首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
目的建立工作场所空气锆及其化合物的测定不确定度数学模型,量化各不确定度分量,为职业卫生检测机构实验室质量体系管理提供资料。方法分析工作场所空气锆及其化合物的测定过程中各种不确定度的影响因素。其不确定度主要由标准溶液、标准曲线拟合、分光光度计、样品重复测定、吸收液体积和采集气体样品标准体积这六部分引入。结果本次工作场所空气锆及其化合物的测定结果为0.256±0.010mg/m^3,k=2(包含概率约为95%)。合成相对不确定度为2.1%,扩展不确定度为0.010mg/m^3。结论大气采样器流量计和分光光度计相对示值误差所引入不确定度为本测量最主要不确定度来源。  相似文献   

2.
目的 探讨工作场所空气中金属及其化合物火焰原子吸收光谱法的测量不确定度评定方法。
方法 以工作场所空气中钾及其化合物火焰原子吸收光谱法测定为例,依据《测量不确定度评定与表示》(JJF 1059.1-2012)、《化学分析中不确定度的评估指南》(CNAS-GL006:2018)的原理和工作场所空气中金属及其化合物的消解洗脱-火焰原子吸收光谱法检测的方法,对不确定度的分量进行计算。
结果 样品采集(标准采样体积)引入的相对标准不确定度为1.17×10-2,样品洗脱引入的相对标准不确定度为3.69×10-2,样品测定引入的相对标准不确定度为1.46×10-2,合成相对标准标准不确定度为4.14×10-2,本次实验测得空气中钾的平均浓度为C=0.281 mg/m3,合成标准不确定度为1.16×10-2 mg/m3,取包含因子k=2,扩展不确定度U=2.32×10-2 mg/m3。样品采集、样品洗脱、拟合标准曲线是本方法不确定度的主要来源,其他分量相对很小。样品溶液制备过程中,样品洗脱效率引入的不确定度贡献最大。
结论 在实验中,要控制好采样流量,保证采样体积准确,加强溶液量取、洗脱液定容的质量控制,提高洗脱效率,从而减少不确定度,保证实验结果的准确。
  相似文献   

3.
目的建立分光光度法测定工作场所空气中氨含量不确定度方式。方法依照JJF1059-1999《测量不确定度评定与表示》,建立数学模型,计算各不确定度分量和合成不确定度。结果标准溶液配制引入的标准不确定度分量为0.823%,由标准曲线求得样品溶液浓度引起的标准不确定度为0.062 8,样品取样与定容体积引起的标准不确定度为0.008 2,标准采样体积引入的标准不确定度为0.005 4,合成相对标准不确定度为0.06,扩展不确定度为0.38。结论该方法适用于分光光度法测定氨含量的不确定度评定。  相似文献   

4.
目的分析工作场所空气中镉含量测定过程的不确定度,明确实验中对结果准确性影响较大的环节。方法找出实验过程中各不确定度分量,计算合成标准不确定度以及扩展不确定度。结果在各分量不确定度中,样品溶液制备引入的不确定度和标准溶液配置引入的不确定度对实验结果的不确定度贡献较大。结论实验过程中,要注意样品的消化处理以及标准溶液配制等步骤,最大限度地减少测量结果的不确定度,保证实验数据的准确性、可靠性。  相似文献   

5.
目的建立目视比色法测定工作场所空气中硫化氢浓度不确定度方式。方法根据JJF 1059-1999《测量不确定度评定与表示》,建立相应的数学模型,计算其各个不确定度分量并最终计算合成不确定度。结果标准溶液配制过程中的相对不确定度分量为1.99%,目视比色求得样品溶液浓度引起的相对不确定度为5.32%,样品量移取与容量瓶、比色管定容引起的相对不确定度为0.82%,采样体积换算成标准采样体积时所引起的相对不确定度为0.57%,合成相对标准不确定度为5.8%,扩展不确定度为0.06mg/m~3。结论本研究方法适用于目视比色法测定硫化氢浓度的不确定度评定。  相似文献   

6.
目的对异烟酸-巴比妥酸分光光度法测定的工作场所空气中氰化氢的不确定度结果进行评定,分析不确定度的主要来源。方法依据GBZ/T 160.29-2004工作场所空气中氰化氢浓度测定方法~([1])、GBZ 159-2004工作场所空气中有害物质监测的采样规范~([2])和《化学分析中不确定度的评估指南》~([3]),计算了采样过程~([4])、标准溶液、标准曲线制作、及使用仪器所引入的各不确定度分量,并对各分量不确定度进行合成,计算得出扩展不确定度~([5])。结果测定吸收液中氰化氢浓度和采样体积带来的不确定度的贡献最大。吸收液体积的不确定度、体积换算因子的不确定度的影响相对较小。结论在工作场所空气中氰化氢含量测定的过程中,要着重注意对吸收液中氰化氢浓度的测定和采样体积的测定。  相似文献   

7.
石墨炉原子吸收光谱法测定饮用水中镉的不确定度分析   总被引:1,自引:0,他引:1  
目的分析讨论石墨炉原子吸收光谱法测定饮用水中镉过程中不确定度的因素,从而找到影响测定结果准确性的主要原因,为更准确测定饮用水中的镉提供帮助。方法采用石墨炉原子吸收光谱法,测定饮用水中镉,获取一定的实验数据,依据JJF1059-2012《测量不确定度评定与表示》建立数学模型,分析和计算不确定度。结果用石墨炉原子吸收光谱法测定饮用水镉的含量时,标准溶液带来的相对标准不确定度Urel(1)为0.001,由体积引入的相对标准不确定度Urel(2)为0.0071,曲线拟合过程中产生的相对标准不确定度Urel(3)为0.070,样品重复测定引入的相对标准不确定度Urel(4)为0.017,石墨炉进样时引入的相对标准不确定度Urel(5)为0.00075。合成标准不确定度为0.072μg/L,扩展不确定度为0.092μg/L。结论用石墨炉原子吸收光谱法测定饮用水镉的含量时,标准曲线拟合和重复测定是不确定度的主要来源。  相似文献   

8.
目的分析石墨炉原子吸收光谱法测定螺旋藻中镉含量不确定的影响水平,找出关键影响因素。方法用数学模型对各影响分量进行不确定度分析,最后得到合成不确定度以及扩展不确定度。结果螺旋藻中镉含量为样品镉含量为(0.111±0.011)μg/g,k=2。结论影响石墨炉原子吸收光谱法测定螺旋藻中镉含量结果不确定度的主要因素是校准曲线拟合计算样品浓度、标准溶液本身及其配制标准系列过程、样品测量重复性。而样品定容体积、样品称重、温度变动等影响相对较小。  相似文献   

9.
目的建立短时间采样溶剂解吸-气相色谱法测定工作场所空气中苯的不确定度分析方法,以评价测定结果的质量,找出主要影响因素。方法根据标准GBZ/T 160.42-2007短时间采样溶剂解吸-气相色谱法测定工作场所空气中苯,建立不确定度的数学模型,系统分析、计算不确定度各分量。结果采用溶剂解吸-气相色谱法测定工作场所空气中苯,当苯浓度为4.14 mg/m3,其扩展不确定度为0.40 mg/m3(k=2)。其中采样体积、采样效率,解吸效率、标准溶液配制和标准系列测定对测量相对标准不确定度贡献较大。结论此方法评价短时间采样溶剂解吸-气相色谱法测定工作场所空气中苯的不确定度,适用于评估测定结果误差的主要来源。  相似文献   

10.
目的分析工作场所空气中钠含量测定过程的不确定度,明确实验中对结果准确性影响较大的环节。方法找出实验过程中各不确定度分量,计算合成标准不确定度以及扩展不确定度。结果在各分量不确定度中,样品溶液制备引入的不确定度和标准溶液配置引入的不确定度对实验结果的不确定度贡献较大。结论实验过程中,要注意样品的消化处理以及标准溶液配制等步骤,最大程度地减少测量结果的不确定度,保证实验数据的准确性、可靠性。  相似文献   

11.
目的对全自动顶空气相色谱法测定水中三氯甲烷含量的不确定度进行评定。方法对全自动顶空气相色谱法测定水中三氯甲烷含量的测定过程进行全面的分析,通过数学模型分析并计算测量过程中的不确定度分量,最后计算出相对合成标准不确定度和相对扩展不确定度。结果根据实验过程分析,不确定度4个来源的结果分别为:①标准溶液稀释过程引入的不确定度1.7×10^-2;②曲线似合引人的不确定度0.7×10^-2;③样品重复性测定引入的不确定度2.0×10^-2;④取样体积引人的不确定度1.15×10^-3,合成扩展相对不确定度为5.4%(k=2)。结论标准溶液配制、曲线似合、样品重复性、取样体积这4个不确定度来源中,除了取样体积引人的不确定度最小,其他3项并不侧重哪方面,严格这3项的操作才是控制精度的根本。  相似文献   

12.
目的分析工作场所空气中盐酸含量测定过程中的不确定度,明确实验中对结果准确性影响较大的环节。方法找出实验过程中各不确定度分量,计算合成标准不确定度以及扩展不确定度。结果在各分量不确定度中,标准溶液配置引入的不确定度和样品定容引入的不确定度对实验结果的不确定度贡献是较大的。结论实验过程中,首先应选择合格的标准物质,配制标准溶液时要细心、准确,其次样品定容时操作要规范,以减少不确定度。  相似文献   

13.
目的 对焦磷酸法测定工作场所粉尘游离二氧化硅质量分数进行不确定度评定。
方法 依据《测量不确定度评定与表示》(JJF 1059.1-2012)对《工作场所空气中粉尘测定第4部分:游离二氧化硅含量》(GBZ/T 192.4-2007)中焦磷酸法测定带来的不确定度的来源进行识别和评定, 并合成不确定度。
结果 该方法测定过程中产生不确定度分量的主要来源为重复性和温度方面。不经氢氟酸处理的重复性方面相对标准不确定度为8.89×10-2, 经氢氟酸处理后的重复性方面相对标准不确定度为5.90×10-2; 温度计检定的温度方面相对标准不确定度为0.26×10-2, 马弗炉校准的温度方面相对标准不确定度为0.12×10-2。不经氢氟酸处理的工作场所粉尘游离二氧化硅质量分数合成标准不确定度为1.35%, 扩展标准不确定度为2.70%;经氢氟酸处理后的工作场所粉尘游离二氧化硅质量分数合成标准不确定度为0.57%, 扩展标准不确定度为1.14%。工作场所粉尘游离二氧化硅质量分数标准不确定度结果:不经氢氟酸处理为(15.18 ±2.70)%, 经氢氟酸处理后为(9.66 ±1.14)%。
结论 在保持所使用的称量仪器具有良好的精密性、操作性和重复性基础上, 应加强操作培训, 熟悉操作处理全过程, 以减少操作重复性和温度方面产生的不确定度叠加。
  相似文献   

14.
张元璋  虞婧  方名戌 《职业与健康》2014,(20):2957-2958
目的对ICP-AES法测定黄金饰品中铅、镉、铬、砷、汞含量的不确定度进行分析,为评价检验结果提供科学依据。方法通过对测定方法流程进行分析,建立数学模型,确定不确定度的来源,由各分量标准不确定度的计算得到合成不确定度及扩展不确定度。结果用电感耦合等离子体发射光谱(ICP-AES)法测定铅、镉、铬、砷、汞的相对扩展不确定度分别为1.34%、2.40%、2.70%、1.60%、2.86%,此不确定度主要来源于最小二乘法拟合的工作曲线。结论在实际工作中,应规范做好标准溶液的配制、样品溶液的制备、仪器测量等几个步骤,以保证测量结果准确、可靠。测量不确定度的评定为评价分析结果的准确程度和方法的可靠性研究提供了参考。  相似文献   

15.
目的评估二次热解吸—气相色谱法测定空气中苯的不确定度。方法通过明确被测量,识别分析不确定度来源,量化各不确定度分量后合成标准不确定度,进而得到扩展不确定度。结果二次热解吸—气相色谱法测定空气中的苯,在95%置信概率下,包含因子k=2时,扩展不确定度为9.4%。结论该方法中标准溶液配制和标准曲线拟合的不确定度分量对合成不确定度贡献最大,可通过选择不确定度较小的标准品、器具和仪器,提高标准曲线点数并多次测量,提高测试人员熟练程度来降低不确定分量,进而降低扩展不确定度。  相似文献   

16.
目的:探讨石墨炉原子吸收分光光度法测定米面粉中镉含量不确定度的评定。方法:以参加国家食品安全风险评估中心食品安全风险监测质控考核——大米粉中镉含量定量分析为例,以CNAS-GL06《化学分析中不确定度的评估指南》(2006)为评定依据分析了整个检测过程所产生的不确定度。结果:给出采用石墨炉原子吸收分光光度法测定本次检测样品——大米粉中镉含量的扩展不确定度以及最终结果表示为:(161±26)μg/kg。结论:通过不确定度评定得出此次分析检测过程中不确定度的主要来源是样品制备过程、拟合的标准曲线计算产生的和仪器本身引入的不确定度,为今后采用石墨炉原子吸收分光光度法测定米面粉中镉含量的过程中有效地控制检测质量提供了可靠的理论依据。  相似文献   

17.
目的 基于硝酸银比色法建立一种准确、简易可行的硫化氢现场半定量检测方法。
方法 在采样点用一支装有10.0 mL硫化氢吸收液的多孔玻板吸收管,以0.5 L/min流量采集5 min空气样品。现场取5.0 mL吸收液用硝酸银显色剂快速显色,与阳性对照试剂和阴性对照试剂进行目视比色。
结果 方法的半定量结果准确,最低检出浓度为1.6 mg/m3,相对标准偏差为3.2%。常见的无机阴离子对结果不产生干扰。
结论 本方法经济成本低,简易可行,现场测定结果与实验室检测结果量值溯源统一,适用于隐匿性硫化氢的现场调查。
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号