首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is generally assumed that white adipocytes arise from resident adipose tissue mesenchymal progenitor cells. We challenge this paradigm by defining a hematopoietic origin for both the de novo development of a subset of white adipocytes in adults and a previously uncharacterized adipose tissue resident mesenchymal progenitor population. Lineage and cytogenetic analysis revealed that bone marrow progenitor (BMP)-derived adipocytes and adipocyte progenitors arise from hematopoietic cells via the myeloid lineage in the absence of cell fusion. Global gene expression analysis indicated that the BMP-derived fat cells are bona fide adipocytes but differ from conventional white or brown adipocytes in decreased expression of genes involved in mitochondrial biogenesis and lipid oxidation, and increased inflammatory gene expression. The BMP-derived adipocytes accumulate with age, occur in higher numbers in visceral than in subcutaneous fat, and in female versus male mice. BMP-derived adipocytes may, therefore, account in part for adipose depot heterogeneity and detrimental changes in adipose metabolism and inflammation with aging and adiposity.  相似文献   

2.
Expression of bone morphogenetic protein 4 (BMP4) in adipocytes of white adipose tissue (WAT) produces “white adipocytes” with characteristics of brown fat and leads to a reduction of adiposity and its metabolic complications. Although BMP4 is known to induce commitment of pluripotent stem cells to the adipocyte lineage by producing cells that possess the characteristics of preadipocytes, its effects on the mature white adipocyte phenotype and function were unknown. Forced expression of a BMP4 transgene in white adipocytes of mice gives rise to reduced WAT mass and white adipocyte size along with an increased number of a white adipocyte cell types with brown adipocyte characteristics comparable to those of beige or brite adipocytes. These changes correlate closely with increased energy expenditure, improved insulin sensitivity, and protection against diet-induced obesity and diabetes. Conversely, BMP4-deficient mice exhibit enlarged white adipocyte morphology and impaired insulin sensitivity. We identify peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) as the target of BMP signaling required for these brown fat-like changes in WAT. This effect of BMP4 on WAT appears to extend to human adipose tissue, because the level of expression of BMP4 in WAT correlates inversely with body mass index. These findings provide a genetic and metabolic basis for BMP4’s role in altering insulin sensitivity by affecting WAT development.  相似文献   

3.
4.
Important differences in gene expression have been documented in adipocytes derived from specific adipose tissue depots. We have previously documented an important role for adipocyte apolipoprotein E (apoE) in modulating adipocyte and adipose tissue triglyceride and lipoprotein metabolism. We now evaluate the endogenous expression of apoE in adipocytes isolated from unique adipose tissue depots in 4 different species. Adipocyte apoE expression is higher in subcutaneous fat compared with visceral fat in humans, mice, rats, and baboons. In baboons, evaluation of apoE expression in 5 adipose tissue depots (subcutaneous abdominal, subcutaneous gluteal, visceral, pericardial, epicardial) showed that, compared with subcutaneous abdominal adipocytes, the level of apoE expression is similar in subcutaneous gluteal, lower in visceral and pericardial, and higher in epicardial adipocytes. Consistent with previously demonstrated suppression of adipocyte apoE by adipose tissue inflammation, adipose tissue depots with lower apoE expression demonstrated greater infiltration of macrophages and an increased expression of tumor necrosis factor–α messenger RNA. Depot-specific differences in apoE expression were maintained after in vitro differentiation. Adipocytes isolated from depots with lower apoE expression manifested lower rates of triglyceride synthesis in the absence and presence of triglyceride-rich lipoproteins. Adenoviral-mediated increase of apoE expression in omental adipocytes increased triglyceride synthesis in these cells. Our results demonstrate significant heterogeneity in adipocyte apoE expression across adipose tissue depots in several species. Because of its role in modulating adipocyte triglyceride and lipoprotein metabolism, depot-specific differences in endogenous adipocyte apoE could have important implications for modulating the accumulation of lipid in these depots.  相似文献   

5.
Growth hormone's (GH) lipolytic activity in white adipose tissue (WAT) results in decreased body fat in giant GH transgenic mice and increased subcutaneous fat in dwarf growth hormone receptor/binding protein gene-disrupted mice (GHR -/-). We therefore hypothesized that GH action would affect expression of CIDE-A (cell-death-inducing DFF45-like effector-A), a protein found in white adipose tissue (WAT) and involved in lipid metabolism. CIDE-A RNA levels were determined in subcutaneous, retroperitoneal and epididymal adipose tissue isolated from wild-type and GHR -/- mice. The adipose tissue was also analyzed for adipocyte size. We determined that the lack of GH action has depot-specific effects on the levels of CIDE-A RNA and affected adipocyte cell size. CIDE-A expression is significantly reduced in GHR -/- subcutaneous fat compared to wild-type but is not altered in retroperitoneal or epididymal fat. Likewise, adipocytes are significantly enlarged in GHR -/- subcutaneous adipose tissue relative wild-type mice. A high-fat diet also influenced the level of CIDE-A RNA in mouse adipose tissue. The high-fat diet significantly reduced CIDE-A expression in wild-type subcutaneous fat but did not alter CIDE-A expression in subcutaneous fat of GHR -/- mice. The diet also reduced CIDE-A expression in wild-type retroperitoneal fat but the levels of CIDE-A in epididymal fat were unchanged. In contrast, the high-fat diet reduced CIDE-A expression in both retroperitoneal and epididymal fat of GHR -/- mice. These data demonstrate that CIDE-A levels are reduced in two different mouse models of obesity and this reduction may contribute to altered lipid metabolism.  相似文献   

6.
Lee P  Swarbrick MM  Zhao JT  Ho KK 《Endocrinology》2011,152(10):3597-3602
Brown adipose tissue (BAT) plays key roles in thermogenesis and energy homeostasis in rodents. Metabolic imaging using positron emission tomography (PET)-computer tomography has identified significant depots of BAT in the supraclavicular fossa of adult humans. Whether supraclavicular fat contains precursor brown adipocytes is unknown. The aim of the present study was to determine the adipogenic potential of precursor cells in human supraclavicular fat. We obtained fat biopsies from the supraclavicular fossa of six individuals, as guided by PET-computer tomography, with paired sc fat biopsies as negative controls. Each piece of fat tissue was divided and processed for histology, gene analysis, and primary culture. Cells were examined for morphological changes in culture and harvested for RNA and protein upon full differentiation for analysis of UCP1 level. Histological/molecular analysis of supraclavicular fat revealed higher abundance of BAT in PET-positive than PET-negative individuals. In all subjects, fibroblast-like cells isolated from supraclavicular fat differentiated in vitro and uniformly into adipocytes containing multilobulated lipid droplets, expressing high level of UCP1. The total duration required from inoculation to emergence of fibroblast-like cells was 32-34 and 40-42 d for PET-positive- and PET-negative-derived samples, respectively, whereas the time required to achieve full differentiation was 7 d, regardless of PET status. Precursor cells from sc fat failed to proliferate or express UCP1. In summary, preadipocytes isolated from supraclavicular fat are capable of differentiating into brown adipocytes in vitro, regardless of PET status. This study provides the first evidence of inducible brown adipogenesis in the supraclavicular region in adult humans.  相似文献   

7.
Two monoclonal antibodies (AD-1 and AD-2) were prepared by fusion of mouse myeloma cells and lymph node cells of mice immunized with porcine adipocyte plasma membranes. Immunoprecipitation of iodinated adipocyte plasma membrane proteins followed by SDS-PAGE and autoradiography yielded protein antigens for each antibody. The AD-1 and AD-2 antigens were detected on mature adipocytes and a proportion of non-lipid-containing cells in stromal-vascular cultures. Adipocytes and associated capillary networks in subcutaneous adipose tissues as well as capillaries between the underlying muscle fiber bundles bound each antibody, whereas the AD-2 monoclonal antibody also reacted with vessels but not capillaries in liver tissues. In stromal-vascular cell cultures prepared from newborn pig subcutaneous tissue, the AD-1 and AD-2 antibodies exhibited reactivity towards 45 percent and 10 percent respectively, of cells 24 hours after seeding. On the other hand, only 4 percent and 1 percent of the cells in cultures prepared from 60 day fetal subcutaneous tissues expressed detectable amounts of the AD-1 and AD-2 antigens, respectively. In conclusion, cells along the adipogenic lineage possess cell surface antigens which may not be unique to adipogenic cells, but do exhibit differential expression among cell populations within adipose tissues. A temporal relationship between adipogenesis and angiogenesis was also demonstrated.  相似文献   

8.
The increase of adipose tissue mass associated with obesity is due in part to an increase in the number of adipocytes. This hyperplasia results from recruitment of pluripotent stem cells present in the vascular stroma of adipose tissue. A model cell culture system has been developed that recapitulates this process both ex vivo and in vivo. After treatment of pluripotent C3H10T1/2 stem cells with bone morphogenic protein 4 (BMP4) during proliferation followed by differentiation inducers at growth arrest, the cells synchronously enter S phase and undergo mitotic clonal expansion, a hallmark of preadipocyte differentiation. Upon exiting the cell cycle, these cells express adipocyte markers and acquire adipocyte characteristics at high frequency. C3H10T1/2 cells treated with BMP4 in cell culture and implanted s.c. into athymic mice develop into tissue indistinguishable from adipose tissue in normal fat depots. We interpret the findings as evidence that BMP4 is capable of triggering commitment of pluripotent C3H10T1/2 stem cells to the adipocyte lineage.  相似文献   

9.
Apelin, a newly identified adipokine up-regulated by insulin and obesity   总被引:30,自引:0,他引:30  
The results presented herein demonstrate that apelin is expressed and secreted by both human and mouse adipocytes. Apelin mRNA levels in isolated adipocytes are close to other cell types present in white adipose tissue or other organs known to express apelin such as kidney, heart, and to a lesser extent brown adipose tissue. Apelin expression is increased during adipocyte differentiation stage. A comparison of four different models of obesity in mice showed a large increase in both apelin expression in fat cells and apelin plasma levels in all the hyperinsulinemia-associated obesities and clearly demonstrated that obesity or high-fat feeding are not the main determinants of the rise of apelin expression. The lack of insulin in streptozotocin-treated mice is associated with a decreased expression of apelin in adipocytes. Furthermore, apelin expression in fat cells is strongly inhibited by fasting and recovered after refeeding, in a similar way to insulin. A direct regulation of apelin expression by insulin is observed in both human and mouse adipocytes and clearly associated with the stimulation of phosphatidylinositol 3-kinase, protein kinase C, and MAPK. These data provide evidence that insulin exerts a direct control on apelin gene expression in adipocytes. In obese patients, both plasma apelin and insulin levels were significantly higher, suggesting that the regulation of apelin by insulin could influence blood concentrations of apelin. The present work identifies apelin as a novel adipocyte endocrine secretion and focuses on its potential link with obesity-associated variations of insulin sensitivity status.  相似文献   

10.
11.
Brown adipose tissue mitochondria express the unique thermogenic uncoupling protein-1. Recently, brown adipocyte progenitors have been identified in the CD34+ cell population of human skeletal muscle. The aims of this study were firstly to determine if obesity and diabetes have altered amounts of muscle brown adipocyte progenitors and, secondly, to establish if the latter are correlated with clinical parameters of obesity and diabetes. Body mass index (BMI), plasma glucose, insulin, cholesterol and triglycerides as well as homeostasis model assessment were measured in lean (n=10), obese (n=18) and obese-diabetic (n=15) subjects and muscle biopsies were taken from the rectus abdominus. CD34 being also expressed on endothelial cells, we measured CD31, another endothelial marker, and expressed the brown adipocyte progenitors, as the CD34/CD31 mRNA ratio. The latter was significantly reduced in the obese vs lean subjects suggesting a smaller pool of brown adipocyte progenitors. More strikingly, for lean and obese subjects negative correlations were observed between the CD34/CD31 mRNA ratios and BMI, fasting insulin levels and homeostasis model assessment. These correlations highlight the potential physiological relevance of the muscle CD34/CD31 mRNA ratio.  相似文献   

12.
13.
The number of adipocyte progenitors is determined early in foetal and neonatal development in a process which may be altered by gender and excess nutrient intake, and which in turn determines fat mass in adulthood and the risk of developing obesity. Here we investigate the hypothesis that excess nutrients, in this case the long chain fatty acid palmitate, can program differentiating stem cells towards white fat lineages. The experiments were performed on mouse embryonic stem cells in chemically defined media (CDM) supplemented with bone morphogenetic protein 4 (BMP4) and all trans-retinoic acid (RA). Subsequent treatment for 21 days with palmitate not only promoted the expression of adipocyte markers and monolocular lipid deposition as observed by RT/QPCR and immunocytochemistry, but also stimulated a considerable enrichment in adipocytes as measured by flow cytometry and a lipolytic response to catecholamines. Palmitate increased protein levels of adiponectin that is preferentially expressed in subcutaneous fat, while inhibiting IGFBP2 and IGFBP3 that are associated with visceral fat. In keeping with this finding, palmitate also increased expression of the subcutaneous markers Shox2 and Twist1 and oestrogenising enzymes. Collectively, these results suggest that palmitate induces differentiation towards subcutaneous fat and that this could occur through its oestrogenising effects on the preadipocyte, suggesting a role for palmitate in programming fat development towards a metabolically favourable profile.  相似文献   

14.
Obesity, the major cause of the current global epidemic of type 2 diabetes (T2D), induces insulin resistance in peripheral insulin target tissues. Several mechanisms have been identified related to cross‐talk between adipose tissue, skeletal muscle and liver. These mechanisms involve both increased free fatty acid release and altered secretion of adipokines from adipose tissue. A major determinant of metabolic health is the ability of subcutaneous adipose tissue (SAT) to store excess fat rather than allowing it to accumulate in ectopic depots including liver (i.e. in nonalcoholic fatty liver disease), muscle and heart, or in epicardial/pericardial and visceral fat depots which promote the metabolic complications of obesity. The ability to recruit and differentiate precursor cells into adipose cells (adipogenesis) in SAT is under genetic regulation and is reduced in high‐risk individuals who have first‐degree relatives with T2D. Early recruitment of new adipose cells is dependent on the cross‐talk between canonical WNT and BMP4 signalling; WNT enhances their undifferentiated and proliferative state whereas BMP4 induces their commitment to the adipogenic lineage. Dysregulation of these signalling pathways is associated with impaired adipogenesis and impaired ability to respond to the need to store excess lipids in SAT. This leads to hypertrophic, dysfunctional and insulin‐resistant adipose cells with a reduced content of GLUT4, the major insulin‐regulated glucose transporter, which in turn reduces adipose tissue glucose uptake and de novo lipogenesis. We recently identified that reduced GLUT4 and lipogenesis in adipocytes impairs the synthesis of a novel family of lipids secreted by adipose tissue (and potentially other tissues), branched fatty acid esters of hydroxy fatty acids (FAHFAs). FAHFAs have beneficial metabolic effects, including enhancing insulin‐stimulated glucose transport and glucose‐stimulated GLP1 and insulin secretion, as well as powerful anti‐inflammatory effects. FAHFA levels are reduced in subcutaneous adipose tissue in insulin‐resistant individuals, and this novel family of lipids may become of future therapeutic use.  相似文献   

15.
Mice with a dominant-negative peroxisome proliferator-activated receptor gamma (PPARgamma) mutation (P465L) unexpectedly had normal amounts of adipose tissue. Here, we investigate the adipose tissue of the PPARgamma P465L mouse in detail. Microscopic analysis of interscapular adipose tissue of P465L PPARgamma mice revealed brown adipocytes with larger unilocular lipid droplets, indicative of reduced thermogenic capacity. Under conditions of cold exposure, the brown adipose tissue of the PPARgamma P465L mice was less active, a fact reflected in decreased uncoupling protein 1 levels. Analysis of the white adipocytes confirmed their normal cytoarchitecture and development, yet classical white adipose depots of the P465L PPARgamma mice had a striking reduction in brown adipocyte recruitment, a finding supported by reduced expression of UCP1 in the perigonadal adipose depot. Taken together, these data suggest that whole animal impairment of PPARgamma alters the cellular composition of the adipose organ to a more "white" adipose phenotype. Physiologically, this impairment in brown adipocyte recruitment is associated with decreased nonshivering thermogenic capacity after cold acclimation as revealed by norepinephrine responsiveness. Our results indicate that maintenance of oxidative brown-like adipose tissue is more dependent on PPARgamma function for development than white adipose tissue, an observation that may be relevant when considering PPARgamma-dependent strategies for the treatment of obesity.  相似文献   

16.
In mammals, the adipose organ is a multi-depot organ made of two tissue types, the white and brown adipose tissues, which collaborate in partitioning the energy contained in lipids between thermogenesis and the other metabolic functions. It consists of several sc and visceral depots. Some areas of these depots are brown and correspond to brown adipose tissue, while many are white and correspond to white adipose tissue. White areas contain a variable amount of brown adipocytes and their number varies with age, strain and environmental conditions. Brown and white adipocyte are morphologically different. At light microscopy level, brown adipocytes have cytoplasmic lipids arranged as numerous small droplets (multilocularity), while white adipocytes have cytoplasmic lipids arranged in a unique vacuole (unilocularity). Ultrastructurally, brown adipocytes have numerous big mitochondria packed with cristae and containing the thermogenic uncoupling protein 1 (UCP1). In vivo and in vitro studies have shown that the differentiation process of brown and white adipocytes shows distinctive features. Nevertheless, the origin of the adipocyte precursor is still unknown. Recent data have stressed the plasticity of the adipose organ in adult animals. Indeed, under peculiar conditions fully differentiated, white adipocytes can transdifferentiate into brown adipocytes, and viceversa. The ability of the adipose organ to interconvert its main cytotypes in order to meet changing metabolic needs is highly pertinent to the physiopathology of obesity and related to therapeutic strategies.  相似文献   

17.
Recent studies have found that angiotensinogen is expressed in white and brown fat pads, and adipocytes have been implicated as a primary source of angiotensinogen in several other tissues. The functional significance of this unexpected expression is unknown. To address this, we studied angiotensinogen messenger RNA (mRNA) expression and angiotensinogen secretion in adipose tissue and isolated adipocytes comparing fasted and refed rodents and those with genetic obesity with normal controls. Control 2-month-old Sprague-Dawley rats, those fasted for 3 days, or those fasted for 2 days and refed for 6 days were killed, and adipocytes were isolated from epididymal fat pads using collagenase digestion. Angiotensinogen mRNA was reduced to 14.6 +/- 2.3% of control levels under fasted conditions and increased to 228 +/- 53% of control levels after refeeding. Angiotensinogen release from adipocytes was reduced to 33% of control levels by fasting and increased to 183% by refeeding. These effects of fasting and refeeding on angiotensinogen regulation were tissue specific since liver angiotensinogen mRNA and serum angiotensinogen concentrations were unaffected. Systolic blood pressure, however, was modulated by fasting and refeeding in a manner parallel to adipocyte angiotensinogen expression. In related experiments, angiotensinogen secretion per epididymal fat pad of the ob/ob mouse model of obesity was increased an average of 3.4-fold compared with control. We conclude angiotensinogen expression in white adipocytes is regulated nutritionally in a tissue-specific manner. We propose that adipocyte angiotensinogen could play a previously unrecognized role in regulating adipose tissue blood supply and thereby fatty acid efflux from fat.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
To identify novel seven transmembrane domain proteins from 3T3-L1 adipocytes, we used PCR to amplify 3T3-L1 adipocyte complementary DNA (cDNA) with primers homologous to the N- and C-termini of pancreatic glucagon-like peptide-1 (GLP-1) receptor. We screened a cDNA library prepared from fully differentiated 3T3-L1 adipocytes using a 500-bp cDNA PCR product probe. Herein describes the isolation and characterization of a 1.6-kb cDNA clone that encodes a novel 298-amino acid protein that we termed TPRA40 (transmembrane domain protein of 40 kDa regulated in adipocytes). TPRA40 has seven putative transmembrane domains and shows little homology with the known GLP-1 receptor or with other G protein-coupled receptors. The levels of TPRA40 mRNA and protein were higher in 3T3-L1 adipocytes than in 3T3-L1 fibroblasts. TPRA40 is present in a number of mouse and human tissues. Interestingly, TPRA40 mRNA levels were significantly increased by 2- to 3-fold in epididymal fat of 24-month-old mice vs. young controls as well as in db/db and ob/ob mice vs. nondiabetic control littermates. No difference in TPRA40 mRNA levels was observed in brain, heart, skeletal muscle, liver, or kidney. Furthermore, no difference in TPRA40 expression was detected in brown fat of ob/ob mice when compared with age-matched controls. Taken together, these data suggest that TPRA40 represents a novel membrane-associated protein whose expression in white adipose tissue is altered with aging and type 2 diabetes.  相似文献   

19.
Aims/hypothesis Satellite cells are responsible for postnatal skeletal muscle regeneration. It has been demonstrated that mouse satellite cells behave as multipotent stem cells. We studied the differentiation capacities of human satellite cells and evaluated the effect of the insulin sensitiser rosiglitazone, a well known peroxisome proliferative activated receptor gamma (PPARG) agonist, on their adipogenic conversion.Subjects, materials and methods We obtained human satellite cells from human muscle biopsies of healthy subjects by single-fibre isolation and cultured them under myogenic, osteogenic and adipogenic conditions. Moreover, we compared the morphological features and the adipose-specific gene expression profiling, as assessed by quantitative PCR, between adipocytes differentiated from human satellite cells and those obtained from the stromal vascular fraction of human visceral fat.Results We proved by morphological analysis, mRNA expression and immunohistochemistry that human satellite cells are able to differentiate into myotubes, adipocytes and osteocytes. The addition of rosiglitazone to the adipogenic medium strongly activated PPARG expression and enhanced adipogenesis in human satellite cells, but did not in itself trigger the complete adipogenic programme. Moreover, we observed a decrease in wingless-type MMTV integration site family member 10B and an upregulation of growth differentiation factor 8 expression, both being independent of PPARG activation.Conclusions/interpretation Human satellite cells possess a clear adipogenic potential that could explain the presence of mature adipocytes within skeletal muscle in pathological conditions such as obesity, type 2 diabetes and ageing-related sarcopenia. Rosiglitazone treatment, while enhancing adipogenesis, induces a more favourable pattern of adipocytokine expression in satellite-derived fat cells. This could partially counteract the worsening effect of intermuscular adipose tissue depots on muscle insulin sensitivity.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Authors P. De Coppi and G. Milan contributed equally to this work.  相似文献   

20.
Catecholamines regulate white adipose tissue function and development by acting through beta- and alpha2-adrenergic receptors (ARs). Human adipocytes express mainly alpha 2A- but few or no beta 3-ARs while the reverse is true for rodent adipocytes. Our aim was to generate a mouse model with a human-like alpha2/beta-adrenergic balance in adipose tissue by creating transgenic mice harbouring the human alpha 2A-AR gene under the control of its own regulatory elements in a combined mouse beta 3-AR-/- and human beta 3-AR+/+ background. Transgenic mice exhibit functional human alpha 2A-ARs only in white fat cells. Interestingly, as in humans, subcutaneous adipocytes expressed higher levels of alpha2-AR than perigonadal fat cells, which are associated with a better antilipolytic response to epinephrine. High-fat-diet-induced obesity was observed in transgenic mice in the absence of fat cell size modifications. In addition, analysis of gene expression related to lipid metabolism in isolated adipocytes suggested reduced lipid mobilization and no changes in lipid storage capacity of transgenic mice fed a high-fat diet. Finally, the development of adipose tissue in these mice was not associated with significant modifications of glucose and insulin blood levels. Thus, these transgenic mice constitute an original model of diet-induced obesity for in vivo physiological and pharmacological studies with respect to the alpha2/beta-AR balance in adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号