首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular characterization of cancers is important in dictating prognostic factors and directing therapy. Next‐generation sequencing of plasma circulating tumor DNA (ctDNA) offers less invasive, more convenient collection, and a more real‐time representation of a tumor and its molecular heterogeneity than tissue. However, little is known about the clinical implications of ctDNA assessment in gynecologic cancer. We describe the molecular landscape identified on ctDNA, ctDNA concordance with tissue‐based analysis, and factors associated with overall survival (OS) in gynecologic cancer patients with ctDNA analysis. We reviewed clinicopathologic and genomic information for 105 consecutive gynecologic cancer patients with ctDNA analysis, including 78 with tissue‐based sequencing, enrolled in the Profile‐Related Evidence Determining Individualized Cancer Therapy (NCT02478931) trial at the University of California San Diego Moores Cancer Center starting July 2014. Tumors included ovarian (47.6%), uterine (35.2%), cervical (12.4%), vulvovaginal (2.9%), and unknown gynecologic primary (1.9%). Most ovarian and uterine cancers (86%) were high grade. 34% (N = 17) of ovarian cancers had BRCA alterations, and 22% (N = 11) were platinum sensitive. Patients received median 2 (range 0–13) lines of therapy prior to ctDNA collection. Most (75.2%) had at least one characterized alteration on ctDNA analysis, and the majority had unique genomic profiles on ctDNA. Most common alterations were TP53 (N = 59, 56.2% of patients), PIK3CA (N = 26, 24.8%), KRAS (N = 14, 13.3%), BRAF (N = 10, 9.5%), ERBB2 (N = 8, 7.6%), and MYC (N = 8, 7.6%). Higher ctDNA maximum mutation allele frequency was associated with worse OS [hazard ratio (HR): 1.91, P = 0.03], while therapy matched to ctDNA alterations (N = 33 patients) was independently associated with improved OS (HR: 0.34, P = 0.007) compared to unmatched therapy (N = 28 patients) in multivariate analysis. Tissue and ctDNA genomic results showed high concordance unaffected by temporal or spatial factors. This study provides evidence for the utility of ctDNA in determining outcome and individualizing cancer therapy in patients with gynecologic cancer.

Abbreviations

BMI
body mass index
BRCA
breast cancer susceptibility gene
CAP
College of American Pathologists
CI
confidence interval
CLIA
Clinical Laboratory Improvement Amendments
ctDNA
circulating tumor DNA
Del
deletion
HR
hazard ratio
ID
identification number
In/del
insertion/deletion
MAF
mutation allele frequency
NR
not reached
OS
overall survival
PREDICT
Profile‐Related Evidence Determining Individualized Cancer Therapy
SE
standard error
SNV
single nucleotide variant
UCSD
University of California San Diego
VUS
variants of unknown significance
  相似文献   

2.
3.
Liquid biopsy of circulating tumor cells (CTC) and circulating tumor DNA (ctDNA) is gaining attention as a method for real‐time monitoring in cancer patients. Conventional methods based upon epithelial cell adhesion molecule (EpCAM) expression have a risk of missing the most aggressive CTC subpopulations due to epithelial‐mesenchymal transition and may, thus, underestimate the total number of actual CTC present in the bloodstream. Techniques utilizing a label‐free inertial microfluidics approach (LFIMA) enable efficient capture of CTC without the need for EpCAM expression. In this study, we optimized a method for analyzing genetic alterations using next‐generation sequencing (NGS) of extracted ctDNA and CTC enriched using an LFIMA as a first‐phase examination of 30 patients with head and neck cancer, esophageal cancer, gastric cancer and colorectal cancer (CRC). Seven patients with advanced CRC were enrolled in the second‐phase examination to monitor the emergence of alterations occurring during treatment with epidermal growth factor receptor (EGFR)‐specific antibodies. Using LFIMA, we effectively captured CTC (median number of CTC, 14.5 cells/mL) from several types of cancer and detected missense mutations via NGS of CTC and ctDNA. We also detected time‐dependent genetic alterations that appeared during anti–EGFR therapy in CTC and ctDNA from CRC patients. The results of NGS analyses indicated that alterations in the genomic profile revealed by the liquid biopsy could be expanded by using a combination of assays with CTC and ctDNA. The study was registered with the University Hospital Medical Information Network Clinical Trials Registry (ID: UMIN000014095).  相似文献   

4.
循环游离DNA 以细胞外游离形式存在于血液中,可由正常细胞和癌细胞释放。乳腺癌患者血液中循环游离DNA 水平高于正常人,且循环游离DNA 可以反映癌组织的基因突变、甲基化状态、拷贝数改变、杂合子丢失等特征,是乳腺癌诊断、治疗、预后检测中具有巨大潜力的生物学指标。本综述简要介绍了循环游离DNA 的生物学特性,并从定量及定性检测两方面对循环游离DNA 近年来在乳腺癌中的临床应用进行较全面的阐述。  相似文献   

5.
Comprehensive genomic profiling (CGP) is being increasingly used for the routine clinical management of solid cancers. In July 2018, the use of tumor tissue-based CGP assays became available for all solid cancers under the universal health insurance system in Japan. Several restrictions presently exist, such as patient eligibility and limitations on the opportunities to perform such assays. The clinical implementation of CGP based on plasma circulating tumor DNA (ctDNA) is also expected to raise issues regarding the selection and use of tissue DNA and ctDNA CGP. A Joint Task Force for the Promotion of Cancer Genome Medicine comprised of three Japanese cancer-related societies has formulated a policy proposal for the appropriate use of plasma CGP (in Japanese), available at https://www.jca.gr.jp/researcher/topics/2021/files/20210120.pdf , http://www.jsco.or.jp/jpn/user_data/upload/File/20210120.pdf , and https://www.jsmo.or.jp/file/dl/newsj/2765.pdf . Based on these recommendations, the working group has summarized the respective advantages and cautions regarding the use of tissue DNA CGP and ctDNA CGP with reference to the advice of a multidisciplinary expert panel, the preferred use of plasma specimens over tissue, and multiple ctDNA testing. These recommendations have been prepared to maximize the benefits of performing CGP assays and might be applicable in other countries and regions.  相似文献   

6.
Circulating tumor DNA (ctDNA) is a new circulating tumor biomarker which might be used as a prognostic biomarker in a way similar to circulating tumor cells (CTCs). Here, we used the high prevalence of TP53 mutations in triple negative breast cancer (TNBC) to compare ctDNA and CTC detection rates and prognostic value in metastatic TNBC patients. Forty patients were enrolled before starting a new line of treatment. TP53 mutations were characterized in archived tumor tissues and in plasma DNA using two next generation sequencing (NGS) platforms in parallel. Archived tumor tissue was sequenced successfully for 31/40 patients. TP53 mutations were found in 26/31 (84%) of tumor samples. The same mutation was detected in the matched plasma of 21/26 (81%) patients with an additional mutation found only in the plasma for one patient. Mutated allele fractions ranged from 2 to 70% (median 5%). The observed correlation between the two NGS approaches (R2 = 0.903) suggested that ctDNA levels data were quantitative. Among the 27 patients with TP53 mutations, CTC count was ≥1 in 19 patients (70%) and ≥5 in 14 patients (52%). ctDNA levels had no prognostic impact on time to progression (TTP) or overall survival (OS), whereas CTC numbers were correlated with OS (p = 0.04) and marginally with TTP (p = 0.06). Performance status and elevated LDH also had significant prognostic impact. Here, absence of prognostic impact of baseline ctDNA level suggests that mechanisms of ctDNA release in metastatic TNBC may involve, beyond tumor burden, biological features that do not dramatically affect patient outcome.  相似文献   

7.
Glioblastoma (GBM) is the most common type of glioma and is uniformly fatal. Currently, tumour heterogeneity and mutation acquisition are major impedances for tailoring personalized therapy. We collected blood and tumour tissue samples from 25 GBM patients and 25 blood samples from healthy controls. Cell‐free DNA (cfDNA) was extracted from the plasma of GBM patients and from healthy controls. Tumour DNA was extracted from fresh tumour samples. Extracted DNA was sequenced using a whole‐genome sequencing procedure. We also collected 180 tumour DNA datasets from GBM patients publicly available at the TCGA/PANCANCER project. These data were analysed for mutations and gene–gene fusions that could be potential druggable targets. We found that plasma cfDNA concentrations in GBM patients were significantly elevated (22.6 ± 5 ng·mL−1), as compared to healthy controls (1.4 ± 0.4 ng·mL−1) of the same average age. We identified unique mutations in the cfDNA and tumour DNA of each GBM patient, including some of the most frequently mutated genes in GBM according to the COSMIC database (TP53, 18.75%; EGFR, 37.5%; NF1, 12.5%; LRP1B, 25%; IRS4, 25%). Using our gene–gene fusion database, ChiTaRS 5.0, we identified gene–gene fusions in cfDNA and tumour DNA, such as KDRPDGFRA and NCDNPDGFRA, which correspond to previously reported alterations of PDGFRA in GBM (44% of all samples). Interestingly, the PDGFRA protein fusions can be targeted by tyrosine kinase inhibitors such as imatinib, sunitinib, and sorafenib. Moreover, we identified BCRABL1 (in 8% of patients), COL1A1PDGFB (8%), NINPDGFRB (8%), and FGFR1BCR (4%) in cfDNA of patients, which can be targeted by analogues of imatinib. ROS1 fusions (CEP85LROS1 and GOPCROS1), identified in 8% of patient cfDNA, might be targeted by crizotinib, entrectinib, or larotrectinib. Thus, our study suggests that integrated analysis of cfDNA plasma concentration, gene mutations, and gene–gene fusions can serve as a diagnostic modality for distinguishing GBM patients who may benefit from targeted therapy. These results open new avenues for precision medicine in GBM, using noninvasive liquid biopsy diagnostics to assess personalized patient profiles. Moreover, repeated detection of druggable targets over the course of the disease may provide real‐time information on the evolving molecular landscape of the tumour.  相似文献   

8.
Quantification of tumor‐specific variants (TSVs) in cell‐free DNA is rapidly evolving as a prognostic and predictive tool in patients with cancer. Currently, both variant allele frequency (VAF) and number of mutant molecules per mL plasma are used as units of measurement to report those TSVs. However, it is unknown to what extent both units of measurement agree and what are the factors underlying an existing disagreement. To study the agreement between VAF and mutant molecules in current clinical studies, we analyzed 1116 TSVs from 338 patients identified with next‐generation sequencing (NGS) or digital droplet PCR (ddPCR). On different study cohorts, a Deming regression analysis was performed and its 95% prediction interval was used as surrogate for the limits of agreement between VAF and number of mutant molecules per mL and to identify outliers. VAF and number of mutant molecules per mL plasma yielded greater agreement when using ddPCR than NGS. In case of discordance between VAF and number of mutant molecules per mL, insufficient molecular coverage in NGS and high cell‐free DNA concentration were the main responsible factors. We propose several optimization steps needed to bring monitoring of TSVs in cell‐free DNA to its full potential.

Abbreviations

µL
microliter
cfDNA
cell‐free DNA
CI
confidence interval
ctDNA
circulating tumor DNA
ddPCR
digital droplet PCR
EDTA
ethylenediaminetetraacetic acid
LOD
limit of detection
mL
milliliters
ng
nanograms
NGS
next‐generation sequencing
NPV
negative predictive value
PI
prediction interval
PPV
positive predictive value
TSV
tumor‐specific variant
UMI
unique molecular identifier
VAF
variant allele frequency
  相似文献   

9.
Colorectal cancer (CRC) is currently the most common type of cancer in Japan, and its prognosis has improved because of development of diagnosis and advancement in treatments including surgery and chemotherapy. However, because of intratumor heterogeneity and clonal evolution, tumors often develop resistance to treatment. Genotyping tumor tissue in search of somatic genetic alterations for actionable information has become routine examination in clinical practice. However, the inherent molecular heterogeneity of metastatic tumors and the ability of cancer genomes to dynamically evolve are not properly captured by tissue specimens only. Circulating tumor DNA (ctDNA) carrying tumor‐specific genetic or epigenetic alterations is released into the circulation from tumor cells undergoing apoptosis or necrosis. Analysis of ctDNA has the potential to change clinical practice by exploiting blood rather than tissue, as a source of information. Here, we provide an overview of the characteristics of ctDNA and focus on detection methods for ctDNA, and the feasibility of use of ctDNA to monitor tumor dynamics for patients with colorectal cancer.  相似文献   

10.
We recruited 56 colorectal cancer patients and compared the mutational spectrum of tumor tissue DNA, circulating cell‐free DNA (ccfDNA) and circulating tumor cell (CTC) DNA (ctcDNA) to evaluate the potential of liquid biopsy to detect heterogeneity of cancer. Tumor tissue DNA, ccfDNA, and ctcDNA were extracted from each patient and analyzed using next‐generation sequencing (NGS) and digital PCR. To maximize yields of CTC, three antibodies were used in the capture process. From 34 untreated patients, 53 mutations were detected in tumor tissue DNA using NGS. Forty‐seven mutations were detected in ccfDNA, including 20 not detected in tissues. Sixteen mutations were detected in ctcDNA, including five not detected in tissues. In 12 patients (35.3%), mutations not found in tumor tissues were detected by liquid biopsy: nine (26.5%) in ccfDNA only and three (8.8%) in ctcDNA only. Combination analysis of the two liquid biopsy samples increased the sensitivity to detect heterogeneity. From 22 stage IV patients with RAS mutations in their primary tumors, RAS mutations were detected in 14 (63.6%) ccfDNA and in eight (36.4%) ctcDNA using digital PCR. Mutations not detected in primary tumors can be identified in ccfDNA and in ctcDNA, indicating the potential of liquid biopsy in complementing gene analysis. Combination analysis improves sensitivity. Sensitivity to detect cancer‐specific mutations is higher in ccfDNA compared with ctcDNA.  相似文献   

11.
Soft tissue sarcomas (STS) are rare tumors of mesenchymal origin. About 50% of patients with STS experience relapse and more than 30% will die within 10 years after diagnosis. In this study we investigated circulating free DNA (cfDNA) and tumor-specific genetic alterations therein (circulating tumor DNA, ctDNA) as diagnostic biomarkers. Plasma concentrations and fragmentation of cfDNA was analyzed with quantitative PCR. Patients with STS (n = 64) had significantly higher plasma concentrations and increased fragmentation of cfDNA when compared to patients in complete remission (n = 19) and healthy controls (n = 41) (p < 0.01 and p < 0.001). Due to overlapping values between patients with STS and controls, the sensitivity and specificity of these assays is limited. Sensitive assays to detect genomic alterations in cfDNA of synovial sarcomas (t(X;18)), myxoid liposarcomas (t(12;16) and TERT C228T promoter mutation) and well-differentiated/de-differentiated liposarcomas (MDM2 amplifications) were established. ctDNA was quantified in nine liposarcoma patients during the course of their treatment. Levels of breakpoint t(12;16) and TERT C228T ctDNA correlated with the clinical course and tumor burden in patients with myxoid liposarcomas (n = 4). ctDNA could detect minimal residual disease and tumor recurrence. In contrast, detection of MDM2 amplifications was not sensitive enough to detect tumors in patients with well-differentiated/de-differentiated liposarcomas (n = 5). Genotyping of cfDNA for tumor specific genetic alterations is a feasible and promising approach for monitoring tumor activity in patients with myxoid liposarcomas. Detection of ctDNA during follow-up examinations despite negative standard imaging studies might warrant more sensitive imaging (e.g. PET-CT) or closer follow-up intervals to timely localize and treat recurrences.  相似文献   

12.
Assessment of treatment efficacy of immune checkpoint inhibitors in melanoma patients is difficult as the response to these therapies varies among patients or lesions. The clonal evolution of cancer during immune checkpoint blockade therapy could cause treatment resistance. We investigated the potential of liquid biopsy in monitoring the mutational profiles of metastatic melanoma during immunotherapy. Plasma samples collected from 21 Japanese metastatic melanoma patients before immune checkpoint blockade therapy were subjected to whole-exome sequencing (WES). Furthermore, 14 Japanese patients with melanoma were enrolled for longitudinal analysis of circulating tumor DNA (ctDNA). Plasma samples were collected prospectively before and during therapy and sequenced. WES of the pretreatment plasma from Japanese melanoma patients showed detectable ctDNA levels with wide ranges of variant allele frequencies within a sample, suggesting clonal and subclonal mutations in ctDNA. In targeted sequencing using longitudinal samples, ctDNA levels correlated with increased tumor size, while ctDNA content immediately decreased after a surge in a patient exhibiting pseudo-progression, suggesting the potential of ctDNA analysis in discriminating between pseudo- and true progression. Mutant ctDNA levels showed different patterns within the clinical course of specific patients, suggesting that these mutations were derived from different tumor clones with distinct therapeutic responses. During further investigation, WES of plasma samples from 1 patient showed marked differences in the mutational profiles of ctDNA, including expansive tumor evolution during an acute exacerbation. Immunotherapy may induce characteristic clonal evolutions of tumors; longitudinal analysis of ctDNA has the potential of determining these tumor evolution patterns and therapeutic responses.  相似文献   

13.
The study of extracellular vesicles (EVs), especially in the liquid biopsy field, has rapidly evolved in recent years. However, most EV studies have focused on RNA or protein content and DNA in EVs (EV‐DNA) has largely been unnoticed. In this review, we compile current evidence regarding EV‐DNA and provide an extensive discussion on EV‐DNA biology. We look into EV‐DNA biogenesis and mechanisms of DNA loading into EVs, as well as describe the particularly significant function of DNA‐carrying EVs in the maintenance of cellular homeostasis, intracellular communication, and immune response modulation. We also examine the current role of EV‐DNA in the clinical setting, specifically in cancer, infections, pregnancy, and prenatal diagnosis.

Abbreviations

BBB
blood–brain barrier
cfDNA
cell‐free DNA
cGAS
cyclic GMP‐AMP synthase
ctDNA
circulating tumor DNA
ds
double‐stranded
EGFR
epidermal growth factor receptor
EV‐DNA
DNA in extracellular vesicles
EV‐mtDNA
mtDNA in extracellular vesicles
EVs
extracellular vesicles
gDNA
genomic DNA
HBV
hepatitis B virus
HPV
human papillomavirus
IFN1
interferon type 1
ILVs
intraluminal vesicles
MAFs
mean frequencies
MN
micronuclei
mtDNA
mitochondrial DNA
MVBs
multivesicular bodies
NGS
next‐generation sequencing
NSCLC
non‐small‐cell lung cancer
PCR
polymerase chain reaction
PDAC
pancreatic ductal adenocarcinoma
ss
single‐stranded
STING
stimulator of interferon genes
  相似文献   

14.
Previous studies have demonstrated focal but limited molecular similarities between circulating tumor cells (CTCs) and biopsies using isolated genetic assays. We hypothesized that molecular similarity between CTCs and tissue exists at the single cell level when characterized by whole genome sequencing (WGS). By combining the NanoVelcro CTC Chip with laser capture microdissection (LCM), we developed a platform for single-CTC WGS. We performed this procedure on CTCs and tissue samples from a patient with advanced prostate cancer who had serial biopsies over the course of his clinical history. We achieved 30X depth and ≥ 95% coverage. Twenty-nine percent of the somatic single nucleotide variations (SSNVs) identified were founder mutations that were also identified in CTCs. In addition, 86% of the clonal mutations identified in CTCs could be traced back to either the primary or metastatic tumors. In this patient, we identified structural variations (SVs) including an intrachromosomal rearrangement in chr3 and an interchromosomal rearrangement between chr13 and chr15. These rearrangements were shared between tumor tissues and CTCs. At the same time, highly heterogeneous short structural variants were discovered in PTEN, RB1, and BRCA2 in all tumor and CTC samples. Using high-quality WGS on single-CTCs, we identified the shared genomic alterations between CTCs and tumor tissues. This approach yielded insight into the heterogeneity of the mutational landscape of SSNVs and SVs. It may be possible to use this approach to study heterogeneity and characterize the biological evolution of a cancer during the course of its natural history.  相似文献   

15.
The analysis of circulating tumor DNA (ctDNA) is at the threshold of implementation into standard care for colorectal cancer (CRC) patients. However, data about the clinical utility of liquid profiling (LP), its acceptance by clinicians, and its integration into clinical workflows in real‐world settings remain limited. Here, LP tests requested as part of routine care since 2016 were retrospectively evaluated. Results show restrained request behavior that improved moderately over time, as well as reliable diagnostic performance comparable to translational studies, with an overall agreement of 91.7%. Extremely low ctDNA levels at < 0.1% in over 20% of cases, a high frequency of concomitant driver mutations (in up to 14% of cases), and ctDNA levels reflecting the clinical course of disease were revealed. However, certain limitations hampering successful translation of ctDNA into clinical practice were uncovered, including the lack of clinically relevant ctDNA thresholds, appropriate time points of LP requests, and integrative evaluation of ctDNA, imaging, and clinical findings. In conclusion, these results highlight the potential clinical value of LP for CRC patient management and demonstrate issues that need to be addressed for successful long‐term implementation in clinical workflows.  相似文献   

16.
17.
The phosphatidylinositol‐3‐kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is frequently activated in HER2‐negative breast cancer and may play a role in taxane resistance. The phase IB/II TAKTIC trial (NCT01980277) has shown that combining a dual AKT and p70 ribosomal protein S6 kinase (p70S6K) inhibitor (LY2780301) taken orally with weekly paclitaxel in HER2‐negative advanced breast cancer is feasible, with preliminary evidence of efficacy. We wanted to explore whether circulating tumor DNA (ctDNA) may be a surrogate marker of treatment efficacy in this setting. Serial plasma samples were collected and cell‐free DNA was sequenced using low‐coverage whole‐genome sequencing, and analysis was completed with droplet digital polymerase chain reaction (PCR) for some patients with driver mutations. Baseline tumor fraction (TF) and TF after 7 weeks on treatment were compared to progression‐free survival (PFS) and the overall response rate. We also explored circulating copy number alterations associated with treatment failure. Of the 51 patients enrolled in the TAKTIC trial, at least one plasma sample was available for 44 cases (96 timepoints). All patients with tumor TP53, PI3KCA, or AKT1 mutations harbored at least one of these alterations in plasma. TF at inclusion was correlated with PFS (6m‐PFS was 92% for ctDNAneg patients vs 68% for ctDNApos cases; hazard ratio [HR] = 3.45, 95% confidence interval [CI] [1.34–8.90], P = 0.007). ctDNA status at week 7 was not correlated with prognosis. Even though most circulating copy number alterations were conserved at disease progression, some genomic regions of interest were altered in post‐progression samples. In conclusion, ctDNA detection at baseline was associated with shorter PFS in patients included in the TAKTIC trial. Plasma‐based copy number analysis may help to identify alterations involved in resistance to treatment.  相似文献   

18.
The prognostic role of circulating tumor cells (CTCs) has been clearly demonstrated in many types of cancer. However, their roles in diagnostic and treatment strategies remain to be defined. In this review, we present an overview of the current clinical validity of CTCs in nonmetastatic and metastatic cancer, and the main studies or concepts investigating the clinical utility of CTCs. In particular, we focus on breast, lung, colorectal, and prostate cancer. Two major topics concerning the clinical utility of CTC are discussed: treatment based on CTC count or CTC variations, and treatment based on the molecular characteristics of CTCs. Although some of these studies are inconclusive, many are still ongoing, and their results could help to define the role of CTCs in the management of cancers. A summary of published or ongoing phase II‐III trials is also presented.  相似文献   

19.
Circulating tumor cells (CTCs) represent cells shed from the primary tumor or metastatic sites and can be used to monitor treatment response and tumor recurrence. However, CTCs circulate in extremely low numbers making in-depth analysis beyond simple enumeration challenging when collected from peripheral blood. Furthermore, tumor heterogeneity, a hallmark of many tumors, especially breast cancer, further complicates CTC characterization. To overcome this limitation, we developed a platform based on the large-scale isolation of CTCs by apheresis, allowing us to collect CTCs in large numbers, which were preserved live in liquid nitrogen for further characterization. Flow cytometry followed by cell sorting (FACS) was performed using a combination of antibodies directed against cell surface markers of white blood cells (CD45) and epithelial tumor cells (CK8). Analysis of subpopulations CD45+/- and CK8+/- by bulk RNA sequencing (RNAseq) and the CD45-/CK8 positive population by single-cell RNAseq was performed. The CD45- population was enriched using CD45 magnetic beads separation and examined by IHC for pan-cytokeratin and immunofluorescence (IF) for specific markers, including the elusive circulating cancer stem cells (CSCs). CSC-rich mammospheres were grown in vitro for further analysis and treated to examine their response to chemotherapeutic agents. Finally, mammospheres were transplanted into the mammary fat pad and bone of immunodeficient mice to examine tumor growth in vivo. This platform enables the detection and collection of CTCs in early and late-stage breast cancer patients of every subtype. Markers including CD44/24, ALDH1 and CXCR4 were identified by IF and showed high expression following mammosphere culture, which responded predictably to chemotherapeutic agents. Mammospheres were also transplanted into nude mice and induced tumors in the mammary fat pad and bone following intra-tibial transplantation. Finally, bulk RNA analysis of the FACS isolated CD45+/- and CK8+/- cells showed a clear separation of CD45- away from CD45+ populations. Single-cell RNAseq of the FACS isolated CD45-/CK8+ cells showed the presence of 4-5 clusters, confirming the high degree of heterogeneity of CTCs. Our platform for large-scale isolation of CTCs using apheresis is suitable for an in-depth analysis of the cancer phenotype and may eventually allow evaluation in real-time of the disease process to optimize cancer regimens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号