首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
BACKGROUND: Loss of knee extension has been reported by many authors to be the most common complication following anterior cruciate ligament reconstruction. The objective of this in vitro study was to determine the effect, on loss of knee extension, of the knee flexion angle and the tension of the bone-patellar tendon-bone graft during graft fixation in a reconstruction of an anterior cruciate ligament. METHODS: The anterior cruciate ligament was reconstructed with use of tibial and femoral bone tunnels placed in the footprint of the native anterior cruciate ligament in ten cadavers. The graft was secured with an initial tension of either 44 N (10 lb) or 89 N (20 lb) applied with the knee at 0 degrees or 30 degrees of flexion. The knee flexion angle was measured with use of digital images following graft fixation. RESULTS: Tensioning of the graft at 30 degrees of knee flexion was associated with loss of knee extension in this cadaver model. Graft tension did not affect knee extension under the conditions tested. CONCLUSIONS: The results suggest that one of the common causes of the loss of full knee extension may be diminished if the graft is secured in full knee extension when the tibial and femoral tunnels are placed in the footprint of the native anterior cruciate ligament. More importantly, even when the femoral and tibial tunnels are placed in the femoral and tibial footprints of the native anterior cruciate ligament, fixing a graft in knee flexion can result in the loss of knee extension.  相似文献   

2.
This study evaluated strain in the normal anterior cruciate ligament (ACL) and compared it to four different double-strand hamstring tendon reconstructive techniques. Seventeen fresh-frozen knees from 11 cadavers were tested. The strain in the anteromedial and posterolateral bands of the native ACL and their equivalents in four autograft techniques were measured using differential variable reluctance transducers. The anteromedial band of the intact ACL shortened from 0 degree -30 degrees of flexion, then lengthened to 120 degrees; the posterolateral band of the intact ACL shortened from 0 degree - 120 degrees of flexion. Following ACL excision, these knees underwent reconstruction with double-strand hamstring tendons with either single tibial and femoral tunnels, single tibial and dual femoral tunnels, dual tibial and single femoral tunnels, or dual tibial and dual femoral tunnels. With the exception of the dual-band, dual-tunnel technique, all of the procedures placed greater strain on the reconstructive tissues than was observed on the native ACL, after approximately 30 degrees of flexion. These results indicate that dual-band hamstring tendon reconstructions placed with single tibial and femoral tunnels do not address the complexity of the entire ACL. Rather, these procedures appear to only duplicate the effect of the anteromedial band, while perhaps overconstraining the joint as a result of its inability to reproduce the function of the posterolateral band. During rehabilitation following ACL reconstruction, therefore, only from 0 degree - 30 degrees of the graft tissues are not significantly strained. Dual tibial and femoral tunnel techniques should be evaluated further to more closely recreate knee kinematics following ACL reconstruction.  相似文献   

3.
An isometer, a highly compliant spring-scale device for measuring suture displacement, has been used intraoperatively by surgeons to select the optimal placement of the femoral tunnel for an anterior cruciate ligament graft. The isometer measures the displacement of a suture centered in a tibial tunnel and attached to an intraarticular location on the femur before the femoral tunnel is drilled. Because the placement of the femoral tunnel strongly impacts the tensile behavior of an anterior cruciate ligament graft and because surgeons have used the amount of suture displacement to guide the placement of the femoral tunnel, the objective of this study was to determine the ability of an isometer to predict graft tension. In 14 patient undergoing reconstructive surgery of the anterior cruciate ligament, an isometer was used to measure suture displacement during passive knee motion for a provisional femoral tunnel location. An electrogoniometer recorded the flexion angle of the knee. The femoral tunnel was drilled. A double-looped semitendinosus and gracilis autograft was inserted around a post in the femoral tunnel, and the tension in the four limbs of the graft exiting the tibial tunnel was measured during passive knee motion. Graft-tension versus knee-flexion-angle curves revealed that each knee exhibited one of two distinct curve shapes: L-shaped, characterized by the maximum tension occurring at full extension and a nearly flat profile from 35 to 90° of flexion, or U-shaped, with elevated tensions at 80–90° of flexion (p < 0.001) reaching at least half of the tension in full extension. Because the shapes of the suture-displacement versus flexion-angle curves were more consistently L-shaped, the intraoperative measurement of suture displacement was not a useful predictor of either the increase in tension in the graft with flexion or the maximum tension in the graft.  相似文献   

4.
BACKGROUND: The tibial inlay technique of reconstruction of the posterior cruciate ligament offers potential advantages over the conventional transtibial tunnel technique, particularly with regard to the graft force levels that develop over a functional range of knee flexion. Abnormally high graft forces generated during rehabilitation activities could lead to stretch-out of the graft during the critical early healing period. The purpose of this study was to compare graft forces between these two techniques and with forces in the native posterior cruciate ligament. METHODS: A load cell was installed at the femoral origin of the posterior cruciate ligament in twelve fresh-frozen cadaveric knees to measure resultant forces in the ligament during a series of knee loading tests. The posterior cruciate ligament was then excised, and the femoral ends of 10-mm-wide bone-patellar tendon-bone grafts were attached to the load cell to measure resultant forces in the grafts. For the tunnel reconstruction, the distal bone block of the graft was placed into a tibial tunnel and thin stainless-steel cables interwoven into the bone block were gripped in a split clamp attached to the anterior tibial cortex. With the inlay technique, the distal bone block was fixed in a tibial trough with use of a cortical bone screw with a washer and nut. The proximal ends of all grafts were pretensioned to a level of force that restored intact knee laxity at 90 degrees of flexion, and loading tests were repeated. RESULTS: There were no significant differences in mean graft forces between the two techniques under tibial loads consisting of 100 N of posterior tibial force, 5 N-m of varus and valgus moment, and 5 N-m of internal and external tibial torque. Mean graft forces with the tibial tunnel technique were approximately 10 to 20 N higher than those with the inlay technique with passive knee flexion beyond 95 degrees. Mean graft forces with both reconstruction techniques were significantly higher than forces in the native posterior cruciate ligament with the knee flexed beyond approximately 90 degrees for all but one mode of loading. CONCLUSIONS: In this cadaveric testing model, neither technique for reconstruction of the posterior cruciate ligament had a substantial advantage over the other with respect to generation of graft forces.  相似文献   

5.
There is little evidence examining the relationship between anatomical landmarks, radiological placement of the tunnels and long-term clinical outcomes following anterior cruciate ligament (ACL) reconstruction. The aim of this study was to investigate the reproducibility of intra-operative landmarks for placement of the tunnels in single-bundle reconstruction of the ACL using four-strand hamstring tendon autografts. Isolated reconstruction of the ACL was performed in 200 patients, who were followed prospectively for seven years with use of the International Knee Documentation Committee forms and radiographs. Taking 0% as the anterior and 100% as the posterior extent, the femoral tunnel was a mean of 86% (sd 5) along Blumensaat's line and the tibial tunnel was 48% (sd 5) along the tibial plateau. Taking 0% as the medial and 100% as the lateral extent, the tibial tunnel was 46% (sd 3) across the tibial plateau and the mean inclination of the graft in the coronal plane was 19 degrees (sd 5.5). The use of intra-operative landmarks resulted in reproducible placement of the tunnels and an excellent clinical outcome seven years after operation. Vertical inclination was associated with increased rotational instability and degenerative radiological changes, while rupture of the graft was associated with posterior placement of the tibial tunnel. If the osseous tunnels are correctly placed, single-bundle reconstruction of the ACL adequately controls both anteroposterior and rotational instability.  相似文献   

6.
7.
Isometric positioning of the posterior cruciate ligament (PCL) graft is important for successful reconstruction of the PCL-deficient knee. This study documents the relationship between graft placement and changes in intra-articular graft length during passive range of motion of the knee. In eight cadaveric knees the PCL was identified and cut. The specimens were mounted in a stabilizing rig. PCL reconstruction was performed using a 9-mm-thick synthetic cord that was passed through tunnels 10 mm in diameter. Three different femoral graft placement sites were evaluated: (1) in four specimens the tunnel was located around the femoral isometric point, (2) in two specimens the tunnel was positioned over the guide wire 5 mm anterior to the femoral isometric point, (3) in two specimens the tunnel was positioned over the guide wire 5 mm posterior to the isometric femoral point. In all knees only one tibial tunnel was created around the isometric tibial point. The location of the isometric points was described in part I of the study. The proximal end of the cord was fixed to the lateral aspect of the femur. Distally the cord was attached to a measuring unit. The knees were flexed from 0 degree to 110 degrees, and the changes in the graft distance between the femoral attachment sites were measured in 10 degrees steps. Over the entire range of motion measured the femoral tunnels positioned around the isometric point produced femorotibial distance changes of within 2 mm. The anteriorly placed tunnels produced considerable increases in femorotibial distance with knee flexion, e.g. about 8 mm at 110 degrees of flexion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
《Arthroscopy》1998,14(1):9-14
A successful single-incision endoscopic anterior cruciate ligament reconstruction using bone-patellar tendon-bone autograft requires attention to many technical details. The emphasis of placing the femoral bone plug flush with the opening of the femoral tunnel results in distal shift of the graft. Longer tibial tunnels are required to prevent excessive graft extrusion. The purpose of this study is to compare four direct and indirect measurement methods of tibial tunnel preparation to determine which method can be used to create consistently reproducible tibial tunnels that prevent excessive extrusion or recession of the graft within the tunnel. Tunnels placed at the empiric angles of 40 degrees, 50 degrees, and 60 degrees to the tibial plateau resulted in the incidence of acceptable tibial tunnel lengths of 44%, 83%, and 39%, respectively. Tunnels placed at an angle determined by the formula "N + 7" where 7 degrees is added to the patellar tendon length (N) resulted in acceptable tunnels 89% of the time. Direct measurement methods using the formulas "graft - 50 mm" and "N + 2 mm" resulted in acceptable tibial tunnels of 44% and 100%, respectively. We recommend using the "N + 7" in conjunction with the "N + 2 mm" formula to obtain the advantages of both indirect and direct measurement methods.Arthroscopy 1998 Jan-Feb;14(1):9-14  相似文献   

9.
Contact between an anterior cruciate ligament graft and the intercondylar roof has been termed roof impingement. Grafts with impingement sustain permanent damage, and if the injury is extensive enough, then the graft may fail, causing recurrent instability. This study evaluated two mechanical factors that could be responsible for the graft injury associated with roof impingement: an increase in graft tension or elevated pressures between the graft and the roof, or both. An anterior cruciate ligament reconstruction was performed using an Achilles tendon graft in five fresh-frozen cadaveric knees. Using a six-degree-of-freedom load application system, the anterior displacement of the knee with the native anterior cruciate ligament was restored in the reconstructed knee at a flexion angle of 30° and with an anterior force of 200 N applied. Pressure between the graft and intercondylar roof, graft tension, and flexion angle were measured during passive knee extension for three tibial tunnel placements (anterior, center, and posterior). Intercondylar roof impingement increased the contact pressure between the graft and the roof but had no significant effect on graft tension. Therefore, during passive knee extension, the contact pressure between the anterior cruciate ligament graft and the intercondylar roof is a more likely cause of graft damage than increased graft tension.  相似文献   

10.
We propose a method for repairing the anterior cruciate ligament which takes advantage of the multifascular nature of the ligament to achieve better physiological anteroposterior and rotational stability compared with conventional methods. Arthroscopic reconstruction of the anteromedial and posterolateral bundles of the ligament closely reproduces normal anatomy. We have used this technique in 92 patients with anterior cruciate ligament laxity and present here the mid-term results. The hamstring tendons (gracilis and semitendinosus) are harvested carefully to obtain good quality grafts. Arthroscopic preparation of the notch allows careful cleaning of the axial aspect of the lateral condyle; it is crucial to well visualize the region over the top and delimit the 9 h-12 h zone for the right knee or the 12-15 h zone for the left knee. The femoral end of the anteromedial tunnel lies close to the floor of the intercondylar notch, 5 to 10 mm in front of the posterior border of the lateral condyle, at 13 h for the left knee and 11 h for the right knee. The femoral end of the posterolateral tunnel lies more anteriorly, at 14 h for the left knee and 10 h for the right knee. The tibial end of the posterolateral tunnel faces the anterolateral spike of the tibia. The tibial end of the anteromedial tunnel lies in front of the apex of the two tibial spikes half way between the anteromedial spike and the anterolateral spike, 8 mm in front of the protrusion of the posteriolateral pin. The posterolateral graft is run through the femoral and tibial tunnels first. A cortical fixation is used for the femoral end. The femoral end of the anteromedial graft is then fixed in the same way. The tibial fixation begins with the posterolateral graft with the knee close to full extension. The anteromedial graft is fixed with the knee in 90 degrees flexion. Thirty patients were reviewed at least six months after the procedure. Mean age was 28.2 years. Mean overall IKDC score was 86% (36% A and 50% B). Gain in laxity was significant: 6.53 preoperatively and 2.1 postoperatively. Most of the patients (86.6%) were able to resume their former occupation 2 months after the procedure. The different components of the anterior cruciate ligament and their respective functions have been the object of several studies. The anteromedial bundle maintains joint stability during extension and anteroposterior stability during flexion. The posterolateral bundle contributes to the action of the anteromedial bundle with an additional effect due to its position: rotational stability during flexion. In light of the multifascicular nature of the anterior cruciate ligament and the residual rotational laxity observed after conventional repair, our proposed method provides a more anatomic reconstruction which achieves better correction of anteroposterior and rotational stability. This technique should be validated with comparative trials against currently employed methods.  相似文献   

11.

Purpose

Our aim was to evaluate tunnel-graft angle, tunnel length and position and change in graft length between transtibial (30 patients) and anteromedial (30 patients) portal techniques using 3D knee models after anterior cruciate ligament (ACL) reconstruction.

Methods

The 3D angle between femoral or tibial tunnels and graft at 0° and 90° flexion were compared between groups. We measured tunnel lengths and positions and evaluated the change in graft length from 0° to 90° flexion.

Results

The 3D angle at the femoral tunnel with graft showed a significant difference between groups at 0° flexion (p?=?0.01) but not at 90° flexion (p?=?0.12). The 3D angle of the tibial tunnel showed no significant differences between groups. Femoral tunnel length in the transtibial group was significantly longer than in the transportal group (40.7 vs 34.7 mm,), but tibial tunnel length was not. The relative height of the lateral femoral condyle was significantly lower in the transportal than the transtibial group (24.1 % vs 34.4 %). No significant differences were found between groups in terms of tibial tunnel position. The change in graft length also showed no significant difference between groups.

Conclusion

Even though the transportal technique in ACL reconstruction can place the femoral tunnel in a better anatomical position than the transtibial technique, it has risks of a short femoral tunnel and acute angle at the femoral tunnel. Moreover, there was also no difference in the change of the graft length between groups.  相似文献   

12.
This biomechanical cadaver study evaluated the effect of tibial tunnel dilation on the pullout strength of semitendinosus and gracilis tendon grafts in anterior cruciate ligament reconstruction. Fourteen grafts were harvested, and the anterior cruciate ligament was reconstructed in the tibial and femoral tunnels. All femoral tunnels were reamed to the diameter of the graft. In seven knees, the tibial tunnels were reamed to the diameter of the graft. In the remaining seven knees, the tibial tunnels were reamed 2 mm smaller than the diameter of the graft and then serially dilated to the graft size using cannulated smooth dilators. Mechanical testing to graft failure was conducted. All grafts failed by graft pullout from the tibial tunnel. However, mean peak load was significantly higher for the dilated tibial specimens (616 +/- 263 N) than for the reamed specimens (453 +/- 197 N) (P = .0025).  相似文献   

13.
BACKGROUND: Clinical results of dual cruciate-ligament reconstructions are often poor, with a failure to restore normal anterior-posterior laxity. This could be the result of improper graft tensioning at the time of surgery and stretch-out of one or both grafts from excessive tissue forces. The purpose of this study was to measure anterior-posterior laxities and graft forces in knees before and after reconstructions of both cruciate ligaments performed with a specific graft-tensioning protocol. METHODS: Eleven fresh-frozen cadaveric knee specimens underwent anterior-posterior laxity testing and installation of load cells to record forces in the native cruciate ligaments as the knees were passively extended from 120 degrees to -5 degrees with no applied tibial force, with 100 N of applied anterior and posterior tibial force, and with 5 N-m of applied internal and external tibial torque. Both cruciate ligaments were reconstructed with a bone-patellar tendon-bone allograft. Only isolated cruciate deficiencies were studied. We determined the nominal levels of anterior and posterior cruciate graft tension that restored anterior-posterior laxities to within 2 mm of those of the intact knee and restored anterior cruciate graft forces to within 20 N of those of the native anterior cruciate ligament during passive knee extension. Both grafts were tensioned at 30 degrees of knee flexion, with the posterior cruciate ligament tensioned first. Measurements of anterior-posterior knee laxity and graft forces were repeated with both grafts at their nominal tension levels and with one graft fixed at its nominal tension level and the opposing graft tensioned to 40 N above its nominal level. RESULTS: The anterior and posterior cruciate graft tensions were found to be interrelated; applying tension to one graft changed the tension of the other (fixed) graft and displaced the tibia relative to the femur. The posterior cruciate graft had to be tensioned first to consistently achieve the nominal combination of mean graft forces at 30 degrees of flexion. At these levels, mean forces in the anterior cruciate graft were restored to those of the intact anterior cruciate ligament under nearly all test conditions. However, the mean posterior cruciate graft forces were significantly higher than the intact posterior cruciate ligament forces at full extension under all test conditions. Anterior-posterior laxity was restored between 0 degrees and 90 degrees of flexion with both grafts at their nominal force levels. Overtensioning of the anterior cruciate graft by 40 N significantly increased its mean force levels during passive knee extension between 110 degrees and -5 degrees of flexion, but it did not significantly change anterior-posterior laxity between 0 degrees and 90 degrees of flexion. In contrast, overtensioning of the posterior cruciate graft by 40 N significantly increased posterior cruciate graft forces during passive knee extension at flexion angles of <5 degrees and >95 degrees and significantly decreased anterior-posterior laxities at all flexion angles except full extension. CONCLUSIONS: It was not possible to find levels of graft tension that restored anterior-posterior laxities at all flexion positions and restored forces in both grafts to those of their native cruciate counterparts during passive motion. Our graft-tensioning protocol represented a compromise between these competing objectives. This protocol aimed to restore anterior-posterior laxities and anterior cruciate graft forces to normal levels. The major shortcoming of this tensioning protocol was the dramatically higher posterior cruciate graft forces produced near full extension under all test conditions.  相似文献   

14.
The objectives of this study were to determine the effects of hamstrings and quadriceps muscle loads on knee kinematics and in situ forces in the posterior cruciate ligament of the knee and to evaluate how the effects of these muscle loads change with knee flexion. Nine human cadaveric knees were studied with a robotic manipulator/universal force-moment sensor testing system. The knees were subjected to an isolated hamstrings load (40 N to both the biceps and the semimembranosus), a combined hamstrings and quadriceps load (the hamstrings load and a 200-N quadriceps load), and an isolated quadriceps load of 200 N. Each load was applied with the knee at full extension and at 30, 60, 90, and 120 degrees of flexion. Without muscle loads, in situ forces in the posterior cruciate ligament were small, ranging from 6+/-5 N at 30 degrees of flexion to 15+/-3 N at 90 degrees. Under an isolated hamstrings load, the in situ force in the posterior cruciate ligament increased significantly throughout all angles of knee flexion, from 13+/-6 N at full extension to 86+/-19 N at 90 degrees. A posterior tibial translation ranging from 1.3+/-0.6 to 2.5+/-0.5 mm was also observed from full extension to 30 degrees of flexion under the hamstrings load. With a combined hamstrings and quadriceps load, tibial translation was 2.2+/-0.7 mm posteriorly at 120 degrees of flexion ut was as high as 4.6+/-1.7 mm anteriorly at 30 degrees. The in situ force in the posterior cruciate ligament decreased significantly under this loading condition compared with under an isolated hamstrings load, ranging from 6+/-7 to 58+/-13 N from 30 to 120 degrees of flexion. With an isolated quadriceps load of 200 N, the in situ forces in the posterior cruciate ligament ranged from 4+/-3 N at 60 degrees of flexion to 34+/-12 N at 120 degrees. Our findings support the notion that, compared with an isolated hamstrings load, combined hamstrings and quadriceps loads significantly reduce the in situ force in the posterior cruciate ligament. These data are in direct contrast to those for the anterior cruciate ligament. Furthermore, we have demonstrated that the effects of muscle loads depend significantly on the angle of knee flexion.  相似文献   

15.
《Arthroscopy》2004,20(3):328-330
Although it is still unclear what the ideal angle of the tibial tunnel in the coronal plane should be when performing anterior cruciate ligament (ACL) reconstruction using the endoscopic single-incision technique, researchers have recently shown that erroneous placement of the tibial tunnel in the coronal plane can lead to graft laxity and loss of extension. We have developed a simple, reproducible technique to provide an acceptable angle of the tibial tunnel in the coronal plane when using the endoscopic single-incision ACL reconstruction technique by using bony landmarks. With the ACL guide parallel to the femur, the external portion of the tibial tunnel guide is rotated so that the guidewire starting point is made at the bisection of a line between the tibial tubercle and the posteromedial border of the tibia. We have confirmed this technique in cadaver studies with angles of the tibial tunnel less than 75° in the coronal plane in all cases. In addition, we have used this technique with good clinical results in over 100 ACL reconstructions.  相似文献   

16.
With most posterior cruciate (PCL) reconstruction techniques, the distal end of the graft is fixed within a tibial bone tunnel. Although a surgical goal is to locate this tunnel at the center of the PCL's tibial footprint, errors in medial-lateral tunnel placement of the tibial drill guide are possible because the position of the tip of the guide relative to the PCL's tibial footprint can be difficult to visualize from the standard arthroscopy portals. This study was designed to measure changes in knee laxity and graft forces resulting from mal-position of the tibial tunnel medial and lateral to the center of the PCL's tibial insertion. Bone-patellar tendon-bone allografts were inserted into three separate tibial tunnels drilled into each of 10 fresh-frozen knee specimens. Drilling the tibial tunnel 5 mm medial or lateral to the center of the PCL's tibial footprint had no significant effect on knee laxities; the graft pretension necessary to restore normal laxity at 90 degrees of knee flexion (laxity match pretension) with the medial tunnel was 13.8 N (29%) greater than with the central tunnel. During passive knee flexion-extension, graft forces with the medial tibial tunnel were significantly higher than those with the central tunnel for flexion angles greater than 65 degrees while graft forces with the central tibial tunnel were not significantly different than those with the lateral tibial tunnel. Graft forces with medial and lateral tunnels were not significantly different from those with a central tunnel for 100 N applied posterior tibial force, 5 Nm applied varus and valgus moment, and 5 Nm applied internal and external tibial torque. With the exception of slightly higher graft forces recorded with the medial tunnel beyond 65 degrees of passive knee flexion, errors in medial-lateral placement of the tibial tunnel would not appear to have important effects on the biomechanical characteristics of the reconstructed knee.  相似文献   

17.
The purpose of this study was to measure the effects of variation in placement of the femoral tunnel upon knee laxity, graft pretension required to restore normal anterior-posterior (AP) laxity and graft forces following anterior cruciate ligament (ACL) reconstruction. Two variants in tunnel position were studied: (1) AP position along the medial border of the lateral femoral condyle (at a standard 11 o'clock notch orientation) and (2) orientation along the arc of the femoral notch (o'clock position) at a fixed distance of 6-7 mm anterior to the posterior wall. AP laxity and forces in the native ACL were measured in fresh frozen cadaveric knee specimens during passive knee flexion-extension under the following modes of tibial loading: no external tibial force, anterior tibial force, varus-valgus moment, and internal-external tibial torque. One group (15 specimens) was used to determine effects of AP tunnel placement, while a second group (14 specimens) was used to study variations in o'clock position of the femoral tunnel within the femoral notch. A bone-patellar tendon-bone graft was placed into a femoral tunnel centered at a point 6-7 mm anterior to the posterior wall at the 11 o'clock position in the femoral notch. A graft pretension was determined such that AP laxity of the knee at 30 deg of flexion was restored to within 1 mm of normal; this was termed the laxity match pretension. All tests were repeated with a graft in the standard 11 o'clock tunnel, and then with a graft in tunnels placed at other selected positions. Varying placement of the femoral tunnel 1 h clockwise or counterclockwise from the 11 o'clock position did not significantly affect any biomechanical parameter measured in this study, nor did placing the graft 2.5 mm posteriorly within the standard 11 o'clock femoral tunnel. Placing the graft in a tunnel 5.0 mm anterior to the standard 11 o'clock tunnel increased the mean laxity match pretension by 16.8 N (62%) and produced a knee which was on average 1.7 mm more lax than normal at 10 deg of flexion and 4.2 mm less lax at 90 deg. During passive knee flexion-extension testing, mean graft forces with the 5.0 mm anterior tunnel were significantly higher than corresponding means with the standard 11 o'clock tunnel between 40 and 90 deg of flexion for all modes of constant tibial loading. These results indicate that AP positioning of the femoral tunnel at the 11 o'clock position is more critical than o'clock positioning in terms of restoring normal levels of graft force and knee laxity profiles at the time of ACL reconstruction.  相似文献   

18.
The effect of the maximum unloaded graft length (Lo) and femoral fixation hole location on graft force with the knee under anteriorly directed tibial loads was measured in five fresh cadaver knees with a reconstruction of the anterior cruciate ligament (ACL). The reconstruction was performed using a composite graft consisting of the semitendinosus and gracilis tendons augmented with the Kennedy ligament augmentation device (LAD). Buckle transducers were used to measure ligament and graft forces. The total graft force was adjusted to match the intact ACL at 30 degrees flexion using a force-setting method so that a standardized reference configuration could be repeatedly obtained. The graft force was highly sensitive to Lo, typically changing by 50% with a change in Lo of 3 mm. Variation in femoral hole location of 5 mm anterior, posterior, proximal, and distal to the anatomic position produced changes in graft force, particularly at 60 degrees and 90 degrees flexion; however, these changes were not statistically significant. The effect of femoral hole location varied considerably between knees. This variability makes predicting proper hole placement difficult, and suggests the need to adjust each knee at surgery to account for this variable femoral hole position sensitivity.  相似文献   

19.
An experimental study using fresh human cadaver knees was designed to evaluate the effect of partial posterior cruciate ligament release or posterior tibial slope on knee kinematics after total knee arthroplasty. Varus and valgus laxity, rotational laxity, anteroposterior laxity, femoral rollback, and maximum flexion angle were evaluated in a normal knee, an ideal total knee arthroplasty, and a total knee arthroplasty in which the ligaments were made to be too tight in flexion. The total knee arthroplasty specimens then were subjected to either partial posterior cruciate ligament release or increased posterior tibial slope, and the tests were repeated. Posterior tibial slope increased varus and valgus laxity, anteroposterior laxity, and rotational laxity in the knee that had flexion tightness. Posterior cruciate ligament release corrected only anteroposterior tightness, and had no effect on the abnormal collateral ligament tightness. Increased posterior tibial slope significantly improved varus and valgus laxity and rotational laxity in the knee that was tight in flexion more than with release of the posterior cruciate ligament. Therefore increasing posterior tibial slope is preferable for a knee that is tight in flexion during total knee arthroplasty.  相似文献   

20.
Twelve fresh frozen anatomic specimen knees were used in this study to measure changes in the tibiofemoral joint gaps after sacrificing the posterior cruciate ligament. Joint gap changes were measured using a motion tracking device in full extension and at 45 degrees and 90 degrees flexion. Tibiofemoral gaps were measured with no external compressive loads and under tension to define the flexion gap, the space available to be filled by components. After initial anterior cruciate ligament removal, meniscectomy, and a 1-cm tibial plateau cut, sacrifice of the posterior cruciate ligament caused significant differences in the flexion gap. At 90 degrees flexion the tibia distracted from the femur 5.26 +/- 1.9 mm (range, 3.2-9.1 mm) at rest and 6.4 +/- 2.5 mm under tension. No differences in the joint space were calculated in full extension under either loading case. The authors conclude that a major result of posterior cruciate ligament sacrifice is the creation of a larger flexion gap. This result provides insight into relative joint line changes that can occur after posterior cruciate ligament sacrifice. It also suggests the need for greater attention to flexion stability when sacrificing the posterior cruciate ligament and rethinking the role of posterior cruciate ligament release in the management of pure, primary flexion contracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号