首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In diffuse brain-injured rats, robust sensory sensitivity to manual whisker stimulation develops over 1 month post-injury, comparable to agitation expressed by brain-injured individuals with overstimulation. In the rat, whisker somatosensation relies on thalamocortical glutamatergic relays between the ventral posterior medial (VPM) thalamus and barrel fields of somatosensory cortex (S1BF). Using novel glutamate-selective microelectrode arrays coupled to amperometry, we test the hypothesis that disrupted glutamatergic neurotransmission underlies the whisker sensory sensitivity associated with diffuse brain injury. We report hypersensitive glutamate neurotransmission that parallels and correlates with the development of post-traumatic sensory sensitivity. Hypersensitivity is demonstrated by significant 110% increases in VPM extracellular glutamate levels, and 100% increase in potassium-evoked glutamate release in the VPM and S1BF, with no change in glutamate clearance. Further, evoked glutamate release showed 50% greater sensitivity to a calcium channel antagonist in brain-injured over uninjured VPM. In conjunction with no changes in glutamate transporter gene expression and exogenous glutamate clearance efficiency, these data support a presynaptic origin for enduring post-traumatic circuit alterations. In the anatomically-distinct whisker circuit, the injury-induced functional alterations correlate with the development of late-onset behavioral morbidity. Effective therapies to modulate presynaptic glutamate function in diffuse-injured circuits may translate into improvements in essential brain function and behavioral performance in other brain-injured circuits in rodents and in humans.  相似文献   

2.
Alteration of excitatory neurotransmission is a key feature of traumatic brain injury (TBI) in which extracellular glutamate levels rise. Although increased synaptic release of glutamate occurs at the injury site, the precise mechanism is unclear. Complexin I and complexin II constitute a family of cytosolic proteins involved in the regulation of neurotransmitter release, competing with the chaperone protein alpha-SNAP (soluble N-ethylmaleimide-sensitive factor-attachment protein) for binding to the synaptic vesicle protein synaptobrevin as well as the synaptic membrane proteins SNAP-25 and syntaxin, which together form the SNAP receptor (SNARE) complex. Complexin I is predominantly a marker of axosomatic (inhibitory) synapses, whereas complexin II mainly labels axodendritic and axospinous synapses, the majority of which are excitatory. In order to examine the role of these proteins in TBI, we have studied levels of both complexins in the injured hemisphere by immunoblotting over a time period ranging from 6 h to 7 days following lateral fluid-percussion brain injury in the rat. Transient increases in the levels of complexin I and complexin II proteins were detected in the injured cerebral cortex 6 h following TBI. This increase was followed by a decrease of complexin I in the injured cortex and hippocampus, and a decrease in both complexins in the injured thalamus region at day 3 and day 7 post-injury. The early, transient increase in the injured cortex was completely blocked by N-acetylcysteine (NAC) administered 5 min following trauma, suggesting an involvement of oxidative stress. Neuronal loss was also reduced in the injured hemisphere with post-TBI NAC treatment. Our findings suggest a dysregulation of both inhibitory and excitatory neurotransmission following traumatic injury that is responsive to antioxidant treatment. These alterations in complexin levels may also play an important role in neuronal cell loss following TBI, and thus contribute to the pathophysiology of cerebral damage following brain injury.  相似文献   

3.
Objective:To explore the effects of Xingnaojing injection on cerebral edema and blood-brain barrier (BBB) in rats following traumatic brain injury (TBI).Methods: A total of 108 adult male Sprague-Dawley rats were used as subjects and randomly assigned to three groups:sham-operation,TBI and Xingnaojing injection was set up by the improved device of Feeney's weightcontent and BBB permeability expressed as Evans blue content were measured at 1, 3, 5 and 7 days after surgery.Results: In sham-operation group, brain water content and Evans blue content in brain tissue were 78.97%±1.22%and 5.13μg±0.71μg. Following TBI, water content in brain tissue was increased significantly at 1, 3, 5 and 7 days (83.49%±0.54%, 82.74%±0.72%, 80.22%±0.68%, 79.21%±0.60%), being significantly higher than that in sham operation group (P〈0.05). Evans blue content was increased in TBI group (16.54 μg±0.60 μg, 14.92μg±0.71μg, 12.44 μg ±0.92μg, 10.14μg±0.52 μg) as compared with sham-operation group(P〈0.05). After treatment with Xingnaojing injection, brain water content decreased as compared with TBI group (81.91%±1.04%, 80.38%±0.72%, 79.54%±0.58%,78.60%±0.77%, P〈0.05). Xingnaojing injection also reduced the leakage of BBB as compared with TBI group (15.11 μg± 0.63 μg, 13.62 μg±0.85μg, 10.06 μg±0.67 μg, 9.54 μg±0.41 μg,P〈0.05).Conclusion: Xingnaojing injection could alleviate cerebral edema following TBI via reducing permeability ofBBB.  相似文献   

4.
We studied the effect of pre-injury magnesium (Mg(2+)) treatment on hippocampal extracellular signal- regulated kinase (ERK) activation induced by lateral fluid-percussion (FP) brain injury, and on working and reference memory in the radial-arm maze test in rats subjected to such traumatic brain injury (TBI) (n = 56) or to sham injury (n = 12). In the ipsilateral hippocampus, an increase in the phospho-ERK level was detected at 10 min after injury in rats subjected to FP brain injury of moderate severity (1.9-2.0 atm) as compared to sham-injured controls (p < 0.01), and was maintained for at least 120 min after injury (p < 0.05). In the contralateral hippocampus, the phospho-ERK level was transiently increased at 10 min after injury but fell to nearly its basal level by 30 min. When MgCl(2) solution (150 micromol) was infused intravenously from 20 min to 5 min before injury (n = 4-5), brain injury-induced ERK activation was significantly inhibited in the ipsilateral hippocampus at 60 min but not at 10 min after injury. Mg(2+) treatment also significantly prevented injury- induced neuronal loss in the ipsilateral hippocampus (p < 0.05 vs. vehicle-treated, brain-injured controls). At 2 weeks after injury, Mg2+ treatment was found to have significantly prevented injury-induced impairments in working (p < 0.0001 vs. vehicle-treated, brain-injured controls) and reference memory (p < 0.05) in the radial-arm maze test. The present study demonstrates that pretreatment with Mg(2+) prevents post-traumatic hippocampal ERK activation and neuronal loss, and cognitive dysfunction in the radial-arm maze test.  相似文献   

5.
Infusion of nerve growth factor (NGF) has been shown to be neuroprotective following traumatic brain injury (TBI). In this study, we tested the hypothesis that NGF-expressing human NT2N neurons transplanted into the basal forebrain of brain-injured mice can attenuate long-term cognitive dysfunction associated with TBI. Undifferentiated NT2 cells were transduced in vitro with a lentiviral vector to release NGF, differentiated into NT2N neurons by exposure to retinoic acid and transplanted into the medial septum of mice 24 h following controlled cortical impact (CCI) brain injury or sham injury. Adult mice (n = 78) were randomly assigned to one of four groups: (1) sham-injured and vehicle (serum-free medium)-treated, (2) brain-injured and vehicle-treated, (3) brain-injured engrafted with untransduced NT2N neurons, and (4) brain-injured engrafted with transduced NGF-NT2N neurons. All groups were immunosuppressed daily with cyclosporin A (CsA) for 4 weeks. At 1 month post-transplantation, animals engrafted with NGF-expressing NT2N neurons showed significantly improved learning ability (evaluated with the Morris water maze) compared to brain-injured mice receiving either vehicle (p < 0.05) or untransduced NT2N neurons (p < 0.01). No effect of NGF-secreting NT2N cells on motor function deficits at 1-4 weeks post-transplantation was observed. These data suggest that NGF gene therapy using transduced NT2N neurons (as a source of delivery) may selectively improve cognitive function following TBI.  相似文献   

6.
Traumatic brain injury (TBI) induces a cascade of primary and secondary events resulting in impairment of neuronal networks that eventually determines clinical outcome. The dynorphins, endogenous opioid peptides, have been implicated in secondary injury and neurodegeneration in rodent and human brain. To gain insight into the role of dynorphins in the brain's response to trauma, we analyzed short-term (1-day) and long-term (7-day) changes in dynorphin A (Dyn A) levels in the frontal cortex, hippocampus, and striatum, induced by unilateral left-side or right-side cortical TBI in mice. The effects of TBI were significantly different from those of sham surgery (Sham), while the sham surgery also produced noticeable effects. Both sham and TBI induced short-term changes and long-term changes in all three regions. Two types of responses were generally observed. In the hippocampus, Dyn A levels were predominantly altered ipsilateral to the injury. In the striatum and frontal cortex, injury to the right (R) hemisphere affected Dyn A levels to a greater extent than that seen in the left (L) hemisphere. The R-TBI but not L-TBI produced Dyn A changes in the striatum and frontal cortex at 7 days after injury. Effects of the R-side injury were similar in the two hemispheres. In naive animals, Dyn A was symmetrically distributed between the two hemispheres. Thus, trauma may reveal a lateralization in the mechanism mediating the response of Dyn A-expressing neuronal networks in the brain. These networks may differentially mediate effects of left and right brain injury on lateralized brain functions.  相似文献   

7.
An increase in extracellular K+ concentration ([K+]c) of the rat hippocampus following fluid-percussion concussive brain injury was demonstrated with microdialysis. The role of neuronal discharge was examined with in situ administration of 0.1 mM tetrodotoxin, a potent depressant of neuronal discharges, and of 0.5 to 20 mM cobalt, a blocker of Ca++ channels. While a small short-lasting [K+]c increase (1.40- to 2.15-fold) was observed after a mild insult, a more pronounced longer-lasting increase (4.28- to 5.90-fold) was induced without overt morphological damage as the severity of injury rose above a certain threshold (unconscious for 200 to 250 seconds). The small short-lasting increase was reduced with prior administration of tetrodotoxin but not with cobalt, indicating that neuronal discharges are the source of this increase. In contrast, the larger longer-lasting increase was resistant to tetrodotoxin and partially dependent on Ca++, suggesting that neurotransmitter release is involved. In order to test the hypothesis that the release of the excitatory amino acid neurotransmitter glutamate mediates this increase in [K+]c, the extracellular concentration of glutamate ([Glu]c) was measured along with [K+]c. The results indicate that a relatively specific increase in [Glu]c (as compared with other amino acids) was induced concomitantly with the increase in [K+]c. Furthermore, the in situ administration of 1 to 25 mM kynurenic acid, an excitatory amino acid antagonist, effectively attenuated the increase in [K+]c. A dose-response curve suggested that a maximum effect of kynurenic acid is obtained at a concentration that substantially blocks all receptor subtypes of excitatory amino acids. These data suggest that concussive brain injury causes a massive K+ flux which is likely to be related to an indiscriminate release of excitatory amino acids occurring immediately after brain injury.  相似文献   

8.
An acute subdural hematoma (ASDH) induces pathomechanisms which worsen outcome after traumatic brain injury, even after a small hemorrhage. Synergistic effects of a small ASDH on brain damage are poorly understood, and were studied here using neuromonitoring for 10 h in an injury model of controlled cortical impact (CCI) and ASDH. Pigs (n = 32) were assigned to 4 groups: sham, CCI (2.5 m/s), ASDH (2 ml) and CCI + ASDH. Intracranial pressure was significantly increased above sham levels by all injuries with no difference between groups. CCI and ASDH reduced ptiO(2) by a maximum of 36 ± 9 and 26 ± 11%, respectively. The combination caused a 31 ± 11% drop. ASDH alone and in combination with CCI caused a significant elevation in extracellular glutamate, which remained increased longer for CCI + ASDH. The same two groups had significantly higher peak lactate levels compared to sham. Somatosensory evoked potential (SSEP) amplitude was persistently reduced by combined injury. These effects translated into significantly elevated brain water content and histological damage in all injury groups. Thus, combined injury had stronger effects on glutamate and SSEP when compared to CCI and ASDH, but no clear-cut synergistic effects of 2 ml ASDH on trauma were observed. We speculate that this was partially due to the CCI injury severity.  相似文献   

9.
The NTera2 (NT2) cell line is a homogeneous population of cells, which, when treated in vitro with retinoic acid, terminally differentiate into postmitotic neuronal NT2N cells. Although NT2N neurons transplanted in the acute (24 h postinjury) period survive for up to 1 month following experimental traumatic brain injury (TBI), nothing is known of their ability to survive for longer periods or of their effects when engrafted during the chronic postinjury period. Adult male Sprague-Dawley rats (n = 348; 360-400 g) were initially anesthetized and subjected to severe lateral fluid-percussion (FP) brain injury or sham injury. At 1 month postinjury, only brain-injured animals showing severe neurobehavioral deficits received cryopreserved NT2N neurons stereotaxically transplanted into three sites in the peri-injured cortex (n = 18). Separate groups of similarly brain-injured rats received human fibroblast cells (n = 13) or cell suspension vehicle (n = 14). Sham-injured animals (no brain injury) served as controls and received NT2N transplants (n = 24). All animals received daily immunosuppression for three months. Behavioral testing was performed at 1, 4, 8, and 12 weeks post-transplantation, after which animals were sacrificed for histological analysis. Nissl staining and anti-human neuronal specific enolase (NSE) immunostaining revealed that NT2N neurons transplanted in the chronic post-injury period survived up to 12 weeks post-transplantation, extended processes into the host cortex and immunolabeled positively for synaptophysin. There were no statistical differences in cognitive or motor function among the transplanted brain-injured groups. Long-term graft survival suggests that NT2N neurons may be a viable source of neural cells for transplantation after TBI and also that these grafts can survive for a prolonged time and extend processes into the host cortex when transplanted in the chronic post-injury period following TBI.  相似文献   

10.
Adults with traumatic brain injury (TBI) have been shown by invasive methods to have increased levels of the excitatory neurotransmitter glutamate. It is unclear whether glutamate release contributes to primary or secondary injury and whether its protracted elevation is predictive of a poor outcome. Preliminary studies at our institution in adults found that early increases in magnetic resonance spectroscopy (MRS)-detected glutamate/glutamine (Glx) were associated with poor outcomes. We therefore studied 38 children (mean age, 11 years; range, 1.6-17 years) who had TBI with quantitative short-echo time (STEAM, TE = 20 msec) proton MRS, a mean of 7 +/- 4 (range, 1-17) days after injury in order to determine if their occipital or parietal Glx levels correlated with the severity of injury or outcome. Occipital Glx was significantly increased in children with TBI compared to controls (13.5 +/- 2.4 vs. 10.7 +/- 1.8; p = 0.002), but there was no difference between children with good compared to poor outcomes as determined by the Pediatric Cerebral Performance Category Scale score at 6-12 months after injury. We also did not find a correlation between the amount of Glx and the initial Glasgow Coma Scale score, duration of coma, nor with changes in spectral metabolites, including N-acetyl aspartate, choline, and myoinositol. In part, this may have occurred because, in this study, most patients with poor outcomes were studied later than patients with good outcomes, potentially beyond the time frame for peak elevation of Glx after injury. Additional early and late studies of patients with varying degrees of injury are required to assess the importance to the pathophysiology of TBI of this excitatory neurotransmitter.  相似文献   

11.
异丙酚对大鼠创伤性脑损伤时DAPK mRNA表达的影响   总被引:1,自引:0,他引:1  
目的 探讨异丙酚对大鼠创伤性脑损伤(TBI)时死亡相关蛋白激酶(DAPK)mRNA表达的影响.方法 雄性Wistar大鼠60只,月龄3~4月,体重250~300 g,随机分为6组(n=10):正常对照组(C组)、假手术组(S组)、TVI组、生理盐水组(NS组)、脂肪乳剂组(FE组)及异丙酚组(P组).采用自由落体撞击法建立大鼠创伤性脑损伤模型,于制备模型成功后以2 ml·kg-1·h-1的速率经尾静脉分别输注生理盐水、10%脂肪乳剂、1%异丙酚4 h.于模型制备成功后24 h断头处死大鼠取脑,采用细胞原位末端标记(TUNEL)法计数凋亡神经元,计算神经元凋亡率;采用RT-PCR法检测DAPK mRNA的表达水平.结果 与C组和S组比较,TBI组模型制备成功后24 h时损伤区及损伤边缘区神经元DAPK mRNA表达上调,神经元凋亡率升高(P<0.05);P组DAPK mRNA表达水平及神经元凋亡率较TBI组、NS组和FE组降低(P<0.05).结论 异丙酚可能通过抑制DAPK mRNA表达上调减少脑神经元凋亡,从而在一定程度上减轻大鼠创伤性脑损伤.  相似文献   

12.
Diffuse axonal injury is a significant component of the pathology of moderate-severe pediatric traumatic brain injury in children less than 4 years of age, and is associated with poor cognitive outcome. However, cognitive deficits or gross histopathologic abnormalities are typically not observed following moderate-severe diffuse brain injury in the immature (17-day-old) rat. In order to test whether the age of the immature animal may influence post-traumatic outcome, non-contusive brain trauma was induced in post-natal day (PND) 11 or 17 rats. Brain injury in the PND11 rat, but not in the PND17 rat, was associated with a significant acquisition deficit at 28 days post-injury (p<0.0005 compared with age-matched sham rats, and with brain-injured PND17 rats). All brain-injured animals exhibited a retention deficit in the probe trial (p<0.001), but also demonstrated a significant visual deficit in the visible platform trial (p<0.05 compared to sham animals). Although significantly longer times of apnea and loss of righting reflex were observed in brain-injured PND17 rats compared to PND11 rats (p<0.05), overt cytoarchitectural alterations and reactive gliosis were not observed in the older age group. No focal pathology was observed in the cortex below the impact site in the PND11 rat but by 28 days, the brain-injured PND11 rat exhibited atrophy in multiple brain regions and an enlarged lateral ventricle in the impact hemisphere. Quantitative analysis revealed a time-dependent increase in tissue loss in the injured hemisphere (7-10%) in the younger animals, and a modest extent of tissue loss in the older animals (3-4%). Traumatic axonal injury was observed to similar extents in the white matter and thalamus below the impact site in both brain-injured PND11 and 17 rats. These data demonstrate that non-contusive (diffuse) brain injury of moderate severity in the immature rat is associated with chronic cognitive deficits and long-term histopathologic alterations and suggest that the age-at-injury is an important parameter of behavioral and pathologic outcome following closed head injury in the immature age group.  相似文献   

13.
Children often suffer sustained cognitive dysfunction after severe diffuse traumatic brain injury (TBI). To study the effects of diffuse injury in the immature brain, we developed a model of severe diffuse impact (DI) acceleration TBI in immature rats and previously described the early motor and cognitive dysfunction posttrauma. In the present study, we investigated the long-term functional ability after DI (150 gm/2 m) compared to sham in the immature (PND 17) rat. Beam balance and inclined plane latencies were measured daily for 10 days after injury to assess gross vestibulomotor function. The Morris water maze (MWM) paradigm was evaluated monthly up to 3 months after DI and sham injuries. Reduced latencies on the balance beam and inclined plane were observed in DI rats (p < 0.05 vs. sham [n = 10 per group]) at 24 h and persisted for 10 days postinjury. DI produced sustained MWM performance deficits (p < 0.05 vs. sham) as indicated by the greater latencies to find the hidden platform remarkably through 90 days after injury. Lastly, the brain and body weights of the injured animals were less than sham (p < 0.05) after 3 months. We conclude that a diffuse TBI in the immature rat: (a) created a consistent, marked, but reversible motor deficit up to 10 days following injury; (b) produced a long-term, sustained performance deficit in the MWM up to 3 months posttrauma; and (c) affected body and brain weight gain in the developing rat through 3 months after injury. This TBI model should be useful for the testing of novel therapies and their effect on long-term outcome and development in the immature rat.  相似文献   

14.
Summary Background. Volatile anesthetics reduce neuronal excitation and cerebral metabolism but can also increase intracellular water accumulation in normal and injured brains. While attenuation of neuronal excitation and glutamate release are beneficial under pathological conditions, any increase in edema formation should be avoided. In the present study we investigated duration-dependent effects of the commonly used isoflurane/nitrous oxide (N2O) anesthesia on EEG activity, specific NMDA receptor binding, extracellular, CSF, and plasma glutamate, and cerebral water content in brain-injured rats subjected to short (30 minutes) or prolonged (4 hours) anesthesia.Methods. Before controlled cortical impact injury (CCI), during prolonged (4–8 hours) or short anesthesia (7.5–8 hours after CCI), and before brain removal, changes in neuronal activity were determined by quantitative EEG analysis and glutamate was measured in arterial plasma. Brains were processed to determine acute and persisting changes in cerebral water content and 125I-Mk801 NMDA receptor binding at 8 and 32 hours after CCI, i.e., immediately or 24 hours after short or prolonged anesthesia. During prolonged anesthesia glutamate was measured via microdialysis within the cortical contusion. CSF was sampled before brain removal.Findings. Prolonged isoflurane (1.8 vol%) anesthesia significantly increased EEG activity, plasma, cortical extracellular, and CSF glutamate, cortical and hippocampal 125I-Mk801 NMDA receptor binding, and cerebral water content in brain-injured rats. These changes were partially reversible within 24 hours after prolonged anesthesia. At 24 hours, CSF glutamate was significantly reduced following long isoflurane anesthesia compared to rats previously subjected to short anesthesia despite an earlier significant increase.Conclusions. The partially reversible increases in EEG activity, 125I-Mk801 NMDA receptor binding, cerebral water content, plasma and CSF glutamate appear important for physiological, pathophysiological, and pharmacological studies requiring prolonged anesthesia with isoflurane. Increases in extracellular cortical and plasma glutamate could contribute to acute aggravation of underlying tissue damage.  相似文献   

15.
The efficacy of topiramate, a novel therapeutic agent approved for the treatment of seizure disorders, was evaluated in a model of traumatic brain injury (TBI). Adult male rats were anesthetized (sodium pentobarbital, 60 mg/kg, i.p.), subjected to lateral fluid percussion brain injury (n = 60) or sham injury (n = 47) and randomized to receive either topiramate or vehicle at 30 min (30 mg/kg, i.p.), and 8, 20 and 32 h postinjury (30 mg/kg, p.o.). In Study A, memory was evaluated using a Morris water maze at 48 h postinjury, after which brain tissue was evaluated for regional cerebral edema. In Study B, animals were evaluated for motor function at 48 h and 1, 2, 3, and 4 weeks postinjury using a composite neuroscore and the rotating pole test and for learning ability at 4 weeks. Brains were analyzed for hemispheric tissue loss and hippocampal CA3 cell loss. Topiramate had no effect on posttraumatic cerebral edema or histologic damage when compared to vehicle. At 48 h, topiramate treatment improved memory function in sham but not brain-injured animals, while at one month postinjury it impaired learning performance in brain-injured but not sham animals. Topiramate significantly improved composite neuroscores at 4 weeks postinjury and rotating pole performance at 1 and 4 weeks postinjury, suggesting a potentially beneficial effect on motor function following TBI.  相似文献   

16.
目的 观察颅脑损伤后海马区notch1相关微小RNA(miRNA)、notch1及nestin的表达变化,探讨颅脑损伤后神经干细胞增殖机制.方法 采用自由落体法复制闭合性颅脑损伤小鼠模型,于伤后4 h、1 d和3 d处死动物.(1)实时聚合酶链反应(Real-time PCR)检测伤后4 h、1 d和3d伤侧海马区mir-326、mir-34a和notch1 mRNA的表达变化.(2)免疫荧光染色检测伤后3 d伤侧海马齿状回区notch1和nestin蛋白表达变化.结果 (1)颅脑损伤后4 h、1 d和3 d组海马区mir-326和mir-34a表达水平分别为假手术组的(0.36±0.16)、(0.16±0.04)、(0.36±0.17)倍和(0.48±0.15)、(0.50±0.04)、(0.25±0.14)倍,均低于假手术组(P<0.01);(2)颅脑损伤后4 h、1 d和3 d组海马区notch1 mRNA表达水平分别为假手术组的(1.77±0.17)、(2.55±0.48)和(2.44±0.58)倍,均高于假手术组(P<0.05);颅脑损伤后3 d组海马齿状回区notch1阳性细胞明显多于假手术组[(18.20±3.56)个比(0.40±0.55)个,P<0.01].(3)颅脑损伤后3 d组海马齿状回区nestin阳性细胞数明显高于假手术组[(21.80±5.07)个比(0.80±0.45)个,P<0.01].结论 在颅脑损伤后海马区神经干细胞增殖过程中,mir-326和mir-34a表达明显降低,其靶基因notch1 mRNA和蛋白表达明显升高,提示mir-326和mir-34a可靶向抑制notch信号分子,调控伤后神经干细胞增殖过程.
Abstract:
Objective To observe the expression of notch1-related miRNA, notch1 and nestin,and explore the regulatory mechanism of neural stem cells proliferation in hippocampus of mice after traumatic brain injury (TBI). Methods Mice were suffered closed head injury, and then sacrificed at 4th h,1st day and 3rd day post-injury. Real-time polymerase chain reaction (PCR) was used to detect the expression levels of mir-326, mir-34a and notch1 mRNA in mice hippocampus at 4th h, 1st day and 3rd day post TBI. Immunofluorescence was conducted to determine protein expression levels of notch1 and nestin in mice hippocampus at 3rd day post TBI. Results ( 1 ) Relative to sham group, the levels of mir-326 and mir-34a at 4th h, 1st day and 3rd day after TBI in the hippocampus were respectively (0. 36 ± 0. 16),(0. 16±0.04), (0.36±0. 17) and (0.48±0. 15), (0.50±0.04), (0.25 ±0. 14) fold (P<0.01);(2) Relative to sham group, the levels of notch1 mRNA at 4th h, 1st day and 3rd day post TBI injury in the hippocampus were respectively (1.77 ±0. 17), (2.55 ±0.48) and (2.44±0.58) fold (P<0.05).Notch1 + cells in the DG at 3rd day post TBI were significantly increased compared to sham group ( 18.20± 3.56 vs 0. 40 ±0. 55 ,P <0. 01 ); (3) Nestin + cells in the DG at 3rd day post TBI were increased apparently compared to sham group (21.80 ± 5. 07 vs 0.80 ± 0. 45, P < 0. 01 ). Conclusion mir-326 and mir-34a may play a key role in trauma-induced neural stem cells proliferation in hippocampus in vivo by targeting notch1 signaling.  相似文献   

17.
Hypoxia worsens brain injury following trauma, but the mechanisms remain unclear. The purpose of this study was to determine the effect of traumatic brain injury (TBI) and secondary hypoxia (9% oxygen) on apoptosis-related protein expression, cell death, and behavior. Using a murine weight-drop model, TBI led to an early (6 h) increase followed by a later (24 h) decrease in neuronal apoptosis inhibitor protein (NAIP) expression in the olfactory and motor cortex; in contrast, TBI led to a sustained (6 h to 7 days) increase in NAIP in the striatum. The peak increase in the expression of NAIP (6-12 h) following TBI alone was delayed (1-7 days) when hypoxia was added to TBI. Hypoxia following TBI further depleted other apoptosis inhibitor proteins (IAPs) and activated caspases, as well as increased contusion size and worsened cell death. Hypoxia added to TBI also increased motor and feeding activity on days 2 and 4 compared to TBI alone. Hypoxia without TBI had no effect on the expression of IAPs or cell death. These findings show that IAPs have a potential role in the increased vulnerability of brain cells to hypoxia following TBI, and have implications for configuring future therapies for TBI.  相似文献   

18.
Age may be an independent predictor of outcomes in traumatic brain injury (TBI), but the causes of the poor outcomes in elderly patients remain unclear. To clarify the differences between elderly and young patients with TBI, brain metabolism parameters were monitored with the microdialysis method in 30 patients with severe TBI (Glasgow Coma Scale scores 3-8). The microdialysis probe was inserted in the penumbra area of the brain and extracellular levels of glucose, glutamate, glycerol, lactate, and pyruvate were measured hourly for the initial 168 hours (7 days) after operation. The lactate/pyruvate ratio, which is considered to be a good indicator of neuronal ischemia, was also calculated. The patients were divided into the elderly group aged 65 years or older and the young group aged less than 65 years, and the biochemical markers were compared daily between these two groups. The value of extracellular glucose concentration was significantly lower in the elderly group than in the young group, and continued until the 7th day after injury. Moreover, the lactate/pyruvate ratio peaked on the 5th day after injury in the elderly group, later than in the young group. We concluded that neural vulnerability persisted longer in elderly patients than in young patients with TBI, and this should be considered to prevent the occurrence of additional secondary brain injury.  相似文献   

19.
Abstract For many years lactate was considered to be a waste product of glycolysis. Data are accumulating that suggest that lactate is an important energy substrate for neurons during activation. In severe traumatic brain injury (TBI) glutamate release and ischemic cerebral blood flow (CBF) are major factors for a mismatch between energy demand and supply and for neuronal cell death. Although ATP and behavior could be improved by lactate treatment after TBI, no histological correlate nor any linkage to better astrocytic glutamate uptake or CBF as possible mechanisms have been described. We subjected male rats to a controlled cortical impact (CCI; 5?m/sec, 2.5?mm). To study the effects of lactate treatment on lesion volume, glutamate release, and CBF, animals were infused with either NaCl or 100?mM lactate for up to 3?h. The role of endogenous lactate was investigated by inhibiting transport with α-cyano-4-hydroxy-cinnamic acid (4-CIN; 90?mg/kg). Lactate treatment 15?min post-CCI reduced lesion volume from 21.1±2.8?mm(3) to 12.1±1.9?mm(3) at day 2 after CCI. Contusion produced a significant three- to fourfold increase of glutamate in microdialysates, but there was no significant difference between treatments that began 30?min before CCI. In this experiment lesion volume was significantly reduced by lactate at day 7 post-CCI (23.7±4 to 9.3±1-2?mm(3)). CBF increased immediately after CCI and dropped thereafter below baseline in all animals. Lactate infusion 15?min post-CCI elevated CBF for 20?min in 7 of 10 animals, whereas 7 of 8 NaCl-treated animals showed a further CBF decline. Neuroprotection was achieved by lactate treatment following contusion injury, whereas blocking of endogenous lactate transport exerted no adverse effects. Neuroprotection was not achieved by improved glutamate uptake into astrocytes, but was supported by augmented CBF following CCI. Due to its neuroprotective property, lactate might be a beneficial pharmacological treatment for TBI patients.  相似文献   

20.
Cleaved-tau: a biomarker of neuronal damage after traumatic brain injury   总被引:4,自引:0,他引:4  
Previous studies from our laboratory indicate that traumatic brain injury (TBI) in humans results in proteolysis of neuronally-localized, intracellular microtubule associated protein (MAP)-tau to produce cleaved tau (C-tau). The present study evaluated the utility of C-tau to function as a biomarker of neuronal injury and as a biomarker for evaluating neuroprotectant drug efficacy in a controlled cortical impact model of rat TBI. Brain C-tau was determined in rats subjected to controlled cortical impact-induced mild, moderate or severe levels of TBI. A significant severity-dependent increase in C-tau levels was observed in the cortex and hippocampus (1.5-8-fold) of TBI rats compared to shams 72 h after impact. C-tau rat brain and serum time course was determined by measuring levels at 0.25, 6, 24, 48, 72 and 168 h after TBI. A significant time-dependent increase in C-tau levels was observed in ipsilateral cortex (5-16-fold) and hippocampus (2-40-fold) compared to sham animals. C-tau levels increased as early as 6 h after TBI with peak C-tau levels observed 168 h after injury. Elevated brain C-tau levels were associated with TBI-induced tissue loss, which was histologically determined. The effect of cyclosporin-A (CsA), previously demonstrated to be neuroprotective in rat TBI, on brain C-tau levels was examined. CsA (20 mg/kg i.p., 15 min and 24 h after TBI) significantly attenuated the TBI-induced increase in hippocampal C-tau levels observed in vehicle-treated animals confirming CsA's neuroprotectant effect. CsA treatment also lowered ipsilateral cortical C-tau levels, although it did not reach statistical significance. CsA's neuroprotectant effect was confirmed utilizing histologic measures of TBI-induced tissue loss. In addition, serum C-tau levels were significantly increased 6 h after TBI but not at later time points. These results suggest that C-tau is a reliable, quantitative biomarker for evaluating TBI-induced neuronal injury and a potential biomarker of neuroprotectant drug efficacy in the rat TBI model. Serum data suggests that C-tau levels are dependent both on a compromised blood-brain barrier as well as release of TBI biomarkers from the brain, which has implications for the study of human serum TBI biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号