首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The modulation of the depolarization induced release of [3H]-acetylcholine by agonists acting on -adrenoceptors was studied in superfused rat atrial slices. In this model, noradrenaline and methoxamine, but not UK 14304 reduced the potassium evoked release of [3H]-acetylcholine. The inhibitory action of these drugs was antagonized by the 1 selective adrenoceptor antagonist prazosin. Propranolol, idazoxan and sulpiride did not antagonize the inhibition by noradrenaline of the potassium-evoked release of [3H]-acetylcholine. Exposure to amphetamine, -phenylethylamine, m- or p-tyramine, increased in a concentration-dependent manner the spontaneous outflow of [3H]-noradrenaline from atrial slices. Yet, these concentrations of the indirectly acting sympathomimetic amines, tested in the presence of an inhibitor of monoamine oxidase (MAO), failed to modify the potassium evoked release of [3H]-acetylcholine. Desipramine 3 mol/l or cocaine 10 mol/l did not affect the release of [3H]-acetylcholine evoked by potassium stimulation. Under similar experimental conditions, -phenylethylamine facilitated the spontaneous outflow of [3H]-noradrenaline, and inhibited the electrically-evoked release of [3H]-serotonin from the hippocampus by activation of 2-adrenoceptors. It is concluded that the release of acetylcholine from atrial cholinergic neurons can be modulated through inhibitory 1-adrenoceptors, which are not activated when the release of noradrenaline is induced by indirectly acting sympathomimetic amines. In addition, amphetamine or structurally related amines do not activate directly recognition sites in the cholinergic postganglionic parasympathetic neuron to modify the release of [3H-acetylcholine.  相似文献   

2.
Summary To investigate the muscarine receptor type mediating inhibition of [3H]-noradrenaline release from the isolated rat and guinea-pig iris we have determined the potency of antimuscarinic drugs to antagonize the methacholine-induced inhibition of [3H]-noradrenaline overflow evoked by field stimulation (3 Hz, 2 min). The prejunctional apparent affinities were compared with those obtained for postjunctional muscarine receptors mediating the methacholine-induced contraction of the isolated rabbit iris sphincter muscle.Prejunctional apparent affinity constants of pirenzepine (6.67), himbacine (8.51), methoctramine (7.92), 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, 8.00), hexahydro-difenidol enantiomers (6.92, (R); 5.77, (S)) in the rat iris and methoctramine (7.58) in the guinea-pig iris indicate the presence of M2 receptors. Although the post-junctional affinity constants in the rabbit iris sphincter of methoctramine (5.93), gallamine (3.92), and 4-DAMP (9.07) confirm our previous suggestions of the presence of M3-like receptors, the results obtained with the hexahydro-difenidol enantiomers do not agree with that concept. The post-junctional affinity constants of the hexahydro-difenidol enantiomers were not different from the prejunctional values (6.86, (R); 5.55, (S)), indicating a similar and low degree of stereoselectivity for these stereoisomers at both receptor sites (14 and 17, (R)/(S)-ratios, respectively). Hence, the postjunctional muscarine receptor in the rabbit iris sphincter fails to exhibit the high degree of stereo selectivity observed for hexahydro-difenidol enantiomers at M3 receptors on other smooth muscles.This study was supported by the Deusche Forschungsgemeinschaft (Fu 163/2) Send offprint requests to H. Fuder at the above address  相似文献   

3.
Summary An isolated preparation of the guinea-pig trachea is described which allows the simultaneous measurement of acetylcholine release and smooth muscle contraction. Incubation of the epithelium-free preparation with [3H]choline resulted in the formation of [3H]acetylcholine. Electrical stimulation caused the release of [3H]acetylcholine and a contractile response. Tetrodotoxin and omission of calcium from the medium abolished both the evoked release and contractions.The muscarinic agonists oxotremorine, carbachol and pilocarpine concentration-dependently inhibited the electrically evoked acetylcholine release and contracted the tracheal smooth muscle. Pre- and postsynaptic EC50 values for a given agonist were not different. Atropine (100 nmol/l) significantly faciliated the evoked acetylcholine release. A concentration of 10 nmol/l atropine did not change the evoked release but antagonized the inhibitory effect of oxotremorine. It is concluded that presynaptic muscarine autoreceptors inhibit the release of acetylcholine from parasympathetic nerves of the guinea-pig trachea.Send offprint requests to G. D'Agostino at the above address  相似文献   

4.
Summary The 5-hydroxytryptamine (5-HT) autoreceptor antagonist methiothepin increased in a concentration-dependent manner the K+-evoked release of [3H]-noradrenaline in pineal glands from normal and parachlorophenylalanine (PCPA)-treated rats. However, 5-HT and the 5-HT receptor agonists, LSD and 5-methoxytryptamine, were inactive at modulating the K+-evoked release of [3H]-noradrenaline in pineal glands from normal and PCPA-treated rats. When tested on the uptake of [3H]-noradrenaline in the pineal gland, methiothepin was found to be a potent inhibitor (IC50 = 10.6 nmol/l). Exposure to methiothepin failed to increase the K+-evoked release of [3H]-noradrenaline when tested in the presence of cocaine. While the K+-evoked release of [3H]-noradrenaline was shown to be modulated through inhibitory presynaptic 2-adrenoceptors in pineal glands from normal and PCPA-treated rats, no evidence was obtained for a presynaptic modulation through 5-HT receptors of [3H]-noradrenaline release. The facilitation by methiothepin of the K+-evoked release of [3H]-noradrenaline in rat pineal gland appears to be due to the inhibition of noradrenaline uptake by this compound.Some of the results were presented at the Meeting of the British Pharmacological Society (Galzin et al. 1986) Send offprint requests to S. Z. Langer  相似文献   

5.

Background and purpose:

M2, M3 and/or M4 muscarinic acetylcholine receptors have been reported to mediate presynaptic inhibition in sympathetic neurons. M1 receptors mediate an inhibition of Kv7, CaV1 and CaV2.2 channels. These effects cause increases and decreases in transmitter release, respectively, but presynaptic M1 receptors are generally considered facilitatory. Here, we searched for inhibitory presynaptic M1 receptors.

Experimental approach:

In primary cultures of rat superior cervical ganglion neurons, Ca2+ currents were recorded via the perforated patch-clamp technique, and the release of [3H]-noradrenaline was determined.

Key results:

The muscarinic agonist oxotremorine M (OxoM) transiently enhanced 3H outflow and reduced electrically evoked release, once the stimulant effect had faded. The stimulant effect was enhanced by pertussis toxin (PTX) and was abolished by blocking M1 receptors, by opening Kv7 channels and by preventing action potential propagation. The inhibitory effect was not altered by preventing action potentials or by opening Kv7 channels, but was reduced by PTX and ω-conotoxin GVIA. The inhibition remaining after PTX treatment was abolished by blockage of M1 receptors or inhibition of phospholipase C. When [3H]-noradrenaline release was triggered independently of voltage-activated Ca2+ channels (VACCs), OxoM failed to cause any inhibition. The inhibition of Ca2+ currents by OxoM was also reduced by ω-conotoxin and PTX and was abolished by M1 antagonism in PTX-treated neurons.

Conclusions and implications:

These results demonstrate that M1, in addition to M2, M3 and M4, receptors mediate presynaptic inhibition in sympathetic neurons using phospholipase C to close VACCs.  相似文献   

6.
Summary The muscarinic agonists acetylcholine (150 mol/l), carbachol (1–10 mol/l) and McN-A-343 (1–50 mol/l, selective for M1 receptors) increased, in a concentration-dependent manner, the electrically-evoked tritium overflow from guinea-pig carotid arteries preincubated with [3H]-noradrenaline. The increase caused by acetylcholine was not modified by hexamethonium (300 mol/l) but was reduced by the muscarinic receptor antagonists methylatropinium (0.5 and 1 nmol/l, nonselective), pirenzepine (1 and 5 mol/l, M1-selective), methoctramine (1 and 5 mol/l, M2-selective) and pfluoro-hexahydro-sila-difenidol (0.1–1 mol/l, M3-selective). The order of potencies (expressed as negative logarithms of concentrations that reduced by 50% the facilitatory effect of acetylcholine) was: methylatropinium (9.93) > pirenzepine (8.83) > p-fluoro-hexahydro-siladifenidol (6.81) methoctramine (6.20). These results demonstrate the existence of facilitatory M1 receptors modulating noradrenaline release in blood vessels. Correspondence to M. Salaices at the above address  相似文献   

7.
Summary Kinetic, saturation and competition binding studies were conducted on the muscarinic receptor binding sites labeled by [3H]N-methylscopolamine ([3H]NMS) in membranes prepared from NG108-15 cells. The pharmacology of the NG108-15 cell muscarinic receptors was compared to that of the M1 receptors of rat cortex labeled using [3H]pirenzepine, the M2 and M3 receptors of rat heart and submaxillary gland, respectively, labeled using [3H]NMS and the muscarinic receptors of the PC12 cell line also labeled using [3H]NMS.The rate of dissociation of [3H]NMS from the NG10815 cell muscarinic receptor was similar to that obtained at the M3 receptor and at the muscarinic receptor of the P12 cells but was slower that the dissociation rate obtained at the M2 cardiac muscarinic receptor. The Kd of [3H]NMS in the NG108-15 cells was significantly lower than that obtained at the M2 and M3 receptor but was similar to the Kd obtained in PC12 cells. In competition studies the affinity estimates for AF-DX 116, 4-DAMP, methoctramine and pirenzepine were not consistent with the presence of either an M1, M2 Or M3 receptor but were identical to the affinity estimates obtained at the muscarinic receptor of the PC12 cell line.On the basis of these data we conclude that the muscarinic receptor present in the NG108-15 cells is different to the M1, M2 or M3 subtypes already described but is similar to the muscarinic receptor present in the PC12 cell line. Since NG108-15 cells expresses mRNA for the m4 muscarinic receptor gene described by Bonner et al. (1987) we propose that the muscarinic receptors present in this cell line be denoted as M4 receptors.Send offprint requests to A. Michel at the above address  相似文献   

8.
Summary Prejunctional affinity constants of the cardioselective muscarine receptor antagonist AF-DX 116 (11-[(2[(diethyl-amino)methyl]-1-piperidinyl)acetyl]-5,11-dihydro6 H-pyrido [2,3-b] [1,4] benzodiazepine-6-one) were determined for muscarine autoreceptors on cholinergic nerves of the guinea-pig ileum and for heteroreceptors on noradrenergic nerves of the rat heart and guinea-pig iris. AF-DX 116 antagonized with low affinity the muscarinic inhibition induced by arecaidine propargyl ester of the stimulation-evoked [3H]acetylcholine overflow (pA2 6.74) from the guinea-pig ileum. In contrast, AF-DX 116 was more potent in antagonizing the methacholine-induced inhibition of the stimulation-evoked [3H]noradrenaline overflow from rat heart (pA2 7.29) or guinea-pig iris (pA2 7.57). The data confirm previously reported differences between prejunctional muscarine heteroreceptors in the rat heart which belong to the cardiac subtype (M2 or M2) and autoreceptors in the guinea-pig ileum that cannot be distinguished from the ileal subtype (M2) or (M3). Send offprint requests to H. Fuder at the above address  相似文献   

9.
Muscarinic cholinergic receptors (mAChRs) and nicotinic cholinergic receptors (nAChRs) regulating GABA release from striatal nerve endings were studied by monitoring release of previously accumulated [3H]GABA or endogenous GABA from superfused mouse striatal synaptosomes. Oxotremorine inhibited the release of [3H]GABA elicited by depolarization with 4-aminopyridine (4-AP), an effect antagonized by atropine. Agonists at nAChRs, including the α4β2 subunit-selective RJR2403, provoked the release of [3H]GABA as well as of the endogenous transmitter; these effects also were prevented by oxotremorine and pilocarpine suggesting coexpression of functional mAChRs and α4β2 nAChRs on GABAergic nerve endings. The inhibitory effects of oxotremorine on the release of [3H]GABA evoked by 4-AP or by RJR2403 were: (i) prevented by the M2/M4 mAChR antagonist himbacine; (ii) insensitive to the M2 antagonist AFDX116; (iii) blocked by the selective M4 mAChR antagonists MT3, thus indicating the involvement of receptors of the M4 subtype. In conclusion, in the corpus striatum, acetylcholine released from cholinergic interneurons can activate α4β2 nAChRs mediating release of GABA; this evoked release can be negatively modulated by M4 mAChRs coexpressed on the same GABAergic terminals.  相似文献   

10.
Summary To determine the muscarinic receptor subtype involved in the contractile response of coronary smooth muscle, we investigated the profiles of various muscarinic receptor antagonists competing for [3H]N-methyl-scopolamine ([3H]NMS) binding to membrane preparations from porcine coronary arteries. [3H]NMS binds to a single population of muscarinic binding sites with a KD of 135 pM and a Bmax of 57 fmol/mg. The affinity profiles of AF-DX 116 [11-2((–((diethylamino)methyl)-1-piperidinyl)acetyl)-5,11-dihydro-6H-pyrido(2,3-b)(1,4)-benzodiazepin-6-one], atropine, 4-DAMP [4-diphenylacetoxy-N-methylpiperidine methiodide], methoctramine [N,N-bis (6-((2-methoxybenzyl) amino)hexyl)-1,8-octane-diamine tetrahydrochloride], HHSiD [hexahydrosiladi-fenidol] and pirenzepine are consistent with binding to a mixed population of muscarinic binding sites, namely of the M2 and M3 subtype.Binding curves for AF-DX 116 and methoctramine are shallow with Hill-coefficients significantly less than unity. Comparison of data from binding studies with results obtained in functional experiments, i.e. antagonism of methacholine induced contraction of porcine coronary artery rings, it was found that only the low-affinity pKi values of AF-DX 116 (6.26) and methoctramine (6.51) correlated well with functional pA2 values.It is concluded that a mixed population of the M2 and M3 muscarinic receptor subtypes is present in porcine coronary arteries. Functional experiments do not support the contribution of the M2 subtype to the contractile response. Cholinergic induced contractions of porcine coronary arteries appear to be evoked via stimulation of the muscarinic M3 receptor subtype. However, since the compounds investigated here do not markedly discriminate between cloned m3, m4 and m5 receptors the involvement of muscarinic receptors different from M1, M2 and M3 cannot be excluded. Send offprint requests to M. Entzeroth at the above address  相似文献   

11.
The effects of subtype-selective muscarinic receptor antagonists on electrically evoked release of acetylcholine and muscle contraction were compared in circular muscle preparations of the guinea-pig ileum. Incubation of the preparation with [3H]choline resulted in the formation of [3H]acetylcholine. Electrical stimulation caused the release of [3H]acetylcholine which was abolished by tetrodotoxin and omission of calcium from the medium. 5-Hydroxytryptamine (10 M) and the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (300 M) did not change acetylcholine release. The muscarinic antagonists pirenzepine (M1 selective), AF-DX 116 (M2 selective) and hexahydrosiladifenidol (M3 selective) caused concentration-dependent increases in the evoked release of acetylcholine, and inhibitions of the circular muscle contraction. The postjunctional affinity constants (pA2 values) obtained for hexahydrosiladifenidol (8.06), pirenzepine (6.95) and AF-DX 116 (6.60) identified the muscular receptor as an M3 subtype. Pirenzepine was more potent in facilitating the evoked release than hexahydrosiladifenidol and AF-DX 116. These findings suggest that the release of acetylcholine in the circular muscle is inhibited by M1 muscarinic autoreceptors whereas muscle contraction is mediated by M3 receptors.  相似文献   

12.
《Pulmonary pharmacology》1993,6(2):119-127
Summary: Muscarinic receptors present in guinea-pig lung were characterized using the M3 selective radioligand [3H]4-diphenylacetoxy-N-methyl-piperidine methiodide ([3H]4-DAMP). In saturation studies, [3H]4-DAMP identified two populations of binding sites with approximately 4% of the sites displaying high affinity (Kd=0.21 nM and Bmax= 10 fmol/mg prot.) while the remaining sites were low affinity ones (Kd=18.11 nM and Bmax=269 fmol/mg prot.). In competition studies with [3H]4-DAMP (0.35 nM), methoctramine and hexahydro-siladifenidol (HHSiD) identified 50 and 70% of high affinity binding sites displaying the pharmacological profile of the M2 and the M3 receptors, respectively. No evidence was found for high affinity [3H]pirenzepine binding sites in guinea-pig lung. However, pirenzepine/[3H]4-DAMP competition experiments suggested that pirenzepine recognized an equal proportion of [3H]4-DAMP binding sites with intermediate and low affinity binding constants. The intermediate affinity binding constant was inconsistent with the presence of M1 receptors and reflected more the presence of M4 or a mixture of M3 and M4 receptors. The low affinity pirenzepine binding sites may represent M2 receptors. These results provide further evidence for the occurrence of M2 and M3 receptors and suggest the presence of the M4 muscarinic receptor subtype in guinea-pig lung.  相似文献   

13.
1. The effects of ten muscarinic antagonists on electrically evoked [3H]-acetylcholine release and muscle contraction were compared in an epithelium-free preparation of the guinea-pig trachea that had been preincubated with [3H]-choline. 2. The M3-selective antagonists UH-AH 37, 4-diphenyl-acetoxy-N-piperidine methobromide and para-fluorohexahydrosiladiphenidol were more potent in reducing the contractile response than in facilitating the evoked [3H]-acetylcholine release. Hexahydrosiladiphenidol did not discriminate between pre- and postjunctional effects. The rank order of the postjunctional potencies of the ten antagonists as well as the postjunctional pA2 values obtained for hexahydrosiladiphenidol (7.95) and AQ-RA (7.08) identified the muscular receptor as an M3 subtype. 3. The M2-selective antagonists methoctramine, AF-DX 116 and AQ-RA 741 were more potent in facilitating the evoked [3H]-acetylcholine release than in inhibiting the contractile response. The increase in release by low concentrations of methoctramine, AF-DX 116 and AQ-RA 741 was paralleled by an enhancement of the stimulation-evoked contractions. 4. Comparison of the pre- and postjunctional potencies of the M1-, M2- and M3-selective antagonists suggests that autoinhibition of acetylcholine release is mediated via an 'M2-like' receptor which differs from the cardiac type M2 receptor in its relatively high affinity for hexahydrosiladiphenidol.  相似文献   

14.
Sympathetic neurotransmitter release and its modulation by presynaptic muscarinic heteroreceptors were studied in mouse iris–ciliary bodies. Tissue preparations were preincubated with 3H-noradrenaline and then superfused and stimulated electrically. Firstly, experimental conditions were defined, allowing study of presynaptic sympathetic inhibition in mouse iris–ciliary body. If tissue was stimulated four times with 36 pulses/3 Hz, tritium overflow peaks were reliably and reproducibly measured. As expected, these stimulation conditions led to marked 2-autoinhibition as indicated by the release-enhancing effect of the 2-antagonists phentolamine and rauwolscine. To ensure autoinhibition-free 3H-noradrenaline release, which is optimal for studying presynaptic sympathetic inhibition, 2-receptors were blocked in all subsequent experiments. Under these conditions, evoked tritium overflow was almost completely abolished in the presence of the sodium channel blocker tetrodotoxin, indicating a neuronal origin of 3H-noradrenaline release. Secondly, muscarinic inhibition of 3H-noradrenaline release was characterized using the conditions described above (36 pulses/3 Hz; phentolamine 1 M and rauwolscine 1 M throughout). The muscarinic receptor agonist oxotremorine M decreased evoked tritium overflow in a concentration-dependent manner with an IC50 of 0.33 M and maximal inhibition of 51%. The concentration–response curve of oxotremorine M was shifted to the right by the muscarinic antagonists ipratropium and methoctramine, whereas pirenzepine was ineffective. The observed rank order of antagonist potencies, ipratropium > methoctramine > pirenzepine, which is typical for the M2 subtype, indicates that presynaptic muscarinic receptors on sympathetic axons of mouse iris–ciliary bodies are predominantly M2. Finally, inhibition of 3H-noradrenaline release by endogenously secreted acetylcholine was investigated. Longer pulse trains, 120 pulses/3 Hz and 600 pulses/5 Hz, were used and the cholinesterase inhibitor physostigmine was added to the superfusion medium to increase synaptic levels of endogenous acetylcholine. Under these conditions, ipratropium approximately doubled the evoked overflow of tritium, indicating that endogenously released acetylcholine can activate presynaptic muscarinic heteroreceptors. In conclusion, the present experiments establish measurement of the electrically induced release of 3H-noradrenaline from mouse iris–ciliary bodies. As in other species, noradrenaline release in this preparation was subject to presynaptic muscarinic inhibition. Our results also indicate that the presynaptic muscarinic receptors on sympathetic axons in mouse iris–ciliary body are predominantly M2. Moreover, these receptors can be activated by both exogenous agonists and endogenously released acetylcholine and, hence, may operate physiologically in the interplay between the parasympathetic and sympathetic nervous system.  相似文献   

15.
Guinea-pig isolated atria were incubated and loaded with [3H]-noradrenaline. The release of 3H and of [3H]-noradrenaline was induced by field stimulation (6-9 trains of 150 pulses at 5 Hz). The stimulation-evoked overflows of 3H and of [3H]-noradrenaline were determined. In the absence of an inhibitor of acetylcholinesterase, acetylcholine (12 min preincubation before nerve stimulation, up to 10 microM) failed to inhibit the evoked [3H]-noradrenaline overflow. In the presence of atropine, an increase by acetylcholine of evoked release was observed in the same atria. In contrast, the selective muscarinic agonist methacholine significantly decreased the evoked overflow. The inhibition was antagonized by atropine. Methacholine did not enhance release in the presence of atropine. When present for only 2 min, acetylcholine 10 microM inhibited the evoked overflow and no facilitation of release was observed in the presence of atropine. In the presence of physostigmine, acetylcholine (12 min preincubation, 1 and 10 microM) inhibited evoked [3H]-noradrenaline overflow, but the overflow was increased by acetylcholine 10 microM in the presence of atropine. In the presence of cocaine, corticosterone, phentolamine, propranolol and hexamethonium together, acetylcholine 1 microM inhibited the evoked [3H]-noradrenaline overflow. The inhibition was significantly enhanced in the presence of physostigmine. It decreased with preincubation time of the agonist, despite the presence of physostigmine and constant replacement by new drug. Neither inhibition nor facilitation of evoked release was observed in the presence of atropine. It is concluded that a muscarinic inhibition by acetylcholine (upon prolonged exposure time) may be masked by a concomitant facilitation of release and/or desensitization of the muscarinic inhibitory mechanism. Furthermore, degradation by acetylcholinesterase contributes in part to the ineffectiveness of acetylcholine as a presynaptic inhibitor. When a distortion of the overflow/release ratio was excluded, adrenergic and nicotinic effects were prevented, and acetylcholinesterase was inhibited, the fading of muscarinic inhibition by acetylcholine may have been exclusively due to a slow and moderate desensitization of the presynaptic muscarinic mechanism.  相似文献   

16.
Electrical stimulation (3 Hz, 2msec duration, 5–12 V for 2 min every 20min) of cortical slices from the rat, previously incubated with [3H]noradrenaline, evoked a release of tritium which was inhibited by morphine, normorphine, Tyr-d-Ala-Gly-MePhe-NH(CH2)2OH (RX783006) and d-Ala2-d-Leu5-enkephalin (pIC30 5.90, 6.32. 7.45 and 6.74 respectively). Naloxone did not affect the release of tritium when given alone but antagonised the actions of the opioids, giving a Ke value of about 3 nM irrespective of the particular agonist used, which suggests an action at mu receptors. The delta opioid receptor blocker, ICI154129, antagonised the opioids only in large concentrations (Ke 21300nM). In slices previously incubated with [3H]5-hydroxytryptamine, electrical stimulation increased overflow of tritium but neither naloxone nor the opioid agonists affected evoked overflow of tritium at concentrations which were effective in slices incubated with [3H]noradrenaline. It is concluded that stimulation of mu opioid receptors may inhibit release of noradrenaline from central noradrenergic neurones and that these receptors are not present in significant numbers on neurones releasing 5-hydroxytryptamine in the cortex.  相似文献   

17.
Summary Experiments were carried out on rat isolated perfused hearts with both vagus nerves attached. The acetylcholine stores were labelled with [14C]-choline. The effects of muscarinic receptor antagonists on the [14C]overflow and increase in perfusion pressure evoked by vagus nerve stimulation (10 Hz, 4–10 mA) were studied in order to determine the muscarinic receptor type involved in autoinhibition of acetylcholine release and vagally-induced vasoconstriction in the rat heart.Stimulation of the vagus nerves (1200 pulses) caused an increase in [14C]-overflow and in perfusion pressure which was significantly reduced by hexamethonium 500 mol/l and abolished by tetrodotoxin 0.3 mol/l or perfusion with Ca2+-free solution. The fractional rate of evoked [14C]-overflow per pulse upon stimulation at 10 Hz (720 pulses) was doubled in the presence of the non-selective antagonist atropine (0.01–1 mol/l) as well as in that of the M2-selective compounds methoctramine (0.1 mol/l) and AF-DX 116 (0.1–1 mol/l), but remained unaffected by the M3-selective hexahydrosiladifenidol (0.1 mol/l). The increase in perfusion pressure upon nerve stimulation was reduced by atropine (0.01 mol/l) or hexahydrosiladifenidol (0.1 mol/l) to approximately 50% and increased by about 50% in the presence of AF-DX 116 (0.1 mol/l).The results show that the autoinhibition of acetylcholine release in the rat heart is mediated by M2 receptors. On the other hand, the increase in perfusion pressure upon vagus nerve stimulation is caused by a different muscarinic receptor, more sensitive to hexahydrosiladifenidol than to M2-selective antagonists. Send offprint requests to I. T. Bognar at the above address  相似文献   

18.

BACKGROUND AND PURPOSE

Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy.

EXPERIMENTAL APPROACH

Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [35S]GTPγS and [3H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M2 muscarinic acetylcholine receptor.

KEY RESULTS

Agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [3H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from Gi/o G-proteins but only its dissociation from Gs/olf G-proteins.

CONCLUSIONS AND IMPLICATIONS

These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of Gi/o versus Gs/olf G-proteins that are not identified by conventional GTPγS binding.  相似文献   

19.
Summary Rabbit atria were isolated with the extrinsic right vagus and sympathetic nerves intact and perfused with Tyrode solution. Noradrenaline overflow evoked by sympathetic nerve stimulation (SNS) at 3 Hz for 3 min was determined before, during, and after vagus nerve stimulation (VNS), also at 3 Hz and for 3 min. The VNS pulses preceded the SNS pulses by 3, 100 and 233 ms. Acetylcholine overflow was determined after labelling of the transmitter stores with [14C]choline.Pirenzepine 80 nmol/l failed to alter the muscarinic inhibition of noradrenaline overflow when the vago-sympathetic impulse intervals were 3 and 233 ms. At an interval of 100 ms VNS did not significantly inhibit noradrenaline overflow in the absence of pirenzepine but produced an inhibition in the presence of the drug. When the pirenzepine concentration was varied (0.4–300 nmol/l) the largest inhibition of noradrenaline overflow was observed at 5.7 nmol/l whereas 300 nmol/l fully antagonized the inhibition. Acetylcholine overflow evoked by VNS was not altered by pirenzepine 0.4–300 nmol/l.AF-DX 116 (11-[{2[oi(diethylamino)methyl]-1-piperidinyl}-acetyl]-5,11-dihydro-6H-pyrido-[2,3-b]-[1,4]benzodiazepine-6-one), an M2 receptor selective antagonist, concentration-dependently (100–800 nmol/l) inhibited the decrease of tension development elicited by VNS. At the 100 ms vago-sympathetic impulse interval noradrenaline overflow was enhanced in the presence of AF-DX 116 400 and 800 nmol/l. However, already 100 nmol/l of the drug caused a maximum (fourfold) increase of acetylcholine overflow.It is concluded that acetylcholine released onto noradrenergic nerve fibres causes a small facilitation of noradrenaline overflow at a vago-sympathetic impulse interval of 100 ms. This response is mediated by an M1 receptor and is superimposed on the well-known M2 receptor mediated inhibition of noradrenaline release which is obtained at vago-sympathetic impulse intervals ranging between 3 and 233 ms. The M2 autoreceptor regulating acetylcholine release is activated by lower synaptic concentrations of the transmitter than the M2 heteroreceptor regulating noradrenaline release.Abbreviations SNS sympathetic nerve stimulation - VNS vagus nerve stimulation Send offprint requests to: E. Muscholl at the above address  相似文献   

20.
1. Experiments were carried out in human detrusor strips to characterize muscarinic receptor subtypes involved in the prejunctional regulation of acetylcholine (ACh) release from cholinergic nerve terminals, and in the postjunctional smooth muscle contractile response. 2. In detrusor strips preincubated with [3H]-choline, electrical field stimulation (600 pulses) delivered in six trains at 10 Hz produced a tritium outflow and a contractile response. In the presence of 10 microM paraoxon (to prevent ACh degradation) the tritium outflow was characterized by HPLC analysis as [3H]-ACh (76%) and [3H]-choline (24%). 3. Electrically-evoked [3H]-ACh release was abolished by tetrodotoxin (TTX: 300 nM) and unaffected by hexamethonium (10 microM), indicating a postganglionic event. It was reduced by physostigmine (100 nM) and the muscarinic receptor agonist, muscarone (10 nM-1 microM), and enhanced by atropine (0.1-100 nM). These findings indicate the presence of a muscarinic negative feedback mechanism controlling ACh release. 4. The effects of various subtype-preferring muscarinic receptor antagonists were evaluated on [3H]-ACh release and muscle contraction. The rank potency (-log EC50) orders at pre- and postjunctional level were: atropine > or = 4-diphenyl-acetoxy-N-piperidine (4-DAMP) > mamba toxin 3 (MT-3) > tripitramine > para-fluorohexahydrosiladiphenidol (pF-HHSiD) > or = methoctramine > or = pirenzepine > tripinamide, and atropine > or = 4-DAMP > pF-HHSiD > pirenzepine = tripitramine > tripinamide > methoctramine > MT-3, respectively. 5. The comparison of pre- and post-junctional potencies and the relationship analysis with the affinity constants at human cloned muscarinic receptor subtypes indicates that the muscarinic autoreceptor inhibiting ACh release in human detrusor is an M4 receptor, while the receptor involved in muscular contraction belongs to the M3 subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号