首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
Functional recovery after large excision of dorsal roots is absent because of both the limited regeneration capacity of the transected root, and the inability of regenerating sensory fibers to traverse the dorsal root entry zone. In this study, bioresorbable guidance conduits were used to repair 6-mm dorsal root lesion gaps in rats, while neurotrophin-encoding adenoviruses were used to elicit regeneration into the spinal cord. Polyester conduits with or without microfilament bundles were implanted between the transected ends of lumbar dorsal roots. Four weeks later, adenoviruses encoding NGF or GFP were injected into the spinal cord along the entry zone of the damaged dorsal roots. Eight weeks after injury, nerve regeneration was observed through both types of implants, but those containing microfilaments supported more robust regeneration of calcitonin gene-related peptide (CGRP)-positive nociceptive axons. NGF overexpression induced extensive regeneration of CGRP(+) fibers into the spinal cord from implants showing nerve repair. Animals that received conduits containing microfilaments combined with spinal NGF virus injections showed the greatest recovery in nociceptive function, approaching a normal level by 7-8 weeks. This recovery was reversed by recutting the dorsal root through the centre of the conduit, demonstrating that regeneration through the implant, and not sprouting of intact spinal fibers, restored sensory function. This study demonstrates that a combination of PNS guidance conduits and CNS neurotrophin therapy can promote regeneration and restoration of sensory function after severe dorsal root injury.  相似文献   

2.
Axon regeneration and remyelination of the damaged region is the most common repair strategy for spinal cord injury.However,achieving good outcome remains difficult.Our previous study showed that porcine decellularized optic nerve better mimics the extracellular matrix of the embryonic porcine optic nerve and promotes the directional growth of dorsal root ganglion neurites.However,it has not been reported whether this material promotes axonal regeneration in vivo.In the present study,a porcine decellularized optic nerve was seeded with neurotrophin-3-overexpressing Schwann cells.This functional scaffold promoted the directional growth and remyelination of regenerating axons.In vitro,the porcine decellularized optic nerve contained many straight,longitudinal channels with a uniform distribution,and microscopic pores were present in the channel wall.The spatial micro topological structure and extracellular matrix were conducive to the adhesion,survival and migration of neural stem cells.The scaffold promoted the directional growth of dorsal root ganglion neurites,and showed strong potential for myelin regeneration.Furthermore,we transplanted the porcine decellularized optic nerve containing neurotrophin-3-overexpressing Schwann cells in a rat model of T10 spinal cord defect in vivo.Four weeks later,the regenerating axons grew straight,the myelin sheath in the injured/transplanted area recovered its structure,and simultaneously,the number of inflammatory cells and the expression of chondroitin sulfate proteoglycans were reduced.Together,these findings suggest that porcine decellularized optic nerve loaded with Schwann cells overexpressing neurotrophin-3 promotes the directional growth of regenerating spinal cord axons as well as myelin regeneration.All procedures involving animals were conducted in accordance with the ethical standards of the Institutional Animal Care and Use Committee of Sun Yat-sen University(approval No.SYSU-IACUC-2019-B034)on February 28,2019.  相似文献   

3.
Spinal cord transections were performed in wild type and NG2 proteoglycan null mice in order to study penetration of regenerating axons into the scar that forms in response to this type of injury. Aside from the presence or absence of NG2, the features of the transection scar did not differ between the two genotypes. In both cases, the rostral and caudal spinal cord stumps were separated by collagenous connective tissue that was continuous with the spinal cord meninges. In wild type mice, oligodendrocyte progenitors, macrophages, and microvascular pericytes contributed to up-regulation of NG2 expression in and around the scar. Substantial amounts of non-cell associated NG2 were also observed in the scar. The abilities of two classes of spinal axons to penetrate the transection scar were examined. Serotonergic efferents and calcitonin gene-related peptide-positive sensory afferents both were observed within the lesion, with calcitonin gene-related peptide-positive axons exhibiting a greater capability to penetrate deeply into the scar tissue. These observations demonstrate inherent differences in the abilities of distinct types of neurons to penetrate the scar. Significantly, growth of serotonergic axons into the transection scar was observed twice as frequently in wild type mice as in NG2 knockout mice, suggesting a stimulatory role for the proteoglycan in regeneration of these fibers. These findings run counter to in vitro evidence implicating NG2 as an inhibitor of nerve regeneration. This work therefore emphasizes the importance of including in vivo models in evaluating the responses of specific types of neurons to spinal cord injury.  相似文献   

4.
Following injury to central nervous tissues, damaged neurons are unable to regenerate their axons spontaneously. Implantation of peripheral nerves into the CNS, however, does result in axonal regeneration into these transplants and is one of the most powerful strategies to promote CNS regeneration. In the present study implantation of peripheral nerve bridges following dorsal hemisection is combined with ex vivo gene transfer with adenoviral vectors encoding neurotrophin-3 (Ad-NT-3) to examine whether this would stimulate regeneration of one of the long descending tracts of the spinal cord, the corticospinal tract (CST), into and beyond the peripheral nerve implant. We chose to use an adenoviral vector encoding NT-3 because CST axons are sensitive to this neurotrophin and Schwann cells in peripheral nerve implants do not express this neurotrophin. At 16 weeks postimplantation of Ad-NT-3-transduced intercostal nerves, approximately three- to fourfold more of the anterogradely traced corticospinal tract fibers had regrown their axons through gray matter below the lesion site when compared to control animals. Regrowth of CST fibers occurred over more than 8 mm distal to the lesion site. No regenerating CST fibers were, however, observed into the transduced peripheral implant. Animals with a peripheral nerve transduced with Ad-NT-3 also exhibited improved function of the hindlimbs when compared to control animals treated with an adenoviral vector encoding LacZ. Thus, transient overexpression of NT-3 in peripheral nerve tissue bridges is apparently sufficient to stimulate regrowth of CST fibers and to promote recovery of hindlimb function, but does not result in regeneration of CST fibers into such transplants. Taken together, combining an established neurotransplantation approach with viral vector-gene transfer promotes the regrowth of injured CST fibers through gray matter and improves the recovery of hindlimb function.  相似文献   

5.
Insulin-like growth factor-I (IGF-I) promotes axonal regeneration in the peripheral nervous system and this effect is enhanced by platelet-derived growth factor (PDGF). We decided, therefore, to study the effects of these factors on axonal regeneration in the adult rat spinal cord. Semipermeable polymer tubes, closed at the distal end, containing Matrigel mixed with cultured rat Schwann cells and IGF-I/PDGF, were placed at the proximal stump of the spinal cord after removal of the thoracic T9-11 segments. Control animals received implants of only Matrigel and Schwann cells or only Matrigel and IGF-I/PDGF. Four weeks after implantation, electron microscopic analysis showed that the addition of IGF-I/PDGF resulted in an increase in the myelinated:unmyelinated fiber ratio from 1:7 to 1:3 at 3 mm in the Schwann cell graft, and that myelin sheath thickness was increased 2-fold. The reduced number of unmyelinated axons was striking in electron micrographs. These results suggested that IGF-I/PDGF enhanced myelin formation of regenerated axons in Schwann cell implants, but there was a 36% decrease in the total number of myelinated axons at the 3 mm level of the graft. This finding and the altered myelinated:unmyelinated fiber ratio revealed that the overall fiber regeneration into Schwann cell implants was diminished up to 63% by IGF-I/PDGF. Histological evaluation revealed that there were more larger cavities in tissue at the proximal spinal cord-graft interface in animals receiving a Schwann cell implant with IGF-I/PDGF. Such cavitation might have contributed to the reduction in axonal ingrowth. In sum, the results indicate that whereas the combination of IGF-I and PDGF enhances myelination of regenerating spinal cord axons entering implants of Matrigel and Schwann cells after midthoracic transection, the overall regeneration of axons into such Schwann cell grafts is diminished. GLIA 19:247–258, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Transplants of the embryonic rat spinal cord survive and differentiate in the spinal cords of adult and newborn host rats. Very little is known about the extent to which these homotopic transplants can provide an environment for regeneration of adult host axons that normally terminate in the spinal cord. We have used horseradish peroxidase injury filling and transganglionic transport methods to determine whether transected dorsal roots regenerate into fetal spinal cord tissue grafted into the spinal cords of adult rats. Additional transplants were examined for the presence of calcitonin gene-related peptide-like immunoreactivity, which in the normal dorsal horn is derived exclusively from primary afferent axons. Host animals had one side of the L4-5 spinal cord resected and replaced by a transplant of E14 or E15 spinal cord. Adjacent dorsal roots were sectioned and juxtaposed to the graft. The dorsal roots and their projections into the transplants were then labeled 2-9 months later. The tracing methods that used transport or diffusion of horseradish peroxidase demonstrated that severed host dorsal root axons had regenerated and grown into the transplants. In addition, some donor and host neurons had extended their axons into the periphery to at least the midthigh level as indicated by retrograde labeling following application of tracer to the sciatic nerve. Primary afferent axons immunoreactive for calcitonin gene-related peptide were among those that regenerated into transplants, and the projections shown by this immunocytochemical method exceeded those demonstrated by the horseradish peroxidase tracing techniques. Growth of the host dorsal roots into transplants indicates that fetal spinal cord tissue permits regeneration of adult axotomized neurons that would otherwise be aborted at the dorsal root/spinal cord junction. This transplantation model should therefore prove useful in studying the enhancement and specificity of the regrowth of axons that normally terminate in the spinal cord.  相似文献   

7.
The aim of this study was to evaluate whether transplantation of Schwann cells derived from bone marrow stromal cells (BMSC-SCs) promotes axonal regeneration and functional recovery in completely transected spinal cord in adult rats. Bone marrow stromal cells (BMSCs) were induced to differentiate into Schwann cells in vitro. A 4-mm segment of rat spinal cord was removed completely at the T7 level. An ultra-filtration membrane tube, filled with a mixture of Matrigel (MG) and BMSC-SCs (BMSC-SC group) or Matrigel alone (MG group), was grafted into the gap. In the BMSC-SC group, the number of neurofilament- and tyrosine hydroxylase-immunoreactive nerve fibers was significantly higher compared to the MG group, although 5-hydroxytryptamine- or calcitonin gene-related peptide-immunoreactive fibers were rarely detectable in both groups. In the BMSC-SC group, significant recovery of the hindlimb function was recognized, which was abolished by retransection of the graft 6 weeks after transplantation. These results demonstrate that transplantation of BMSC-SCs promotes axonal regeneration of lesioned spinal cord, resulting in recovery of hindlimb function in rats. Transplantation of BMSC-SCs is a potentially useful treatment for spinal cord injury.  相似文献   

8.
PURPOSE OF REVIEW: This article reviews recent experimental advances in the development of biosynthetic implants for repair of spinal cord injury. RECENT FINDINGS: Various important advances in the development of biosynthetic conduits for spinal cord repair have recently been reported. It was found that implantation of freeze dried alginate sponge into completely transected spinal cord supports axonal regeneration across the lesion site. A poly(lactic-co-glycolic acid) scaffold seeded with neural stem cells has been developed that promotes axonal regeneration across the gap. It was found that polyethylene glycol can reseal damaged spinal cord axons and restore impulse conduction. Findings have been reported that poly-beta-hydroxybutyrate conduits in combination with alginate and fibronectin provide neuroprotection for axotomized descending neurones. It has been reported that conduits made of fibronectin mats or fibrin in combination with neurotrophic growth factors promote axonal growth into the grafts. Finally, magnetic resonance imaging after experimental spinal cord injury has been used to monitor regeneration in biosynthetic conduits in vivo over time. SUMMARY: Biosynthetic conduits carrying extracellular matrix molecules and different cell lines, and supplemented with neurotrophic growth factors have yielded encouraging results in the treatment of experimental spinal cord injury. These findings provide a basis for further development of techniques aimed at spinal cord repair in humans.  相似文献   

9.
To investigate the effects of Schwann cells and nerve growth factor receptor (NGFR) on the regeneration of axons, autopsy specimens of spinal cord from 21 patients with a survival time of 2 h to 54 years after spinal cord trauma were studied using immunohistochemistry and electron microscopy. Regenerating sprouts of axons could be observed as early as 4 days after trauma. At 4.5 months after trauma, many regenerating nests of axons appeared in the injured spinal cord. The regeneration nests contained directionally arranged axons and Schwann cells. Some axons were myelinated. In injured levels of the spinal cord, the Schwann cells exhibited an increased expression of NGFR within spinal roots. These results show that an active regeneration process occurs in traumatically injured human spinal cord. The NGFR expressed on Schwann cells could mediate NGF to support and induce the axon regeneration in the central nervous system. Received: 20 June 1995 / Revised, accepted: 18 September 1995  相似文献   

10.
BACKGROUND:Transplantation of olfactory ensheathing cells (OECs) into the injured spinal cord has been shown to promote axonal regeneration and functional recovery.However,the mechanisms underlying the effects of OEC transplantation remain controversial.OBJECTIVE:To observe fibrotic scar formation and axonal regeneration in the damaged spinal cord following OEC transplantation,and to determine whether OEC transplantation promotes neural regeneration by attenuating fibrotic scar formation.DESIGN,TIME AND SETTING:A randomized,controlled animal experiment was performed at the Department of Developmental Morphology,Tokyo Metropolitan Institute for Neuroscience,Fuchu,Japan and at the Department of Human Anatomy,College of Basic Medical Sciences,China Medical University,China between April 2007 and May 2009.MATERIALS:OECs were obtained from olfactory nerves and olfactory bulbs of male,4-week-old,Sprague Dawley rats.Rabbit anti-serotonin polyclonal antibody,rabbit anti-calcitonin gene-related peptide polyclonal antibody,rabbit anti-glial fibrillary acidic protein polyclonal antibody,rabbit anti-type IV collagen polyclonal antibody,and mouse anti-rat endothelial cell antigen-1 monoclonal antibody were used.METHODS:Male,Sprague Dawley rats aged 8 weeks were randomly divided into three groups:sham-surgery (n = 3),surgery (n = 9),and OEC transplantation (n = 11).Spinal cord transection at the T9-10 level was performed and the rats were transplanted with a 2-μL (1 × 105 cells) cell suspension.MAIN OUTCOME MEASURES:Formation of glial and fibrotic scars was examined using immunohistochemistry for glial fibrillary acidic protein and type IV collagen.Serotonin-positive and calcitonin gene-related peptide-positive axons were visualized by immunohistochemistry,respectively.Double immunofluorescence for type IV collagen and rat endothelial cell antigen-1 was also performed to determine co-localization of type IV collagen deposition and blood vessels.RESULTS:At 1 week after spinal cord injury,numerous glial cells were observed around the lesion site.Formation of fibrotic scar was determined by a large amount of type IV collagen deposition in the lesion center,and descending serotonin- or ascending calcitonin gene-related peptideconiaining axons stopped at the fibrotic scar that was formed in the lesion site.At week after transplantation,the formation of fibrotic scar was significantly inhibited.In addition,the fibrotic structure was partly formed and centralized in the blood vessel,and serotonergic and calcitonin gene-related peptide-containing axons were regenerated across the lesion site.CONCLUSION:OEC transplantation into the injured spinal cord attenuated fibrotic scar formation and promoted axon regeneration.  相似文献   

11.
To overcome obstacles to the regeneration of crushed dorsal root fibers at the dorsal root entry zone, we have employed specially designed Millipore implants coated with embryonic astrocytes to serve as a substrate for axonal growth. This strategy was successful in promoting the growth of crushed dorsal root axons into the grey matter of the adult mammalian spinal cord in a small number of animals. Fiber ingrowth into the spinal cord was closely associated with the surface of the polymer implant. In addition, unique terminal arbor malformations, not normally present, were seen in several animals. A consistent finding was the presence of a limited inflammatory response in regions immediately adjacent to the implant where axons penetrate the spinal cord. Our findings suggest that providing the dorsal root entry zone with an embryonic milieu can stimulate a limited amount of axonal regeneration into the adult mammalian spinal cord.  相似文献   

12.
The permissivity of adult olfactory bulb to the ingrowth of olfactory axons could be due to the unique properties of ensheathing glia. To test whether these glial cells could be used to promote axonal regeneration in a spontaneously nonregenerating system, we transplanted suspensions of pure ensheathing cells into a rhizotomized spinal cord segment. Ensheathing cells were purified away from other cell types by immunoaffinity, using anti-p75 nerve growth factor receptor. After laminectomy at the lower thoracic level, the spinal cord was exposed and one dorsal root (T10) was completely transected at the cord entry point. The root stump was microsurgically anastomosed to the cord and a suspension of ensheathing cells was transplanted in the spinal cord at the dorsal root entry zone. Three weeks after transplantation, numerous regenerating dorsal root axons were observed reentering the spinal cord. Ingrowth of dorsal root axons was observed using Dil and antibodies against calcitonin gene-related peptide and growth-associated protein. Primary sensory afferents invaded laminae 1, 2, and 3, grew through laminae 4 and 5, and reached the dorsal grey commissure and lamina 4 of the contralateral side. We did not observe regenerating axons within the ipsilateral ventral horn and dorsal column. Transplanted ensheathing cells reached the same laminae as axons. Neither ensheathing cells nor regenerating axons invaded those laminae they did not inervate under normal circumstances. In conclusion, the regeneration of injured dorsal root axons into the adult spinal cord was possible after ensheathing glia transplantation. The use of ensheathing cells as stimulators of axonal growth might be generalized to other central nervous system injuries.  相似文献   

13.
The regeneration capacity of spinal cord axons is severely limited. Recently, much attention has focused on promoting regeneration of descending spinal cord pathways, but little is known about the regenerative capacity of ascending axons. Here we have assessed the ability of neurotrophic factors to promote regeneration of sensory neurons whose central axons ascend in the dorsal columns. The dorsal columns of adult rats were crushed and either brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3) or a vehicle solution was delivered continuously to the lesion site for 4 weeks. Transganglionic labelling with cholera toxin beta subunit (CTB) was used to selectively label large myelinated Abeta fibres. In lesioned rats treated with vehicle, CTB-labelled fibres were observed ascending in the gracile fasciculus, but these stopped abruptly at the lesion site, with no evidence of sprouting or growth into lesioned tissue. No CTB-labelled terminals were observed in the gracile nucleus, indicating that the lesion successfully severed all ascending dorsal column axons. Treatment with BDNF did not promote axonal regeneration. In GDNF-treated rats fibres grew around cavities in caudal degenerated tissue but did not approach the lesion epicentre. NT-3, in contrast, had a striking effect on promoting growth of lesioned dorsal column axons with an abundance of fibre sprouting apparent at the lesion site, and many fibres extending into and beyond the lesion epicentre. Quantification of fibre growth confirmed that only in NT-3-treated rats did fibres grow into the crush site and beyond. No evidence of terminal staining in the gracile nucleus was apparent following any treatment. Thus, although NT-3 promotes extensive growth of lesioned axons, other factors may be required for complete regeneration of these long ascending projections back to the dorsal column nuclei. The intrathecal delivery of NT-3 or other neurotrophic molecules has obvious advantages in clinical applications, as we show for the first time that dorsal column axonal regeneration can be achieved without the use of graft implantation or nerve lesions.  相似文献   

14.
To date, there are no reports of growth of significant numbers of axons into or across a lesion of the mammalian spinal cord. However, recent studies showing that CNS axons will grow into PNS environments indicate that comparable growth into spinal cord lesions could be achieved if ischemic necrosis could be prevented and the lesion site repopulated by astrocytes and ependymal cells rather than by the macrophages, lymphocytes, and fibroblasts that generally accumulate at sites of CNS injury. To examine this possibility, we made a laminectomy at T5 in rats and crushed the spinal cord for 2 s with a smooth forceps (leaving the dura mater intact to prevent ingrowth of connective tissue). At 1 week, the lesion was filled with mononuclear cells, degenerating nerve fibers, and capillaries that were oriented parallel to the long axis of the spinal cord. By 2 weeks, longitudinally oriented cords of ependymal cells and astrocytes had migrated into the lesion from the adjacent spinal cord, and similarly oriented nerve fibers had begun to grow into the lesion along these capillaries and cellular cordons. The mononuclear cells had now assumed phagocytic activity and were engorged with myelin and other cellular debris. After 3 weeks, the astrocytes had elaborated thick cell processes. The nerve fibers in the lesion were still oriented longitudinally but had increased in number and were often arranged in small fascicles. These observations provide the first histological evidence of growth of nerve fibers into a lesion of the rat spinal cord. We conclude that the intrinsic regenerative capacity of the spinal cord can be expressed if ischemic necrosis and collagenous scarring are prevented and the spinal cord parenchyma is first reconstructed by its nonneuronal constituents.  相似文献   

15.
Our goal was to devise methods of implanting defined populations of the cellular constituents of peripheral nerve into regions of spinal cord injury. This objective derived from the knowledge that the cellular environment of peripheral nerve is known to be supportive of axon regeneration from both central and peripheral neurons. Two of the constituents of the peripheral nerve environment known to influence axonal growth are the Schwann cell and extracellular matrix (particularly basal lamina), both of which can be obtained in culture. We describe here large-scale methods of establishing purified populations of rat sensory neurons to which purified populations of Schwann cells were added. These essentially monolayer preparations were then scrolled and cut into lengths of proper shape and size to provide implants for sites of spinal cord injury in newborn rats. We also describe methods enabling the addition of leptomeningeal components to the implants; this addition contributes a proliferating population of vascular endothelial cells (identified by immunostaining) to the otherwise vasculature-free neuron/Schwann cell implant. Light and electron microscopic observations were made to characterize the implants. When the implant was ready for use, it contained Schwann cells that were differentiated, i.e., had begun to ensheathe axons and form basal lamina. The use of a medium containing human plasma to foster endothelial cell growth led to increased neurite fasciculation and Schwann cell migratory activity in the outgrowth, particularly when the neurons and Schwann cells were cultured on leptomeninges. The second paper in this series reports the deportment of these implants and their influence on corticospinal tract growth after placement into regions of dorsal column injury in neonatal rats (Kuhlengel et al., J. Comp. Neurol 293:74-91, 1990).  相似文献   

16.
Our goal is to develop biohybrid neural microprobe implants with sieve electrodes for external stimulation of co-implanted neurons whose axons penetrate through the holes of electrodes and innervate host targets such as denervated muscle fibers. For evaluation of implants, potential scar formation was imitated in fibroblast-spinal cord co-cultures. In vitro neurite extension through flexible 10-microm thick polyimide sieves was inhibited by co-cultured fibroblasts. In contrast, the neurite penetration of sieves could be greatly stimulated by oriented exposure to Schwann cells. To our knowledge this is the first direct proof that Schwann cells display a guidance effect on spinal cord neurons in vitro. The results pave the way for novel biohybrid neuro-implants and provide means to circumvent the obstacle of inhibitory scar formation.  相似文献   

17.
Schwann cells contribute to efficient axonal regeneration after peripheral nerve injury and, when grafted to the central nervous system (CNS), also support a modest degree of central axonal regeneration. This study examined (1) whether Schwann cells grafted to the CNS exhibit normal patterns of differentiation and association with spinal axons and what signals putatively modulate these interactions, and (2) whether Schwann cells overexpressing neurotrophic factors enhance axonal regeneration. Thus, primary Schwann cells were transduced to hypersecrete human nerve growth factor (NGF) and were grafted to spinal cord injury sites in adult rats. Comparisons were made to nontransfected Schwann cells. From 3 days to 6 months later, grafted Schwann cells exhibited a phenotypic and temporal course of differentiation that matched patterns normally observed after peripheral nerve injury. Schwann cells spontaneously aligned into regular spatial arrays within the cord, appropriately remyelinated coerulospinal axons that regenerated into grafts, and appropriately ensheathed but did not myelinate sensory axons extending into grafts. Coordinate expression of the cell adhesion molecule L1 on Schwann cells and axons correlated with establishment of appropriate patterns of axon-Schwann cell ensheathment. Transduction of Schwann cells to overexpress NGF robustly increased axonal growth but did not otherwise alter the nature of interactions with growing axons. These findings suggest that signals expressed on Schwann cells that modulate peripheral axonal regeneration and myelination are also recognized in the CNS and that the modification of Schwann cells to overexpress growth factors significantly augments their capacity to support extensive axonal growth in models of CNS injury.  相似文献   

18.
Spontaneous axonal regeneration in rodent spinal cord after ischemic injury   总被引:1,自引:0,他引:1  
Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total length of all NF-immunolabeled axons within the lesion cavities was increased 6- to 10-fold at 5, 10, and 15 wk post-lesion compared with 1 wk post-surgery. In ultrastructural studies we found the putatively regenerating axons within the lesion to be associated either with oligodendrocytes or Schwann cells, while other fibers were unmyelinated. Immunohistochemistry demonstrated that some of the regenerated fibers were tyrosine hydroxylase- or serotonin-immunoreactive, indicating a central origin. These findings suggest that there is a considerable amount of spontaneous regeneration after spinal cord lesions in rodents and that the fibers remain several months after injury. The findings of tyrosine hydroxylase- and serotonin-immunoreactivity in the axons suggest that descending central fibers contribute to this endogenous repair of ischemic spinal cord injury.  相似文献   

19.
The response to injury of ascending collaterals of dorsal root axons within the dorsal column (DC) was studied after neonatal spinal overhemisection (OH) made at different levels of the spinal cord. The transganglionic tracer, cholera toxin conjugated to horseradish peroxidase, and the anterograde tracer, biotinylated dextran amine, were used to label dorsal root ganglion cells with peripheral axons contributing to the sciatic nerve. There was no indication of a regenerative attempt by DC axons at acute survival times (3 days and later) after cervical injury, replicating previous work done at chronic survival periods (Lahr and Stelzner [1990] J. Comp. Neurol. 293:377–398). There was also no evidence of DC regeneration after lumbar OH injury even though immunohistochemical studies using the oligodendrocyte markers Rip and myelin basic protein showed few oligodendrocytes in the gracile fasciculus at lumbar levels at birth. Therefore, the lack of myelin in the dorsal funiculus at lumbar levels does not enhance the growth of neonatally axotomized DC axons. In addition, DC axons did not regenerate when presented with fetal spinal tissue implanted into thoracic OH lesions, even though positive control experiments showed that segmental dorsal root axons containing calcition gene-related peptide and corticospinal axons grew into these implants, replicating previous work of others. When a thoracic OH lesion, with or without a fetal spinal implant, was combined with sciatic nerve injury to attempt to stimulate an intracellular regenerative response of DRG neurons, again, no evidence of DC axonal regeneration was detected. Quantitative studies of the L4 and L5 dorsal root ganglia (DRG) showed that OH injury did not result in DRG neuronal loss. However, sciatic nerve injury did result in significant post-axotomy retrograde cell loss of DRG neurons, even in groups receiving thoracic embryonic spinal implants, and is one explanation for the minimal effect of sciatic nerve injury on DC regeneration. Although fetal tissue did not appear to rescue a significant number of DRG neurons, the quantitative analysis showed an enlargement of the largest class of DRG neuron, the class that contributes to the DC projection, in all groups receiving fetal tissue implants. This apparent trophic effect did not affect DC regeneration or neuronal survival after peripheral axotomy. Further studies are needed to determine why DC axons do not regenerate in a neonatal spinal environment or within fetal tissue implants, especially because previous work by others in both the developing and adult spinal cord shows that dorsal root axons will grow within the same type of fetal spinal implant. © 1996 Wiley-Liss, Inc.  相似文献   

20.
A prominent role for phagocytic cells in the regenerative response to CNS or PNS injury has been suggested by numerous studies. In the present work we tested whether increasing the presence of phagocytic cells at a spinal cord injury site could enhance the regeneration of sensory axons from cut dorsal roots. Nitrocellulose membranes treated with TGF-β or coated with microglial cells were cotransplanted with fetal spinal cord tissue into an injured adult rat spinal cord. Cut dorsal roots were apposed to both sides of the nitrocellulose. Four weeks later, animals were sacrificed and spinal cord tissue sections were processed for immunocytochemical detection of calcitonin gene-related peptide (CGRP-ir) to identify regenerated sensory axons. Adjacent sections were processed with the antibody ED-1 or the lectin GSA-B4 for detection of macrophage/microglial cells in association with the regrowing axons. Qualitative and quantitative data indicate a correlation between the pattern and extent of axonal regeneration and the presence of phagocytic cells along the nitrocellulose implant. Axonal regeneration could be experimentally limited by implanting a nitrocellulose strip treated with macrophage inhibitory factor. These results indicate that increasing the presence of activated macrophage/microglial cells at a spinal cord injury site can provide an environment beneficial to the promotion of regeneration of sensory axons, possibly by the release of cytokines and interaction with other nonneuronal cells in the immediate vicinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号