIMENTAL APPROACH

Cholbut SLNs were incubated with cultures of four tumour cell lines, and cell growth was analysed by assessing viability, clonogenic capacity and cell cycle. Effects on intracellular signalling was assessed by Western blot analysis of Akt expression. The in vivo anti-tumour activity was measured in two models of PC-3 cell xenografts in SCID/Beige mice.

KEY RESULTS

Cholbut SLN inhibited tumour cell line viability, clonogenic activity, Akt phosphorylation and cell cycle progression. In mice injected i.v. with PC3-Luc cells and treated with cholbut SLN, . in vivo optical imaging and histological analysis showed no metastases in the lungs of the treated mice. In another set of mice injected s.c. with PC-3 cells and treated with cholbut SLN when the tumour diameter reached 2 mm, analysis of the tumour dimensions showed that treatment with cholbut SLN substantially delayed tumour growth.

CONCLUSION AND IMPLICATIONS

Cholbut SLN were effective in inhibiting tumour growth in vitro and in vivo. These effects may involve, in part, inhibition of Akt phosphorylation, which adds another mechanism to the activity of this multipotent drug.  相似文献   

5.

Aim:

To investigate the protective effect and underlying mechanisms of Bu-7, a flavonoid isolated from the leaves of Clausena lansium, against rotenone-induced injury in PC12 cells.

Methods:

The cell viability was evaluated using MTT assay. The cell apoptosis rate was analyzed using flow cytometry. JC-1 staining was used to detect the mitochondrial membrane potential (MMP). Western blotting analysis was used to determine the phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38), tumor protein 53 (p53), Bcl-2–associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), and caspase 3.

Results:

Treatment of PC12 cells with rotenone (1–20 μmol/L) significantly reduced the cell viability in a concentration-dependent manner. Pretreatment with Bu-7 (0.1 and 10 μmol/L) prevented PC12 cells from rotenone injury, whereas Bu-7 (1 μmol/L) had no significant effect. Pretreatment with Bu-7 (0.1 and 10 μmol/L) decreased rotenone-induced apoptosis, attenuated rotenone-induced mitochondrial potential reduction and suppressed rotenone-induced protein phosphorylation and expression, whereas Bu-7 (1 μmol/L) did not cause similar effects. Bu-7 showed inverted bell-shaped dose-response relationship in all the effects.

Conclusion:

Bu-7 protects PC12 cells against rotenone injury, which may be attributed to MAP kinase cascade (JNK and p38) signaling pathway. Thus, Bu-7 may be a potential bioactive compound for the treatment of Parkinson''s disease.  相似文献   

6.

AIMS

Due to ethical reasons, in vivo penetration studies are not applicable at all stages of development of new substances. Therefore, the development of appropriate in vitro methods is essential, as well as the comparison of the obtained in vivo and in vitro data, in order to identify their transferability. The aim of the present study was to investigate the follicular penetration of caffeine in vitro and to compare the data with the in vivo results determined previously under similar conditions.

METHODS

The Follicular Closing Technique (FCT) represents a method to investigate the follicular penetration selectively. In the present study, FCT was combined with the Franz diffusion cell in order to differentiate between follicular and intercellular penetration of caffeine into the receptor medium in vitro. Subsequently, the results were compared with the data obtained in an earlier study investigating follicular and intercellular penetration of caffeine in vivo.

RESULTS

The comparison of the data revealed that the in vitro experiments were valuable for the investigation of the follicular penetration pathway, which contributed in vivo as well as in vitro to approximately 50% of the total penetration, whereas the kinetics of caffeine penetration were shown to be significantly different.

CONCLUSIONS

The combination of FCT with the Franz diffusion cell represents a valuable method to investigate follicular penetration in vitro. Nevertheless, in vivo experiments should not be abandoned as in vitro, structural changes of skin occur and blood flow and metabolism are absent, probably accounting for reduced penetration rates in vitro.  相似文献   

7.

Background and purpose:

Gram-negative bacteria contain ligands for Toll-like receptor (TLR) 4 and nucleotide oligomerization domain (NOD) 1 receptors. Lipopolysaccharide (LPS) activates TLR4, while peptidoglycan products activate NOD1. Activation of NOD1 by the specific agonist FK565 results in a profound vascular dysfunction and experimental shock in vivo.

Experimental approach:

Here, we have analysed a number of pharmacological inhibitors to characterize the role of key signalling pathways in the induction of NOS2 following TLR4 or NOD1 activation.

Key results:

Vascular smooth muscle (VSM) cells expressed NOD1 mRNA and protein, and, after challenge with Escherichia coli or FK565, NOS2 protein and activity were induced. Macrophages had negligible levels of NOD1 and were unaffected by FK565, but responded to E. coli and LPS by releasing increased NO and expression of NOS2 protein. Classic pharmacological inhibitors for NF-κB (SC-514) and mitogen-activated protein kinase (SB203580, PD98059) signalling pathways inhibited responses in both cell types regardless of agonist. While TLR4-mediated responses in macrophages were specifically inhibited by the pan-caspase inhibitor z-VAD-fmk and the PKC inhibitor Gö6976, NOD1-mediated responses in VSM cells were inhibited by the Rip2 inhibitor PP2.

Conclusions and implications:

Our findings suggest a selective role for NOD1 in VSM cells, and highlight NOD1 as a potential novel therapeutic target for the treatment of vascular inflammation.  相似文献   

8.

BACKGROUND AND PURPOSE

Topiramate improves insulin sensitivity, in addition to its antiepileptic action. However, the underlying mechanism is unknown. Therefore, the present study was aimed at investigating the mechanism of the insulin-sensitizing effect of topiramate both in vivo and in vitro.

EXPERIMENTAL APPROACH

Male C57Bl/6J mice were fed a run-in high-fat diet for 6 weeks, before receiving topiramate or vehicle mixed in high-fat diet for an additional 6 weeks. Insulin sensitivity was assessed by hyperinsulinaemic-euglycaemic clamp. The extent to which the insulin sensitizing effects of topiramate were mediated through the CNS were determined by concomitant i.c.v. infusion of vehicle or tolbutamide, an inhibitor of ATP-sensitive potassium channels in neurons. The direct effects of topiramate on insulin signalling and glucose uptake were assessed in vivo and in cultured muscle cells.

KEY RESULTS

In hyperinsulinaemic-euglycaemic clamp conditions, therapeutic plasma concentrations of topiramate (∼4 μg·mL−1) improved insulin sensitivity (glucose infusion rate + 58%). Using 2-deoxy-D-[3H]glucose, we established that topiramate improved the insulin-mediated glucose uptake by heart (+92%), muscle (+116%) and adipose tissue (+586%). Upon i.c.v. tolbutamide, the insulin-sensitizing effect of topiramate was completely abrogated. Topiramate did not directly affect glucose uptake or insulin signalling neither in vivo nor in cultured muscle cells.

CONCLUSION AND IMPLICATIONS

In conclusion, topiramate stimulates insulin-mediated glucose uptake in vivo through the CNS. These observations illustrate the possibility of pharmacological modulation of peripheral insulin resistance through a target in the CNS.  相似文献   

9.

Background and Purpose

Neurodegenerative diseases present progressive neurological disorder induced by cell death or apoptosis. Catalpol, an iridoid glucoside isolated from the root of Rehmannia glutinosa Libosch, is present in a wide range of plant families. Although catalpol is an effective anti-apoptotic agent in LPS-induced neurodegeneration, the underlying mechanism has not been established. Here we have identified some of the mechanisms involved the prevention by catalpol of apoptosis induced by LPS in an experimental model of neurodegeneration in vitro.

Experimental Approach

Apoptosis was induced by adding LPS (80 ng·mL−1) to pheochromocytoma (PC12) cells, pretreated with catalpol for 12 h. We measured intracellular reactive oxygen species (ROS), apoptosis and intracellular calcium concentration ( [Ca2+]i) by flow cytometry or laser confocal scanning microscopy. We also analysed the protein expression of Bcl-2, Bax and Ca2+-calmodulin-dependent protein kinase II (CaMKII)-dependent apoptosis signal-regulating kinase-1 (ASK-1)/JNK/p38 signalling pathway in PC12 cells by Western blot.

Key Results

Catalpol stimulated expression of Bcl-2 and inhibited the expression of Bax. Catalpol also attenuated the increase in Ca2+ concentration induced by LPS in PC12 cells and down-regulated CaMK phosphorylation. The CaMKII-dependent ASK-1/JNK/p38 signalling cascade was blocked by catalpol. All these changes were accompanied by a decrease of apoptosis induced by LPS in PC12 cells.

Conclusions and Implications

The data presented here provide new mechanistic insights into the links between the CaMKII-dependent ASK-1/JNK/p38 signalling pathway and the protective effect of catalpol on apoptosis induced by LPS in PC12 cells.  相似文献   

10.

Background

Alopecia is a dermatological disorder with psychosocial implications on patients with hair loss. Hair loss is one of the most feared side effects of chemotherapy. Plants have been widely used for hair growth promotion since ancient times in Ayurveda, Chinese and Unani systems of medicine. The effect of extracts of Cuscuta reflexa Roxb. in testosterone induced alopecia was reported.

Objective

In the present study, the efficacies of the extracts of Cuscuta reflexa in promoting hair growth in cyclophosphamide-induced hair loss have been determined.

Materials and methods

The study was performed by treated with petroleum ether and ethanolic extract of Cuscuta reflexa at the dose 250 mg/kg in male swiss albino rats. Cyclophosphamide (125 mg/kg) was used to induce alopecia.

Results

Groups treated with extracts of plant showed hair regrowth. Histopathology and gross morphologic observations for hair regrowth at shaved sites revealed active follicular proliferation.

Conclusions

It concluded that extracts of Cuscuta reflexa shown to be capable of promoting follicular proliferation or preventing hair loss in cyclophosphamide-induced hair fall.  相似文献   

11.
12.

BACKGROUND AND PURPOSE

Homologous agonist-induced phosphorylation of the μ-opioid receptor (MOR) is initiated at the carboxyl-terminal S375, followed by phosphorylation of T370, T376 and T379. In HEK293 cells, this sequential and hierarchical multi-site phosphorylation is specifically mediated by G-protein coupled receptor kinases 2 and 3. In the present study, we provide evidence for a selective and dose-dependent phosphorylation of T370 after activation of PKC by phorbol esters.

EXPERIMENTAL APPROACH

We used a combination of phospho site-specific antibodies, kinase inhibitors and siRNA knockdown screening to identify kinases that mediate agonist-independent phosphorylation of the MOR in HEK293 cells. In addition, we show with phospho site-specific antibodies were also used to study constitutive phosphorylation at S363 of MORs in mouse brain in vivo.

KEY RESULTS

Activation of PKC by phorbol esters or heterologous activation of substance P receptors co-expressed with MORs in the same cell induced a selective and dose-dependent phosphorylation of T370 that specifically requires the PKCα isoform. Inhibition of PKC activity did not compromise homologous agonist-driven T370 phosphorylation. In addition, S363 was constitutively phosphorylated in both HEK293 cells and mouse brain in vivo. Constitutive S363 phosphorylation required ongoing PKC activity. When basal PKC activity was decreased, S363 was also a substrate for homologous agonist-stimulated phosphorylation.

CONCLUSIONS AND IMPLICATIONS

Our results have disclosed novel mechanisms of heterologous regulation of MOR phosphorylation by PKC. These findings represent a useful starting point for definitive experiments elucidating the exact contribution of PKC-driven MOR phosphorylation to diminished MOR responsiveness in morphine tolerance and pathological pain.  相似文献   

13.
14.

BACKGROUND AND PURPOSE

Anti-angiogenic agents have recently become one of the major adjuvants for cancer therapy. A cyclopeptide, RA-V, has been shown to have anti-tumour activities. Its in vitro anti-angiogenic activities were evaluated in the present study, and the underlying mechanisms were also assessed.

EXPERIMENTAL APPROACH

Two endothelial cell lines, human umbilical vein endothelial cells (HUVEC) and human microvascular endothelial cells (HMEC-1), were used. The effects of RA-V on the proliferation, cell cycle phase distribution, migration, tube formation and adhesion were assessed. Western blots and real-time PCR were employed to examine the protein and mRNA expression of relevant molecules.

KEY RESULTS

RA-V inhibited HUVEC and HMEC-1 proliferation dose-dependently with IC50 values of 1.42 and 4.0 nM respectively. RA-V inhibited migration and tube formation of endothelial cells as well as adhesion to extracellular matrix proteins. RA-V treatment down-regulated the protein and mRNA expression of matrix metalloproteinase-2. Regarding intracellular signal transduction, RA-V interfered with the activation of ERK1/2 in both cell lines. Furthermore, RA-V significantly decreased the phosphorylation of JNK in HUVEC whereas, in HMEC-1, p38 MAPK was decreased.

CONCLUSIONS AND IMPLICATIONS

RA-V exhibited anti-angiogenic activities in HUVEC and HMEC-1 cell lines with changes in function of these endothelial cells. The underlying mechanisms of action involved the ERK1/2 signalling pathway. However, RA-V may regulate different signalling pathways in different endothelial cells. These findings suggest that RA-V has the potential to be further developed as an anti-angiogenic agent.  相似文献   

15.

Background and purpose:

Bisphosphonates (BPs) are highly effective inhibitors of bone resorption. Nitrogen-containing bisphosphonates (N-BPs), such as zoledronic acid, induce the formation of a novel ATP analogue (1-adenosin-5′-yl ester 3-(3-methylbut-3-enyl) ester triphosphoric acid; ApppI), as a consequence of the inhibition of farnesyl pyrophosphate synthase and the accumulation of isopentenyl pyrophosphate (IPP). ApppI induces apoptosis, as do comparable metabolites of non-nitrogen-containing bisphosphonates (non-N-BPs). In order to further evaluate a pharmacological role for ApppI, we obtained more detailed data on IPP/ApppI formation in vivo and in vitro. Additionally, zoledronic acid-induced ApppI formation from IPP was compared with the metabolism of clodronate (a non-N-BP) to adenosine 5′(β,γ-dichloromethylene) triphosphate (AppCCl2p).

Experimental approach:

After giving zoledronic acid in vivo to rabbits, IPP/ApppI formation and accumulation was assessed in isolated osteoclasts. The formation of ApppI from IPP was compared with the metabolism of clodronate in MCF-7 cells in vitro. IPP/ApppI and AppCCl2p levels in cell extracts were analysed by mass spectrometry.

Key results:

Isopentenyl pyrophosphate/ApppI were formed in osteoclasts in vivo, after a single, clinically relevant dose of zoledronic acid. Furthermore, exposure of MCF-7 cells in vitro to zoledronic acid at varying times and concentrations induced time- and dose-dependent accumulation of IPP/ApppI. One hour pulse treatment was sufficient to cause IPP accumulation and subsequent ApppI formation, or the metabolism of clodronate into AppCCl2p.

Conclusions and implications:

This study provided the first conclusive evidence that pro-apoptotic ApppI is a biologically significant molecule, and demonstrated that IPP/ApppI analysis is a sensitive tool for investigating pathways involved in BP action.  相似文献   

16.

Background and Purpose

Since the CXC chemokine receptor CXCR2 and its cognate ligand CXCL8 (IL-8) critically regulate neutrophil trafficking during inflammation, they have been implicated in a number of inflammatory lung diseases. Several CXCR2 antagonists have been described and the blockade of CXCR2 has shown promise in pre-clinical disease models and early clinical trials. However, given its potential, there are fewer distinct classes of antagonists of CXCR2 than of other clinically relevant molecular targets. Thus, we sought to identify additional classes of compounds that alter CXCR2 function.

Experimental Approach

We used the CXCR2 Tango™ assay to screen an in-house library of highly diverse chemical compounds. CX4338 [2-(benzylamino)-4,4-dimethyl-6-oxo-N-phenylcyclohex-1-enecarbothioamide] was identified from our screen and additional studies to characterize the compound were performed. Receptor internalization and second-messenger assays were used to assess the effects of CX4338 on CXCR2-mediated signalling. Wound healing, transwell cell migration and LPS-induced lung inflammation in mice were used to determine the in vitro and in vivo effects of CX4338.

Key Results

CX4338 selectively inhibited CXCR2-mediated recruitment of β-arrestin-2 and receptor internalization, while enhancing CXCR2-mediated MAPK activation. Additionally, CX4338 inhibited CXCL8-induced chemotaxis in CXCR2-overexpressing cells and human neutrophils. In vivo, CX4338 significantly reduced neutrophils in bronchoalveolar lavage induced by LPS in mice.

Conclusions and Implications

A novel compound CX4338 inhibited CXCR2-mediated cell migration with a mechanism of action not previously reported. Also, selective inhibition of CXCR2-mediated β-arrestin-2 activation is sufficient to inhibit CXCL8-mediated chemotaxis.  相似文献   

17.

Background and purpose:

The biogenic amine, histamine plays a pathophysiological regulatory role in cellular processes of a variety of immune cells. This work analyses the actions of histamine on γδ-T lymphocytes, isolated from human peripheral blood, which are critically involved in immunological surveillance of tumours.

Experimental approach:

We have analysed effects of histamine on the intracellular calcium, actin reorganization, migratory response and the interaction of human γδ T cells with tumour cells such as the A2058 human melanoma cell line, the human Burkitt''s Non-Hodgkin lymphoma cell line Raji, the T-lymphoblastic lymphoma cell line Jurkat and the natural killer cell-sensitive erythroleukaemia cell line, K562.

Key results:

γδ T lymphocytes express mRNA for different histamine receptor subtypes. In human peripheral blood γδ T cells, histamine stimulated Pertussis toxin-sensitive intracellular calcium increase, actin polymerization and chemotaxis. However, histamine inhibited the spontaneous cytolytic activity of γδ T cells towards several tumour cell lines in a cholera toxin-sensitive manner. A histamine H4 receptor antagonist abolished the histamine induced γδ T cell migratory response. A histamine H2 receptor agonist inhibited γδ T cell-mediated cytotoxicity.

Conclusions and implications:

Histamine activated signalling pathways typical of chemotaxis (Gi protein-dependent actin reorganization, increase of intracellular calcium) and induced migratory responses in γδ T lymphocytes, via the H4 receptor, whereas it down-regulated γδ T cell mediated cytotoxicity through H2 receptors and Gs protein-coupled signalling. Our data suggest that histamine activated γδ T cells could modulate immunological surveillance of tumour tissue.  相似文献   

18.
19.

Background and Purpose

Osteoporosis is a condition characterized by a decrease in bone density, which decreases its strength and results in fragile bones. The endocannabinoid/endovanilloid system has been shown to be involved in the regulation of skeletal remodelling. The aim of this study was to investigate the possible modulation of bone mass mediated by the transient receptor potential vanilloid type 1 channel (TRPV1) in vivo and in vitro.

Experimental Approach

A multidisciplinary approach, including biomolecular, biochemical and morphological analysis, was used to investigate the involvement of TRPV1 in changes in bone density in vivo and osteoclast activity in vitro, in wild-type and Trpv1−/− mice, that had undergone ovariectomy or had a sham operation.

Key Results

Genetic deletion of Trpv1 as well as pharmacological inhibition/desensitization of TRPV1 signalling dramatically reduced the osteoclast activity in vitro and prevented the ovariectomy-induced bone loss in vivo, whereas the expression of cannabinoid type 2 (CB2) receptors was increased.

Conclusions and Implications

These findings highlight the pivotal role TRPV1 channels play in bone resorption and suggest a possible cross-talk between TRPV1 and CB2 receptors. Based on these results, hybrid compounds acting on both TRPV1 and CB2 receptors in an opposite manner could provide a future pharmacological tool for the treatment of diseases associated with disturbances in the bone remodelling process.

Linked Articles

This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10  相似文献   

20.

BACKGROUND AND PURPOSE

Sorafenib, a potent inhibitor that targets several kinases associated with tumourigenesis and cell survival, has been approved for clinical treatment as a single agent. However, combining sorafenib with other agents improves its anti-tumour efficacy in various preclinical tumour models. ABT-263, a second-generation BH3 mimic, binds to the anti-apoptotic family members Bcl-2, Bcl-xL and Bcl-w, and has been demonstrated to enhance TNFSF10 (TRAIL)-induced apoptosis in human hepatocarcinoma cells. Hence, we investigated the effects of ABT-263 treatment combined with sorafenib.

EXPERIMENTAL APPROACH

The effects of ABT-263 combined with sorafenib were investigated in vitro, on cell viability, clone formation and apoptosis, and the mechanism examined using western blot and flow cytometry. This combination was also evaluated in vivo, in a mouse xenograft model; tumour growth, volume and weights were measured and a TUNEL assay performed.

KEY RESULTS

ABT-263 enhanced sorafenib-induced apoptosis while sparing non-tumourigenic cells. Although ABT-263 plus sorafenib significantly stimulated intracellular reactive oxygen species production and subsequent mitochondrial depolarization, this was not sufficient to trigger cell apoptosis. ABT-263 plus sorafenib significantly decreased Akt activity, which was, at least partly, involved in its effect on apoptosis. Bax and p21 (CIP1/WAF1) were shown to play a critical role in ABT-263 plus sorafenib-induced apoptosis. Combining sorafenib with ABT-263 dramatically increased its efficacy in vivo.

CONCLUSION AND IMPLICATIONS

The anti-tumour activity of ABT-263 plus sorafenib may involve the induction of intrinsic cell apoptosis via inhibition of Akt, and reduced Bax and p21 expression. Our findings offer a novel effective therapeutic strategy for tumour treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号