首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
It has been widely accepted that the early spliceosome assembly begins with U1 small nuclear ribonucleoprotein (U1 snRNP) binding to the 5' splice site (5'SS), which is assisted by the Ser/Arg (SR)-rich proteins in mammalian cells. In this process, the RS domain of SR proteins is thought to directly interact with the RS motif of U1-70K, which is subject to regulation by RS domain phosphorylation. Here we report that the early spliceosome assembly event is mediated by the RNA recognition domains (RRM) of serine/arginine-rich splicing factor 1 (SRSF1), which bridges the RRM of U1-70K to pre-mRNA by using the surface opposite to the RNA binding site. Specific mutation in the RRM of SRSF1 that disrupted the RRM-RRM interaction also inhibits the formation of spliceosomal E complex and splicing. We further demonstrate that the hypo-phosphorylated RS domain of SRSF1 interacts with its own RRM, thus competing with U1-70K binding, whereas the hyper-phosphorylated RS domain permits the formation of a ternary complex containing ESE, an SR protein, and U1 snRNP. Therefore, phosphorylation of the RS domain in SRSF1 appears to induce a key molecular switch from intra- to intermolecular interactions, suggesting a plausible mechanism for the documented requirement for the phosphorylation/dephosphorylation cycle during pre-mRNA splicing.  相似文献   

6.
Osmotic stress associated with drought or salinity is a major factor that limits plant productivity. Protein kinases in the SNF1-related protein kinase 2 (SnRK2) family are activated by osmotic stress, suggesting that the kinases are involved in osmotic stress signaling. However, due to functional redundancy, their contribution to osmotic stress responses remained unclear. In this report, we constructed an Arabidopsis line carrying mutations in all 10 members of the SnRK2 family. The decuple mutant snrk2.1/2/3/4/5/6/7/8/9/10 grew poorly under hyperosmotic stress conditions but was similar to the wild type in culture media in the absence of osmotic stress. The mutant was also defective in gene regulation and the accumulation of abscisic acid (ABA), proline, and inositol 1,4,5-trisphosphate under osmotic stress. In addition, analysis of mutants defective in the ABA-activated SnRK2s (snrk2.2/3/6) and mutants defective in the rest of the SnRK2s (snrk2.1/4/5/7/8/9/10) revealed that SnRK2s are a merging point of ABA-dependent and -independent pathways for osmotic stress responses. These results demonstrate critical functions of the SnRK2s in mediating osmotic stress signaling and tolerance.  相似文献   

7.
The mechanisms for plant growth restriction during stress conditions remains unclear. Here, we demonstrate that a phytochrome-interacting factor-like protein, OsPIL1/OsPIL13, acts as a key regulator of reduced internode elongation in rice under drought conditions. The level of OsPIL1 mRNA in rice seedlings grown under nonstressed conditions with light/dark cycles oscillated in a circadian manner with peaks in the middle of the light period. Under drought stress conditions, OsPIL1 expression was inhibited during the light period. We found that OsPIL1 was highly expressed in the node portions of the stem using promoter-glucuronidase analysis. Overexpression of OsPIL1 in transgenic rice plants promoted internode elongation. In contrast, transgenic rice plants with a chimeric repressor resulted in short internode sections. Alteration of internode cell size was observed in OsPIL1 transgenic plants, indicating that differences in cell size cause the change in internode length. Oligoarray analysis revealed OsPIL1 downstream genes, which were enriched for cell wall-related genes responsible for cell elongation. These data suggest that OsPIL1 functions as a key regulatory factor of reduced plant height via cell wall-related genes in response to drought stress. This regulatory system may be important for morphological stress adaptation in rice under drought conditions.  相似文献   

8.
9.
10.
11.
12.
Mitogen-activated protein kinase (MAPK)–mediated responses are in part regulated by the repertoire of MAPK substrates, which is still poorly elucidated in plants. Here, the in vivo enzyme–substrate interaction of the Arabidopsis thaliana MAP kinase, MPK6, with an ethylene response factor (ERF104) is shown by fluorescence resonance energy transfer. The interaction was rapidly lost in response to flagellin-derived flg22 peptide. This complex disruption requires not only MPK6 activity, which also affects ERF104 stability via phosphorylation, but also ethylene signaling. The latter points to a novel role of ethylene in substrate release, presumably allowing the liberated ERF104 to access target genes. Microarray data show enrichment of GCC motifs in the promoters of ERF104–up-regulated genes, many of which are stress related. ERF104 is a vital regulator of basal immunity, as altered expression in both erf104 and overexpressors led to more growth inhibition by flg22 and enhanced susceptibility to a non-adapted bacterial pathogen.  相似文献   

13.
14.
Familial dysautonomia (FD), a hereditary sensory and autonomic neuropathy, is caused by missplicing of exon 20, resulting from an intronic mutation in the inhibitor of kappa light polypeptide gene enhancer in B cells, kinase complex-associated protein (IKBKAP) gene encoding IKK complex-associated protein (IKAP)/elongator protein 1 (ELP1). A newly established splicing reporter assay allowed us to visualize pathogenic splicing in cells and to screen small chemicals for the ability to correct the aberrant splicing of IKBKAP. Using this splicing reporter, we screened our chemical libraries and identified a compound, rectifier of aberrant splicing (RECTAS), that rectifies the aberrant IKBKAP splicing in cells from patients with FD. Here, we found that the levels of modified uridine at the wobble position in cytoplasmic tRNAs are reduced in cells from patients with FD and that treatment with RECTAS increases the expression of IKAP and recovers the tRNA modifications. These findings suggest that the missplicing of IKBKAP results in reduced tRNA modifications in patients with FD and that RECTAS is a promising therapeutic drug candidate for FD.The inhibitor of kappa light polypeptide gene enhancer in B cells, kinase complex-associated protein (IKBKAP) gene encodes the 150-kDa IKK complex-associated protein (IKAP). IKAP is currently known as elongator protein 1 (ELP1), an integral component of the human Elongator complex, which was originally identified in Saccharomyces cerevisiae and shown to be well conserved among species (1). Although multiple functions of IKAP/ELP1 in JNK signaling, neuronal development during embryogenesis, exocytosis, and actin cytoskeleton regulation have been reported (reviewed in refs. 2, 3), yeast genetic analyses have shown that the Elongator complex is also required for the formation of the C5-substituent of 5-carbamoylmethyl (ncm5), 5-methoxycarbonylmethyl (mcm5), and its derivatives at the wobble uridine in tRNAs recognizing purine-ending codons (4, 5). Most recently, it was demonstrated that conditional IKAP/Elp1 KO in mouse testes results in male infertility by disrupting meiotic progression, along with the reduction of modified nucleosides [5-methoxycarbonylmethyl uridine (mcm5U), 5-carbamoylmethyl uridine (ncm5U), and 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U)] of total tRNAs in the testes (6). These modifications are highly likely to play critical roles in the maintenance of translational fidelity, suggesting that the defects in these modifications lead to the mistranslation of various proteins.Familial dysautonomia (FD; Riley–Day syndrome), an autosomal recessive neurodegenerative disease, is characterized by impaired development and progressive degeneration of the sensory and autonomic nerves. Patients who have FD exhibit various symptoms, including cardiovascular instability, recurrent pneumonia, vomiting/dysautonomic crisis, gastrointestinal dysfunction, decreased sensitivity to pain and temperature, and defective lacrimation. FD is a very common disorder in the Ashkenazi Jewish population, with a carrier frequency of 1 in 27. More than 99% of patients who have FD harbor a homozygous mutation in intron 20 (IVS20 + 6T > C: FD mutation) of IKBKAP (7). This mutation reduces base pairing with U1 small nuclear ribonucleic protein (snRNP), resulting in the skipping of exon 20 (8, 9), which, in turn, causes a frameshift and the generation of a premature termination codon (PTC) in exon 21 of IKBKAP mRNA (10). Interestingly, this mutation does not completely abolish the inclusion of exon 20 in pre-mRNA splicing; indeed, WT mRNA is expressed in patients who have FD. The skipping ratio of exon 20 varies among different tissues in patients with FD, with the lowest production of exon 20-containing IKBKAP mRNA observed in neuronal tissues, which is a likely cause of FD (10). These findings suggest that splicing of IKBKAP and IKAP expression could potentially be manipulated, offering the promise of therapeutic approaches. Several attempts have been made to search for therapeutic chemical compounds that promote exon 20 inclusion in patients with FD by quantifying RT-PCR analysis in patient cells or reporter-transfected cells (1116). Even with the most potent splicing modifier, the previously identified plant cytokinin kinetin, however, the effect is not sufficiently strong or specific to promote exon 20 inclusion in IKBKAP (15, 16).We have developed a dual-color splicing reporter system combining two different fluorescent proteins. By using this system, we have succeeded in identifying both cis-elements and trans-acting factors of alternative splicing events in worms, mice, and cultured cells (17, 18). Other groups have also prepared single construction-based, dual-color splicing reporters with specific genes independently (19, 20). These reports highlight the advantage of a dual-color splicing reporter for studying splicing. In the present study, we applied our dual-color splicing reporter system to screen small chemicals that could affect the aberrant splicing of IKBKAP. Our system, which we named the splicing reporter assay for disease genes with dual color (SPREADD), recapitulated and visualized both normal and aberrant splicing patterns in cultured cells. Using our newly developed SPREADD, we screened chemical libraries and found a small molecule that corrects the abnormal splicing of the IKBKAP gene. This molecule was also able to increase IKAP expression in fibroblasts derived from patients with FD at much lower concentrations than the concentration at which kinetin is active. Furthermore, this molecule, named rectifier of aberrant splicing (RECTAS), recovered the level of ncm5U, mcm5s2U, and 5-(carboxyhydroxymethyl) uridine methyl ester (mchm5U) in wobble positions of tRNAs that are typically reduced in cells of patients with FD.  相似文献   

15.
The unfolded protein response (UPR) is an evolutionarily conserved mechanism by which all eukaryotic cells adapt to the accumulation of unfolded proteins in the endoplasmic reticulum (ER). Inositol-requiring kinase 1 (IRE1) and PKR-related ER kinase (PERK) are two type I transmembrane ER-localized protein kinase receptors that signal the UPR through a process that involves homodimerization and autophosphorylation. To elucidate the molecular basis of the ER transmembrane signaling event, we determined the x-ray crystal structure of the luminal domain of human IRE1alpha. The monomer of the luminal domain comprises a unique fold of a triangular assembly of beta-sheet clusters. Structural analysis identified an extensive dimerization interface stabilized by hydrogen bonds and hydrophobic interactions. Dimerization creates an MHC-like groove at the interface. However, because this groove is too narrow for peptide binding and the purified luminal domain forms high-affinity dimers in vitro, peptide binding to this groove is not required for dimerization. Consistent with our structural observations, mutations that disrupt the dimerization interface produced IRE1alpha molecules that failed to either dimerize or activate the UPR upon ER stress. In addition, mutations in a structurally homologous region within PERK also prevented dimerization. Our structural, biochemical, and functional studies in vivo altogether demonstrate that IRE1 and PERK have conserved a common molecular interface necessary and sufficient for dimerization and UPR signaling.  相似文献   

16.
17.
The misfolding of nascent proteins, or the unfolding of proteins after synthesis is complete, can occur in response to numerous environmental stresses, or as a result of mutations that de-stabilize protein structure. Cells have developed elaborate protein quality control systems that recognize improperly folded proteins and either refold them or facilitate their degradation. One such quality control system is the unfolded protein response, or the UPR. The UPR is a highly conserved signal transduction system that is activated when cells are subjected to conditions that alter the endoplasmic reticulum (ER) in ways that impair the folding of nascent proteins in this organelle. Recent observations indicate that in the heart, the UPR is activated during acute stresses, including ischemia/reperfusion, as well as upon longer term stresses that lead to cardiac hypertrophy and heart failure. Moreover, certain aspects of the UPR are activated during, and are required for proper heart development. This review summarizes recent studies of the UPR in the heart, focusing on the possible roles of the UPR in contributing to, or protecting from ischemia/reperfusion damage.  相似文献   

18.
19.
Ataxia-telangiectasia mutated (ATM) is a cellular damage sensor that coordinates the cell cycle with damage-response checkpoints and DNA repair to preserve genomic integrity. However, ATM also has been implicated in metabolic regulation, and ATM deficiency is associated with elevated reactive oxygen species (ROS). ROS has a central role in many physiological and pathophysiological processes including inflammation and chronic diseases such as atherosclerosis and cancer, underscoring the importance of cellular pathways involved in redox homeostasis. We have identified a cytoplasmic function for ATM that participates in the cellular damage response to ROS. We show that in response to elevated ROS, ATM activates the TSC2 tumor suppressor via the LKB1/AMPK metabolic pathway in the cytoplasm to repress mTORC1 and induce autophagy. Importantly, elevated ROS and dysregulation of mTORC1 in ATM-deficient cells is inhibited by rapamycin, which also rescues lymphomagenesis in Atm-deficient mice. Our results identify a cytoplasmic pathway for ROS-induced ATM activation of TSC2 to regulate mTORC1 signaling and autophagy, identifying an integration node for the cellular damage response with key pathways involved in metabolism, protein synthesis, and cell survival.  相似文献   

20.
OBJECTIVE: To evaluate the significance of the JAK-STAT pathway in insulin-induced cardioprotection from reperfusion injury. METHODS: In isolated perfused rat hearts subjected to insulin therapy (0.3 mU/ml) +/- AG490 (5 microM, JAK-STAT inhibitor), the phosphorylation state of STAT3 and Akt was determined after 15 min of reperfusion. Infarct size was measured after 120 min of reperfusion. Isolated cardiac myocytes from wild type (WT) and cardiac specific STAT3 deficient mice were treated with insulin at reoxygenation following simulated ischemia (SI, 26 h). Cell viability was measured after 120 min of reoxygenation following SI, whereas phosphorylation state of Akt was measured after 15 min of reoxygenation following SI. RESULTS: Insulin given at reperfusion led to phosphorylation of STAT3 and Akt both of which were inhibited by AG490. AG490 also blocked the insulin-dependent decrease in infarct size, supporting a role for JAK-STAT in cardioprotection. In addition, insulin protection from SI was blocked in myocytes from the STAT3 deficient mice, or in WT mice treated with AG490. Furthermore, insulin failed to phosphorylate Akt in the STAT3 deficient cardiomyocytes. CONCLUSION: Insulin-induced cardioprotection at reperfusion occurs through activation of STAT3. Inhibiting STAT3 by AG490, or STAT3 depletion in cardiac myocytes affects activation of Akt, suggesting close interaction between STAT3 and Akt in the cardioprotective signalling pathway activated by insulin treatment at reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号