首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An equilibrium between positive and negative regulation of immunoreceptor signaling leads to the proper execution of lymphocyte activation. Tyrosine phosphorylation is the initial event in antigen receptor-induced lymphocyte activation. It is generally accepted that protein tyrosine kinases are involved in positive regulation, whereas protein tyrosine phosphatases are important for the negative regulation of tyrosine phosphorylation-dependent processes. However, the interaction between protein tyroine kinases and protein tyrosine phosphatases is complex. This article discusses the role of two protein tyrosine phosphatases, CD45 and SHP-1, in the regulation of immunoreceptor signaling. SHP-1 acts as a negative regulator for several immunoreceptors, including those for T-and B-cell antigen receptors. The major role of CD45 is in the positive regulation of T- and B-cell antigen receptor signaling.  相似文献   

2.
《Immunobiology》2020,225(1):151847
Protein tyrosine phosphorylation is a potent post-translational regulatory mechanism necessary for maintaining normal physiological functioning of immune cells and it is under the stringent control of antagonizing actions of Protein tyrosine phosphatases and kinases. Two such important Non-Receptor protein tyrosine phosphatases, SHP-1 and SHP-2, have been found to be expressed in immune cells and reported to be key regulators of immune cell development, functions, and differentiation by modulating the duration and amplitude of the downstream cascade transduced via receptors. They also have been conceded as the immune checkpoints & therapeutic targets and hence, it is important to understand their significance intricately. This review compares the roles of these two important cytoplasmic PTPs, SHP1 & SHP-2 in the regulation of peripheral as well as central immunity.  相似文献   

3.
4.
Replication of plus-stranded RNA viruses is performed by the viral replicase complex, which, together with the viral RNA, must be targeted to intracellular membranes, where replication takes place in membraneous vesicles/spherules. Tombusviruses code for two overlapping replication proteins, the p33 auxiliary protein and the p92 polymerase. Using replication-competent fluorescent protein-tagged p33 of Cucumber necrosis virus (CNV), we determined that two domains affected p33 targeting to peroxisomal membranes in yeast: an N-proximal hydrophobic trans-membrane sequence and the C-proximal p33:p33/p92 interaction domain. On the contrary, only the deletion of the p33:p33/p92 interaction domain, but not the trans-membrane sequence, altered the intracellular targeting of p92 protein in the presence of wt p33 and DI-72(+) RNA. Moreover, unlike p33, p92 lacking the trans-membrane sequence was still functional in supporting the replication of a replicon RNA in yeast, whereas the p33:p33/p92 interaction domain in both p33 and p92 was essential for replication. In addition, p33 was also shown to facilitate the recruitment of the viral RNA to peroxisomal membranes and that p33 is colocalized with (+) and (-)-stranded viral RNAs. Also, FRET and pull-down analyses confirmed that p33 interacts with other p33 molecules in yeast cells. Based on these data, we propose that p33 facilitates the formation of multimolecular complexes, including p33, p92, viral RNA, and unidentified host factors, which are then targeted to the peroxisomal membranes, the sites of CNV replication.  相似文献   

5.
为了制备抗小鼠蛋白酪氨酸磷酸酶的单克隆抗体(mAb),分别以SHP-1、SHP-2和SHIP重组蛋白为抗原免疫BALB/c小鼠,通过B淋巴细胞杂交瘤技术制备抗相应磷酸酶的mAb。用Western blot检测mAb对重组蛋白和细胞中天然磷酸酶的反应性。共获得12株可稳定分泌抗磷酸酶mAb的杂交瘤细胞株。其中6株可分泌抗SHP-1 mAb(LX-SHP1.1~LX-SHP1.6),3株可分泌抗SHP-2 mAb(LX-SHP2.1~LX-SHP2.3),3株分泌抗SHIP mAb(LX-SHIP1~LX-SHIP3)。LX-SHP1.2~LX-SHP1.6,LX-SHP2.1和LX-SHP2.3,以及LX-SHIP2和LX-SHIP3可应用于相应重组蛋白的Westernblot检测。LX-SHP1.5,LX-SHP2.3,以及LX-SHIP2在EL-4细胞及原代T细胞相应天然磷酸酶分子的Western blot检测中有较好的实验效果。  相似文献   

6.
One of the areas of greatest recent progress in immunology has been the elucidation of inhibitory receptors and their mode of signal transduction. A common feature of members of this growing family is expression of a conserved cytoplasmic sequence motif, the immunoreceptor tyrosine-based inhibitory motif, which functions to recruit and activate phosphatases that mediate the receptors' function. Family members include the protein tyrosine phosphatases SHP-1 (Src-homology-2-domain-containing protein tyrosine phosphatase 1) and SHP-2, which function to dephosphorylate key intermediaries in antigen receptor signaling pathways. Surprisingly, whereas most data to date support a role for SHP-1 in inhibitory signaling, SHP-2 exhibits distinct functions that appear to positively regulate receptor function.  相似文献   

7.
S B Kanner  J P Deans    J A Ledbetter 《Immunology》1992,75(3):441-447
Stimulation of the signal transduction cascade in T cells through the T-cell receptor (CD3) coincides with activation of the phosphatidylinositol-phospholipase C (PI-PLC) pathway. activation of phospholipase C-gamma 1 (PLC gamma 1) occurs through tyrosine phosphorylation in T cells following surface ligation of CD3 receptors with CD3-specific monoclonal antibodies (mAb). Here we show that cross-linking of CD4 molecules with CD3 augments the tyrosine phosphorylation of PLC gamma 1, while co-ligation of CD3 with CD45 (a receptor tyrosine phosphatase) results in reduced PLC gamma 1 tyrosine phosphorylation. Mobilization of intracellular calcium correlated with the extent of PLC gamma 1 tyrosine phosphorylation, indicating that PLC gamma 1 enzymatic activity in T cells may be regulated by its phosphorylation state. The time-course of PLC gamma 1 tyrosine phosphorylation in cells stimulated by soluble anti-CD3 was transient and closely paralleled that of calcium mobilization, while the kinetics in cells stimulated by immobilized anti-CD3 were prolonged. The PI-PLC pathway in T cells was not stimulated by tyrosine phosphorylation of PLC gamma 2, a homologue of PLC gamma 1, demonstrating the strict regulation of PLC gamma isoform usage in CD3-stimulated T cells. A 35,000/36,000 MW tyrosine phosphorylated protein in T cells formed stable complexes with PLC gamma 1, and its tyrosine phosphorylation was co-regulated with that of PLC gamma 1 by CD4 and CD45 receptors. Enzymatic activation and tyrosine phosphorylation of PLC gamma 1 occurs during growth factor stimulation of fibroblasts, where PLC gamma 1 exists in multi-component complexes. The observation that PLC gamma 1 exists in complexes with unique tyrosine phosphorylated proteins in T cells suggests that haematopoietic lineage-specific proteins associated with PLC gamma 1 may play roles in cellular signalling.  相似文献   

8.
T lymphocyte activation is triggered through the CD3-TCR complex or the CD2 molecule. Beside common biochemical events, we previously showed that a 62-kDa protein associated with PLCgamma-1 and p21RasGAP was specifically tyrosine phosphorylated after CD2 stimulation in Jurkat T cells. We demonstrated here that it was identical to p62Dok, a docking protein highly phosphorylated in human chronic myelogenous leukemia cells and in murine abl-transformed B cells. Mainly, we showed that p62Dok tyrosine phosphorylation was strengthened by the functional interplay between CD3 and CD2. Primary stimulation of Jurkat cells via CD3 suppressed most of the subsequent CD2-dependent phosphorylation events, except p62Dok tyrosine phosphorylation, which was on the contrary strongly increased. Kinetic studies indicated that a short treatment with anti-CD3 was sufficient to amplify the CD2-induced tyrosine phosphorylation of p62Dok. By contrast, CD2-induced PLCgamma-1 tyrosine phosphorylation and calcium response progressively diminished. Finally, enhanced amounts of tyrosine phosphorylated p62Dok were recruited to p21RasGAP and PLCgamma-1 after CD2 stimulation in CD3-activated cells. CD3 stimulation is known to enhance CD2 avidity for its ligand and to induce the binding of the CD2AP protein to the CD2 cytoplasmic tail. Our results suggest that the CD3-TCR complex rapidly primes the CD2 pathway to activate one of its specific components, p62Dok.  相似文献   

9.
Recently, there has been increasing interest in the inhibitory regulators of lymphocyte activation, and in particular, the role of CD28 homologue CTLA-4 in the regulation of T cell responses. Interaction of CTLA-4 with B7 ligands inhibits T cell responses, including T cell proliferation and interleukin-2 (IL-2) secretion. The mechanism(s) responsible for CTLA-4 signal transduction are unknown, but it has been suggested that tyrosine phosphorylation is involved. Here we demonstrate that phorbol ester phorbol 12-myrislate 13-acetate (PMA), which increases tyrosine phosphorylation by stimulating protein kinase C and p21ras, can overcome the CTLA-4-mediated inhibition of T cell proliferation. This provides the first functional evidence that tyrosine phosphorylation is involved in CTLA-4 signal transduction. Most interestingly, CTLA-4-mediated inhibition of IL-2 secretion was not influenced by the presence of PMA. Further, we demonstrate that CTLA-4 cross-linking inhibits proliferation and IL-2 secretion of T cells from motheaten mice. These mice lack PTP-1C, a tyrosine phosphatase which mediates in a number of lymphocyte inhibitory responses, indicating that PTP-1C is not essential for CTLA-4 signaling. Collectively, these results demonstrate that regulation of tyrosine phosphorylation plays a pivotal role in CTLA-4 function, and that the inhibition of the transition from G0/G1 to the S phase of the cell cycle and the inhibition of IL-2 secretion require distinct signaling pathways. These experiments provide a useful model system which can be used to elucidate the signaling pathways involved in CTLA-4 function and to understand how CTLA-4, CD28 and T cell receptor-mediated signals are integrated in T cell responses to antigen.  相似文献   

10.
CD28 is a T cell surface molecule that is important for T cell activation. CD28-triggered T cell stimulation involves protein tyrosine phosphorylation, a process that is critical for CD28 function. Recently, a linker molecule has been identified as LAT (Linker for Activation of T cells). Studies involving LAT mutants and reconstitution experiments strongly implicate LAT in playing a critical role in T cell activation. We show in the present report that CD28 ligation induces tyrosine phosphorylation of LAT. CD28-induced tyrosine phosphorylation of LAT was rapid, as it was apparent within 1 min of CD28 ligation, reached a peak by 5 min, and declined thereafter. Previous studies implicated the protein tyrosine kinases ZAP-70 and Syk in the TCR-induced tyrosine phosphorylation of LAT. Here, tyrosine phosphorylation of Syk and ZAP-70 was detected after TCR but not after CD28 ligation. Thus, CD28 ligation appears to induce tyrosine phosphorylation of LAT by mechanisms that are independent of ZAP-70 and Syk. The concurrent ligation of CD28 and TCR increased tyrosine phosphorylation of LAT. These results implicate LAT in CD28 signal transduction pathways and in the co-stimulatory process in T cells.  相似文献   

11.
Lock K  Zhang J  Lu J  Lee SH  Crocker PR 《Immunobiology》2004,209(1-2):199-207
Siglecs are sialic acid binding Ig-like lectins mostly expressed in the haemopoietic and immune systems. Amongst the 11 human siglecs, there are eight proteins highly related to CD33 which have biochemical features of inhibitory receptors, containing two conserved tyrosine-based inhibitory motifs. Five of these (CD33/siglec-3, -5, -7, -9 and -10) are expressed on circulating monocytes. Here we show that monocytes cultured to differentiate into macrophages using either GM-CSF or M-CSF retained expression of these siglecs and their levels were unaffected following stimulation with LPS. In comparison, monocyte-derived dendritic cells down-modulated siglec-7 and -9 following maturation with LPS. Plasmacytoid dendritic cells in human blood expressed siglec-5 only. On monocytes, siglec-5 was shown to mediate rapid uptake of anti-siglec-5 (Fab)2 fragments into early endosomes. This suggests, in addition to inhibitory signalling, a potential role in endocytosis for siglec-5 and the other CD33-related siglecs. Our results show that siglecs are differentially expressed on mononuclear phagocytes and dendritic cells and that some can be modulated by stimuli that promote maturation and differentiation.  相似文献   

12.
Mattison CP  Ota IM 《Genes & development》2000,14(10):1229-1235
The MAP kinase Hog1 transiently accumulates in the nucleus upon activation. Although Hog1 nuclear export correlates with its dephosphorylation, we find that dephosphorylation is not necessary for export. Unexpectedly, a strain lacking the nuclear protein tyrosine phosphatase, Ptp2, showed decreased Hog1 nuclear retention, while a strain lacking the cytoplasmic Ptp3 showed prolonged Hog1 nuclear accumulation, consistent with Ptp2 being a nuclear tether for Hog1 and Ptp3 being a cytoplasmic anchor. In support of this result PTP2 overexpression sequestered Hog1 in the nucleus while PTP3 overexpression restricted Hog1 to the cytoplasm. Thus, Ptp2 and Ptp3 regulate Hog1 localization by binding Hog1.  相似文献   

13.
A glutathione-S-transferase-src-homology domain 2 (GST-SH2) fusion protein was employed to identify molecules interacting with the protein tyrosine kinase p59fyn. Among several proteins which bound to the fyn SH2 domain in lysates of human Jurkat T lymphocytes, α- and β-tubulin were identified by N-terminal sequencing. Further analysis established that α-tubulin exists as a tyrosine-phosphorylated protein in Jurkat cells, where it interacts with p59fyn, but not with p56lck. By contrast, in untransformed resting human T lymphocytes α-tubulin is not detectable as a tyrosine phosphorylated protein. However, following T cell activation, it becomes rapidly phosphorylated on tyrosine residues and subsequently associates with the SH2 domain of fyn. Interestingly, constitutively tyrosine-phosphorylated α-tubulin that is able to interact with the fyn-SH2 domain is expressed in peripheral blood T lymphoblasts isolated from leukemic patients in the absence of external stimulation.  相似文献   

14.
Receptor and nonreceptor tyrosine kinases are enzymes that play important roles in regulating signal transduction pathways in a variety of normal cellular process and in many pathological conditions. Ordered phosphorylation is required for receptor tyrosine kinase (RTK) activation, a process mediated by transient dimer formation of the kinase domains. This process is triggered by the tyrosine phosphorylation in the activation loop. Here, we report structural and biochemical analyses of the tyrosine kinase domain interaction of fibroblast growth factor receptor 1 (FGFR1) required for the initial phosphorylation step. On the basis of nuclear magnetic resonance (NMR) analysis and covalent cross‐linking experiments, we propose a parallel symmetric dimer model where specific contacts are formed between the N‐lobes and C‐lobes, respectively, in the FGFR1 kinase domains. Moreover, assignment of the contact sites between two FGFR1 kinase domains are supported by a trans‐phosphorylation assay and by mutational analyses. The present report shows the molecular mechanism underlying the control of trans‐phosphorylation of a critical auto‐regulatory site in FGF receptors’ catalytic domain.  相似文献   

15.
Chen ST  Chuang JI  Cheng CL  Hsu LJ  Chang NS 《Neuroscience》2005,130(2):397-407
WW domain-containing oxidoreductase WOX1, also named WWOX or FOR, is a known proapoptotic protein and a candidate tumor suppressor. Stress stimuli activate WOX1 via tyrosine 33 (Tyr33) phosphorylation and translocation to the mitochondria and nuclei in vitro. Here, the potential role of WOX1 in light-induced retinal degeneration in vivo was investigated. WOX1 is expressed primarily in the inner retina at perinatal stages, whereas an enhanced expression of WOX1, along with its Tyr33 phosphorylation (p-WOX1), is shown specifically in the retinal ganglion cells in adults. Prolonged exposure of mature rats to constant, low-intensity light (500 lux) for 1-2 months resulted in substantial death of photoreceptors and the presence of activated microglia, astrocytes and Muller glial in the outer retina. However, the inner retina was not or barely affected. In the damaged inner and outer nuclear layers of rat retina, WOX1 and p-WOX1 were overly expressed. Also, WOX1 colocalized with fragments of opsin-positive cones. In rd mice with an inherited retinal deficiency, upregulation of WOX1 and p-WOX1 in degenerated retina was observed with age. By electron microscopy, a large number of immunogold particles of WOX1 and p-WOX1 were found in the damaged mitochondria and condensed nuclei of degenerating photoreceptors, indicating that WOX1 undergoes activation and translocation to these organelles. In contrast, little or no WOX1-positive particles were found in the Golgi apparatus. In conclusion, activated WOX1 is likely to exert apoptosis of neuronal cells in the outer retina during the light-induced injury and in mice with an inherited retinal defect.  相似文献   

16.
The present study tested the hypothesis that the hypoxia in utero results in decreased protein tyrosine phosphatase (PTP) activity in cytosolic and membrane fractions and increased expression of PTPs (PTP-1B, PTP-SH1 and PTP-SH2) in the cytosol and the membrane fraction of the cerebral cortex of guinea pig fetus. In addition, we hypothesize that the increased expression is mediated by nitric oxide (NO). To test this hypothesis, PTP activity in cytosol and cell membrane, and expression in the cytosol and membrane fraction were measured in the cerebral cortex of normoxic, hypoxic and L-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), pretreated hypoxic (L-NAME+Hx) guinea pig fetuses. PTP activity in the cytosolic and membrane fractions was significantly lower in the Hx group as compared to the Nx group. The density of cytosolic PTP-1B, cytosolic PTP-SH1 and PTP-SH2 was increased in the Hx group and this increase was prevented in the L-NAME+Hx group. The data show that pretreatment with L-NAME, an inhibitor of NOS, prevents the hypoxia-induced increased expression of PTP-1B, PTP-SH1 and PTP-SH2 in the membrane and cytosolic fractions of the cerebral cortex of the guinea pig fetus. We conclude that the decrease in PTP activity during hypoxia is not due to protein modification of PTP and due to alteration in PTP expression.  相似文献   

17.
Leyton L  Quest AF  Bron C 《Molecular immunology》1999,36(11-12):755-768
Clustering of the glycosyl-phosphatidylinositol (GPI)-anchored protein Thy-1 on the cell surface leads to T cell activation. However, despite the similarity to TCR-mediated events, cell signaling triggered by Thy-1 crosslinking, reportedly occurs in a manner independent of the TCR/CD3 complex. To investigate the relationship between responses resulting from Thy-1 or TCR engagement, a biochemically well defined system employing only affinity purified antibodies was used to crosslink these surface molecules and activation was assessed by monitoring tyrosine phosphorylation, intracellular calcium influx and IL-2 production. By these criteria, anti-CD3 mAbs moderately activated EL-4 thymoma or 2B4 hybridoma cell lines, while costimulation with anti-Thy-1-mAb strongly enhanced TCR signaling. Furthermore, a Thy-1 loss mutant cell line, did not respond to stimulation through CD3 despite expressing all essential signaling molecules. Together these results emphasized the existence of a poorly appreciated mutual interdependence between Thy-1 and CD3 for efficient cellular signaling. Thy-1/CD3-mediated activation enhanced mostly tyrosine phosphorylation of a 40 kDa protein which was identified as a transmembrane protein lacking N-linked oligosaccharides. These biochemical properties are identical to those described for a recently cloned adaptor protein called 'Linker for Activation of T cells' (LAT). Indeed, polyclonal Abs raised against a LAT-peptide (amino acids 103-131) specifically recognized the 40 kDa protein. LAT is present in microdomains of the plasma membrane enriched in sphingolipids, cholesterol, GPI-anchored proteins and a variety of signaling molecules. By contrast, the TCR/CD3 complex is excluded from these domains at least until stimulation takes place. Hence, we propose that Thy-1 promotes TCR/CD3 dependent signaling by facilitating LAT phosphorylation on tyrosine and the subsequent recruitment of downstream effector molecules.  相似文献   

18.
BACKGROUND: Previously we showed that the human sperm proteasome plays significant roles during mammalian fertilization. Here we studied the effect of fibronectin (Fn), an extracellular matrix protein present in the cumulus oophorus of the oocyte, on proteasome activity, acrosome reaction, intracellular calcium concentration ([Ca(2+)](i)) and protein tyrosine phosphorylation of human sperm. METHODS: Aliquots of motile sperm were incubated for 15 min (T0), 5 h (T5) and 18 h (T18), at 37 degrees C, 5% CO(2) and 95% air with Fn (0-100 microg/ml). The chymotrypsin- and trypsin-like activity of the proteasome was measured using the fluorogenic substrates, Suc-Leu-Leu-Val-Tyr-AMC and Boc-Gln-Ala-Arg-AMC, respectively. At T18, sperm aliquots were incubated for 15 min with Fn and/or progesterone in the presence or absence of epoxomicin (a proteasome inhibitor). The percentage of viable acrosome reacted sperm was evaluated using the Fluorescein isothiocyanate (FITC)-labeled Pisum sativum agglutinin. Tyrosine phosphorylation was evaluated by western blot and [Ca(2+)](i) using fura 2. RESULTS: Fn stimulated both enzymatic activities of the proteasome and the acrosome reaction of human sperm. Progesterone enhanced and epoxomicin drastically inhibited the effect of Fn. Fn treatment also increased the [Ca(2+)](i). Western blot analysis revealed that Fn increased tyrosine protein phosphorylation and that some proteasome subunits became tyrosine phosphorylated upon Fn treatment. CONCLUSIONS: These results suggest that Fn activates the proteasome and induces the acrosome reaction in human sperm. This effect may involve binding with specific receptors (integrins) on the sperm surface and the activation of tyrosine kinases.  相似文献   

19.
Ligation of the CD2 cell surface glycoprotein expressed on Tlymphocytes and NK cells induces protein tyrosine phosphorylationand activation of the Src kinases, LCK and FYN. We show herethat in Jurkat T leukemia cells and in peripheral blood T cells,CD2 stimulation also leads to tyrosine phosphorylation and activationof the Tec family kinase, EMThTKITSK. Activation of EMT by CD2was induced by mitogenic pairs of CD2 mAb, certain single CD2mAb followed by secondary antibody cross-linking, and CD58-bearingsheep red blood cells. With the use of different Jurkat cellmutants it was demonstrated that CD2-mediated activation ofEMT required expression of LCK, but did not require surfaceexpression of the CD3 chain. Receptor-mediated activation ofLCK does not in itself lead to activation of this Tec kinasesince induction of LCK by ligation of CD4 or CD5 did not resultin activation of EMT. The activation of EMT during CD2 signalingsuggests an important role for this kinase in CD2 co-stimulationof T cell responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号