首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
Structural changes were examined in liver tissue from 28 patients with chronic bile duct obstruction in whom portal hypertension was diagnosed. Extrahepatic portal occlusion was found in three patients and cirrhosis of the liver in two. In the remaining 23 patients diffuse hepatocyte hyperplasia and portal fibrosis were observed, but a normal spatial relation between portal tracts and hepatic venous radicles was, for the most part, retained. Liver tissue was also examined from a group of 76 patients with chronic bile duct obstruction in whom there was no indication of portal hypertension but some evidence of hepatocyte hyperplasia and fibrosis. Both these features were much less extensive than the changes seen in the group of patients ostensibly suffering from portal hypertension. The findings suggest that the combination of portal hypertension and chronic bile duct obstruction may not imply the unremitting, progressive, and irreversible changes that accompany cirrhosis because the normal vascular relations are retained. In the light of increasing experimental and clinical evidence of the resorption of collagen and the remodelling of hepatic plates it seems that the structural abnormalities in duct obstruction may substantially regress.  相似文献   

3.
Liver disease causes significant morbidity and mortality from multilobular cirrhosis in patients with cystic fibrosis. Abnormal bile transport and biliary fibrosis implicate abnormal biliary physiology in the pathogenesis of cystic fibrosis-associated liver disease (CFLD), yet the mediators linking biliary events to fibrosis remain unknown. Activated hepatic stellate cells (HSCs) are the pre-eminent mediators of fibrosis in a range of hepatic disorders. The dominant stimulus for matrix production by HSCs is the cytokine transforming growth factor (TGF)-beta(1). In CFLD, the role of HSCs and the source of TGF-beta(1) have not been evaluated. Liver biopsy tissue obtained from 38 children with CFLD was analyzed. Activated HSCs, identified by co-localization of procollagen alpha(1)(I) mRNA and alpha-smooth muscle actin, were demonstrated as the cellular source of excess collagen production in the fibrosis surrounding the bile ducts and the advancing edge of scar tissue. TGF-beta protein and TGF-beta(1) mRNA expression were shown to be predominantly expressed by bile duct epithelial cells. TGF-beta(1) expression was significantly correlated with both hepatic fibrosis and the percentage of portal tracts showing histological abnormalities associated with CFLD. This study demonstrates a definitive role for HSCs in fibrogenesis associated with CFLD and establishes a potential mechanism for the induction of HSC collagen gene expression through the production of TGF-beta(1) by bile duct epithelial cells.  相似文献   

4.
MicroRNAs (miRNAs) regulate cell fate selection and cellular differentiation. miRNAs of the miR23b polycistron (miR-23b, miR-27b, and miR-24) target components of the TGF-β signaling pathway and affect murine bile ductular and hepatocyte cell fate selection in vitro. Here we show that miR-23b polycistron miRNAs directly target murine Smad4, which is required for TGF-β signaling. Injection of antagomirs against these miRNAs directly into E16.5 murine fetuses caused increased cytokeratin expression in sinusoids and primitive ductular elements throughout the parenchyma of newborn mice. Similar antagomir injection in newborn mice increased bile ductular differentiation in the liver periphery and reduced hepatocyte proliferation. Antagomir injection in newborn Alb/TGF-β1 transgenic mice that develop fibrosis inhibited the development of fibrosis, and injection of older mice caused the resolution of existing fibrosis. Furthermore, murine stellate cell activation, including ColA1 and ACTA2 expression, is regulated by miR-23b cluster miRNAs. In summary, knockdown of miR-23b cluster miRNAs in fetal and newborn liver promotes bile duct differentiation and can block or revert TGF-β-induced liver fibrosis that is dependent on stellate cell activation. These data may find practical application in the highly needed development of therapies for the treatment of fibrosis.Key words: Alb/TGF-β1, MicroRNA, miR-23, miR-27, miR-24, Liver, Liver fibrosis, Cell fate, Differentiation, Hepatic progenitors  相似文献   

5.
This intravital fluorescence microscopy (IVFM) study validates cirrhotic mice models and describes the different intrahepatic alterations and the role of angiogenesis in the liver during genesis of cirrhosis. Cirrhosis was induced by subcutaneous injection of carbon tetrachloride (CCl4) and by common bile duct ligation (CBDL) in mice. Diameters of sinusoids, portal venules (PV), central venules (CV) and shunts were measured at different time points by IVFM. Thereafter, liver samples were taken for sirius red, CD31, Ki67, vascular endothelial growth factor (VEGF) and α‐smooth muscle actin (α‐SMA) evaluation by immunohistochemistry (IHC). In parallel with fibrogenesis, hepatic microcirculation was markedly disturbed in CCl4 and CBDL mice with a significant decrease in sinusoidal diameter compared to control mice. In CCl4 mice, CV were enlarged, with marked sinusoidal‐free spaces around CV. In contrast, PV were enlarged in CBDL mice and bile lakes were observed. In both mice models, intrahepatic shunts developed gradually after induction. During genesis of cirrhosis using CD31 IHC we observed a progressive increase in the number of blood vessels within the fibrotic septa area and a progressively increase in staining by Ki67, VEGF and α‐SMA of endothelial cells, hepatocytes and hepatic stellate cells respectively. In vivo study of the hepatic microcirculation demonstrated a totally disturbed intrahepatic architecture, with narrowing of sinusoids in both cirrhotic mice models. The diameters of CV and PV increased and large shunts, bypassing the sinusoids, were seen after both CCl4 and CBDL induction. Thus present study shows that there is angiogenesis in the liver during cirrhogenesis, and this is probably due partially to an increased production of VEGF.  相似文献   

6.
7.
Intrahepatic biliary tree with either florid duct lesions or a moderate to severe degree of the duct loss in four livers with chronic hepatic diseases other than primary biliary cirrhosis were studied with histometric and serial section observations. Florid duct lesions, distributed segmentally in the liver, were found in one case with incomplete septal cirrhosis and one case with idiopathic portal hypertension. The florid duct lesions including marked plasma cell infiltration and occasional periductal granulomas, were not associated with any bile duct loss in the two cases. The duct lesions were reversible in one case during a long clinical course. On the other hand, a moderate to severe bile duct loss with biliary epithelial degeneration and necrosis was associated with no or little periductal inflammatory cell infiltration in one other case with chronic intrahepatic cholestasis, probably drug-induced, and in one case with idiopathic portal hypertension. Although florid duct lesions and bile duct loss were important diagnostic features of primary biliary cirrhosis, one of them was observed to develop independently in severely diseased livers, not consistent with a diagnosis of primary biliary cirrhosis, sclerosing cholangitis or intrahepatic bile duct paucity syndrome.  相似文献   

8.
Portal tract fibrogenesis in the liver   总被引:19,自引:0,他引:19  
The portal area is the 'main entrance' and one of the two main exits of the liver lobule. Through the main entrance portal and arterial blood reach the liver sinusoids. Through the exit the bile flows towards the duodenum. The three main structures, portal vein and artery with their own wall (and vascular smooth muscle cells) and bile duct with its basal membrane, are surrounded by loose myofibroblasts and by the first layer of hepatocytes and non-parenchymal cells. Chronic diseases of the liver can lead to development of liver cirrhosis, characterized by formation of fibrotic septa which can be portal-portal in the case of the chronic biliary damage or portal-central in the case of the chronic viral hepatitis. Central-central septa can also be observed under other pathological conditions. When damaging noxae are introduced to the liver, inflammatory cells are first recruited to the portal field, the first layer of hepatocytes may be destroyed (enlargement of the portal field) and portal (myo)fibroblasts become activated. A similar reaction may take place when the target of inflammation is the bile duct with consecutive reduction of the bile flow, activation of the portal (myo)fibroblasts, proliferation of bile ducts and destruction of the hepatocytes around the portal field. Increased matrix deposition may be the consequence. During the past years several publications dealt with the pathomechanisms of portal fibrogenesis as well as with its resolution. One of the most intriguing observations was that it is not hepatic stellate cells of the hepatic sinusoid, but portal (myo)fibroblasts which rapidly acquire the phenotype of 'activated' (myo)fibroblasts in the early stages of cholestatic fibrosis. These may also become the main mesenchymal cells of the porto-portal or porto-central fibrotic septa. This article reviews the similarities as well as differences between the mesenchymal cells of the portal tract and of the fibrotic septa vs 'activated' stellate cells of the hepatic sinusoids, and discusses the debate over their relative contributions to liver fibrogenesis.  相似文献   

9.
Tissue from 15 livers with primary sclerosing cholangitis, obtained at transplantation, was examined histologically with respect to: small and medium sized bile duct lesions; large bile duct lesions; fibrosis/cirrhosis; and parenchymal changes. Lesions affecting small and medium-sized bile ducts were quantified by determining the percentage of 20 portal tracts involved. The two characteristic bile duct lesions of primary sclerosing cholangitis, periductal fibrosis and fibro-obliterative scars, were largely confined to medium-sized portal areas. Although present in each case, the number of such lesions varied considerably. Loss of bile ducts was the most conspicuous feature in small portal tracts, where the diagnostic duct lesions of primary sclerosing cholangitis were rarely observed. Inflammation, ulceration and cholangiectases of large intrahepatic ducts were common, and appear to be useful additional diagnostic features.  相似文献   

10.
The origin of myofibroblasts and the factors promoting their differentiation during liver fibrogenesis remain uncertain. During biliary-type fibrogenesis, the proliferation and chemoattraction of hepatic stellate cells (HSC) toward bile ducts is mediated by platelet-derived growth factor (PDGF), while myofibroblastic conversion of peribiliary cells distinct from HSC also occurs. We herein examined the phenotype of these peribiliary myofibroblasts as compared with myofibroblastic HSC and tested whether their differentiation was affected by PDGF. Biliary-type liver fibrogenesis was induced by common bile duct ligation in rats. After 48 hours, periductular fibrosis in portal tracts colocalized with smooth muscle alpha-actin-immunoreactive myofibroblasts, the majority of which were desmin negative. Simultaneously, in sinusoids, desmin immunoreactivity was induced in a large number of HSC, which were smooth muscle alpha-actin negative. Cultures of peribiliary myofibroblasts were expanded from isolated bile duct segments and compared with myofibroblastic HSC. Peribiliary myofibroblasts outgrowing from bile duct segments expressed smooth muscle alpha-actin, alpha1 (I) collagen mRNA, and PDGF receptor-beta subunit. Desmin immunoreactivity gradually decreased in cultured peribiliary myofibroblasts, contrasting with constant labeling of all myofibroblastic HSC. In addition, IL-6 expression in peribiliary myofibroblasts was up to 100-fold lower than in myofibroblastic HSC, whereas the expression of the complement-activating protease P100 in both cell types showed little difference and that of the extracellular matrix component fibulin 2 was similar. The expression of smooth muscle alpha-actin protein in cultured peribiliary myofibroblasts was stimulated by PDGF-BB and inhibited by STI571, a PDGF receptor tyrosine kinase inhibitor, whereas in bile duct-ligated rats, the administration of STI571 caused a significant decrease in peribiliary smooth muscle alpha-actin immunoreactivity, and to a lesser extent, a decrease in peribiliary fibrosis. These results indicate that peribiliary cells distinct from HSC undergo a PDGF-mediated conversion into myofibroblasts expressing IL-6 at lower levels than myofibroblastic HSC and contribute to the initial formation of biliary-type liver fibrosis.  相似文献   

11.
In many different liver diseases, such as cirrhosis, degradation of the microcirculation, including obliteration of small portal or hepatic veins contributes to disease-associated portal hypertension. The present study demonstrates the importance of angiogenesis in the establishment of arteriovenous shunts and the accompanying changes to the venous bed. One aspect of angiogenesis involves the branching of new vessels from pre-existing ones, and the molecular mechanisms controlling it are complex and involve a coordinated effort between specific endothelial growth factors and their receptors, including the angiopoietins. We modulated the hepatic vasculature in mice by conditionally expressing angiopoietin-1 in hepatocytes. In mice exposed to angiopoietin-1 during development, arterial sprouting, enlarged arteries, marked loss of portal vein radicles, hepatic vein dilation, and suggestion of arteriovenous shunting were observed. Most importantly, these phenotypic changes were completely reversed within 14 days of turning off transgene expression. Expression of excess angiopoietin-1 beginning in adulthood did not fully recapitulate the phenotype, but did result in enlarged vessels. Our findings suggest that controlling excessive angiogenesis during liver disease may promote the restoration of the portal vein circuit and aid in the resolution of disease-associated portal hypertension.  相似文献   

12.
In bile duct-ligated (BDL) rodents, as in humans with chronic cholangiopathies, biliary obstruction triggers proliferation of bile ductular cells that are surrounded by fibrosis produced by adjacent myofibroblastic cells in the hepatic mesenchyme. The proximity of the myofibroblasts and cholangiocytes suggests that mesenchymal-epithelial crosstalk promotes the fibroproliferative response to cholestatic liver injury. Studying BDL mice, we found that bile duct obstruction induces activity of the Hedgehog (Hh) pathway, a system that regulates the viability and differentiation of various progenitors during embryogenesis. After BDL, many bile ductular cells and fibroblastic-appearing cells in the portal stroma express Hh ligands, receptor and/or target genes. Transwell cocultures of an immature cholangiocyte line that expresses the Hh receptor, Patched (Ptc), with liver myofibroblastic cells demonstrated that both cell types produced Hh ligands that enhanced each other's viability and proliferation. Further support for the concept that Hh signaling modulates the response to BDL was generated by studying PtcLacZ mice, which have an impaired ability to constrain Hh signaling due to a heterozygous deficiency of Ptc. After BDL, PtcLacZ mice upregulated fibrosis gene expression earlier than wild-type controls and manifested an unusually intense ductular reaction, more expanded fibrotic portal areas, and a greater number of lobular necrotic foci. Our findings reveal that adult livers resurrect developmental signaling systems, such as the Hh pathway, to guide remodeling of the biliary epithelia and stroma after cholestatic injury.  相似文献   

13.

OBJECTIVE:

During the neonatal and infancy periods, some chronic liver diseases may lead to progressive hepatic fibrosis, which is a condition that can ultimately result in the loss of organ function and severe portal hypertension necessitating hepatic transplantation. In a previous report, pharmacological interventions were demonstrated to modulate hepatic fibrosis induced by bile duct ligation in young rats. The administration of pentoxifylline or prednisolone, or the combination of both, resulted in reduced fibrogenesis in portal spaces. The objectives of the present study were to evaluate the expression of transforming growth factor β and vascular endothelial growth factor after bile duct ligation in young rats and to assess the effect of those same drugs on cytokine expression.

METHODS:

In this experimental study, 80 young rats (21 or 22 days old) were submitted either to laparotomy and common bile duct ligation or to sham surgery. The animals were allocated into four groups according to surgical procedure, and the following treatments were administered: (1) common bile duct ligation + distilled water, (2) sham surgery + distilled water, (3) common bile duct ligation + pentoxifylline, or (4) common bile duct ligation + prednisolone. After 30 days, a hepatic fragment was collected from each animal for immunohistochemical analysis using monoclonal antibodies against transforming growth factor β and vascular endothelial growth factor. Digital morphometric and statistical analyses were performed.

RESULTS:

The administration of pentoxifylline reduced the transforming growth factor β-marked area and the amount of transforming growth factor β expressed in liver tissue. This effect was not observed after the administration of prednisolone. There was a significant reduction in vascular endothelial growth factor expression after the administration of either drug compared with the non-treatment group.

CONCLUSIONS:

The administration of pentoxifylline to cholestatic young rats resulted in the diminished expression of transforming growth factor β and vascular endothelial growth factor in liver tissue. The administration of steroids resulted in the diminished expression of vascular endothelial growth factor only. These pathways may be involved in hepatic fibrogenesis in young rats submitted to bile duct ligation and exposed to pentoxifylline or prednisolone.  相似文献   

14.
Excessive extracellular matrix production by fibroblasts in response to tissue injury contributes to fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF). Epithelial-mesenchymal transition, involving transition of alveolar epithelial cells (AECs) to pulmonary fibroblasts, appears to be an important contributory process to lung fibrosis. Although aberrant expression of microRNAs (miRs) is involved in a variety of pathophysiologic processes, the role of miRs in fibrotic lung diseases is less well understood. In the present study, we found that miR-200a, miR-200b, and miR-200c are significantly down-regulated in the lungs of mice with experimental lung fibrosis. Levels of miR-200a and miR-200c were reduced in the lungs of patients with IPF. miR-200 had greater expression in AECs than in lung fibroblasts, and AECs from mice with experimental pulmonary fibrosis had diminished expression of miR-200. We found that the miR-200 family members inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition of AECs. miR-200 family members can reverse the fibrogenic activity of pulmonary fibroblasts from mice with experimental pulmonary fibrosis and from patients with IPF. Indeed, the introduction of miR-200c diminishes experimental pulmonary fibrosis in mice. Thus, the miR-200 family members participate importantly in fibrotic lung diseases and suggest that restoring miR-200 expression in the lungs may represent a novel therapeutic approach in treating pulmonary fibrotic diseases.  相似文献   

15.
The water channels, aquaporins (AQPs) are key mediators of transcellular fluid transport. However, their expression and role in cardiac tissue is poorly characterized. Particularly, AQP1 was suggested to transport other molecules (nitric oxide (NO), hydrogen peroxide (H2O2)) with potential major bearing on cardiovascular physiology. We therefore examined the expression of all AQPs and the phenotype of AQP1 knockout mice (vs. wild-type littermates) under implanted telemetry in vivo, as well as endothelium-dependent relaxation in isolated aortas and resistance vessels ex vivo. Four aquaporins were expressed in wild-type heart tissue (AQP1, AQP7, AQP4, AQP8) and two aquaporins in aortic and mesenteric vessels (AQP1–AQP7). AQP1 was expressed in endothelial as well as cardiac and vascular muscle cells and co-segregated with caveolin-1. AQP1 knockout (KO) mice exhibited a prominent microcardia and decreased myocyte transverse dimensions despite no change in capillary density. Both male and female AQP1 KO mice had lower mean BP, which was not attributable to altered water balance or autonomic dysfunction (from baroreflex and frequency analysis of BP and HR variability). NO-dependent BP variability was unperturbed. Accordingly, endothelium-derived hyperpolarizing factor (EDH(F)) or NO-dependent relaxation were unchanged in aorta or resistance vessels ex vivo. However, AQP1 KO mesenteric vessels exhibited an increase in endothelial prostanoids-dependent relaxation, together with increased expression of COX-2. This enhanced relaxation was abrogated by COX inhibition. We conclude that AQP1 does not regulate the endothelial EDH or NO-dependent relaxation ex vivo or in vivo, but its deletion decreases baseline BP together with increased prostanoids-dependent relaxation in resistance vessels. Strikingly, this was associated with microcardia, unrelated to perturbed angiogenesis. This may raise interest for new inhibitors of AQP1 and their use to treat hypertrophic cardiac remodeling.  相似文献   

16.
17.
Prohibiting angiogenesis is an important therapeutic approach for fighting cancer and other angiogenic related diseases. Research focused on proteins that regulate abnormal angiogenesis has attracted intense interest in both academia and industry. Such proteins are able to target several angiogenic factors concurrently, thereby increasing the possibility of therapeutic success. Aquaporin-1 (AQP1) is a water channel membrane protein that promotes tumour angiogenesis by allowing faster endothelial cell migration. In this study we test the hypothesis that AQP1 inhibition impairs tumour growth in a mouse model of melanoma. After validating the inhibitor efficacy of two different AQP1 specific siRNAs in cell cultures, RNA interference experiments were performed by intratumoural injections of AQP1 siRNAs in mice. After 6 days of treatment, AQP1 siRNA treated tumours showed a 75 % reduction in volume when compared to controls. AQP1 protein level, in AQP1 knockdown tumours, was around 75 % that of the controls and was associated with a significant 40 % reduced expression of the endothelial marker, Factor VIII. Immunofluorescence analysis of AQP1 siRNA treated tumours showed a significantly lower microvessel density. Time course experiments demontrated that repeated injections of AQP1 siRNA over time are effective in sustaining the inhibition of tumour growth. Finally, we have confirmed the role of AQP1 in sustaining an active endothelium during angiogenesis and we have shown that AQP1 reduction causes an increase in VEGF levels. In conclusion, this study validates AQP1 as a pro-angiogenic protein, relevant for the therapy of cancer and other angiogenic-related diseases such as psoriasis, endometriosis, arthritis and atherosclerosis.  相似文献   

18.
Cholangitis requires bile duct obstruction and infection. Patients with cholangitis are often more affected than those with infections that reach the liver through the portal vein. We will attempt to study the influences of (i) route of entry and (ii) presence of bile duct obstruction on hepatic infection. C57BL/6 mice received injections of Escherichia coli or lipopolysaccharide into the obstructed bile duct or portal vein and were monitored for survival. Livers were assayed for bacteria, and cytokine mRNA was measured. In order to examine the effect of biliary obstruction on hepatic infection, animals were subjected to bile duct ligation 1 day prior to portal vein injection and were monitored for survival. The 50% lethal dose (LD(50)) for E. coli injected into the bile duct was 50 CFU/animal; the LD(50) for E. coli injected into the portal vein was 5 x 10(7) CFU/animal. Initial hepatic delivery of bacteria was equivalent 1 h after injection into the bile duct or portal vein. However, by 24 h, a significantly greater amount of bacteria was recovered from the livers of the bile duct-injected group. Interleukin 10 (IL-10) and IL-1RA mRNA was expressed at greater levels in the bile duct-injected group. Prior bile duct ligation followed by portal vein injection resulted in a higher incidence of death than when sham operation was performed prior to portal vein injection. Our data suggest that the increased mortality from cholangitis, compared with that from other hepatic infections, is related to the different route of delivery of pathogen and the maladaptive response (possibly involving IL-10 and IL-1RA) to biliary obstruction itself.  相似文献   

19.
Angiogenesis progresses together with fibrogenesis during chronic liver injury. Hypoxia-inducible factor-1alpha (HIF-1alpha), a master regulator of homeostasis, plays a pivotal role in hypoxia-induced angiogenesis through its regulation of vascular endothelial growth factor (VEGF). The association between hypoxia, angiogenesis and VEGF expression has been demonstrated in experimental cirrhosis. However, expression of HIF-1alpha has yet to be reported. The aim of this study was to investigate the significance of HIF-1alpha expression during experimental liver fibrosis and the relationships between HIF-1alpha expression, VEGF expression and angiogenesis. Cirrhosis was induced in male Wistar rats by intraperitoneal administration of diethyl nitrosamine (DEN) (100 mg/kg, once a week). The serial sections from liver tissues were stained with anti-HIF-1alpha, anti-VEGF and anti-CD34 antibodies before being measured by light microscopy. Our results showed that HIF-1alpha expression gradually increases according to the severity of fibrosis (p<0.01). Moreover, its expression was found to be correlated with angiogenesis (r=0.916) and VEGF expression (r=0.969). The present study demonstrates that HIF-1alpha might have a role in the development of angiogenesis via regulation of VEGF during experimental liver fibrogenesis and suggests that this factor could be a potential target in the manipulation of angiogenesis in chronic inflammatory diseases of the liver.  相似文献   

20.
Although aquaporins (AQPs) in normal hepatobiliary system have been studied, little is known about AQP localization and changes in the hepatic microvascular system including sinusoids in cholestatic liver. The present study aimed to clarify the localization of AQP-1 in the microvessels in normal human liver and in primary biliary cirrhosis (PBC). Human normal liver (control) and PBC liver specimens were obtained. Immunohistochemistry, Western blotting, in situ hybridization (ISH) and electron microscopic examination for AQP-1 were conducted. In control liver and stages I–II PBC liver, AQP-1 immunoreactivity was mainly localized in portal venules, hepatic arterioles and bile ducts in the portal tract, but was hardly detected in the sinusoids. However, AQP-1 expression was enhanced in the proliferated bile ductules in PBC. In stages III–IV PBC liver tissues, AQP-1 was aberrantly expressed in proliferated arterial capillaries opening into the sinusoids at the peripheral edge of regenerating hepatic nodules and in the fibrotic septa. Overexpression of AQP-1 at protein and mRNA levels was demonstrated by Western blot and ISH, respectively. Angiogenetic and fibrotic responses are probably induced by AQP-1, leading to enhanced pouring of arterial blood into the sinusoids; thus, contributing to progression of portal hypertension in PBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号