首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that a light and voluntary touch with a fingertip on a fixed surface improves postural stability during quiet standing. To determine whether the effect of the light touch is due to the tactile sensory input, as opposed to mechanical support, we investigated the light touch effect on postural stability during quiet standing with and without somatosensory input from the fingertip. Seven young subjects maintained quiet standing on a force platform with (LT) and without (NT) lightly touching a fixed surface, and with (TIS) and without (CON) the application of tourniquet ischemia, which removed the tactile sensation from the fingertip. The mean velocity of centre of pressure (CoP) was calculated to assess the postural sway in each condition. The mean velocity of CoP was significantly smaller in the LT condition compared to the NT condition only under the CON condition, whereas the light touch effect was not significant under the TIS condition. We found that the reduction of the horizontal ground reaction force due to the light touch was about 20%, which was approximately equivalent to the reduction of mean velocity of CoP in the LT condition compared to the NT condition. Since the fingertip contact force was relatively large compared to the horizontal ground reaction force, one could say that the light touch effect might be due to the mechanical support provided by the contact itself. However, we demonstrated experimentally that light touch effects were diminished due to loss of finger tactile feedback induced by the tourniquet ischemia, but not due to the mechanical support provided by the light touch. One possible reason is the lack of feedback information in controlling posture, and the other is the altered control of the arm induced by the loss of tactile feedback.  相似文献   

2.
The purpose of the present experiment was to investigate whether and how using a light fingertip touch for postural control during quiet standing requires additional attentional demands. Nine young healthy university students were asked to respond as rapidly as possible to an unpredictable auditory stimulus while maintaining stable seated and upright postures in three sensory conditions: vision, no-vision and no-vision/touch. Touch condition involved a gentle light touch with the right index finger on a nearby surface at waist height. Center of foot pressure (CoP) displacements were recorded using a force platform. Reaction times (RTs) values were used as an index of the attentional demand necessary for calibrating the postural system. Results showed decreased CoP displacements in both the vision and no-vision/touch conditions relative to the no-vision condition. More interestingly, a longer RT in the no-vision/touch than in the vision and no-vision conditions was observed. The present findings suggest that the ability to use a light fingertip touch as a source of sensory information to improve postural control during quiet standing is attention demanding.  相似文献   

3.
Lightly touching a stable surface with one fingertip strongly stabilizes standing posture. The three main features of this phenomenon are fingertip contact forces maintained at levels too low to provide mechanical support, attenuation of postural sway relative to conditions without fingertip touch, and center of pressure (CP) lags changes in fingertip shear forces by approximately 250 ms. In the experiments presented here, we tested whether accurate arm proprioception and also whether the precision fingertip contact afforded by the arm's many degrees of freedom are necessary for postural stabilization by finger contact. In our first experiment, we perturbed arm proprioception and control with biceps brachii vibration (120-Hz, 2-mm amplitude). This degraded postural control, resulting in greater postural sway amplitudes. In a second study, we immobilized the touching arm with a splint. This prevented precision fingertip contact but had no effect on postural sway amplitude. In both experiments, the correlation and latency of fingertip contact forces to postural sway were unaffected. We conclude that postural control is executed based on information about arm orientation as well as tactile feedback from light touch, although precision fingertip contact is not essential. The consistent correlation and timing of CP movement and fingertip forces across conditions in which postural sway amplitude and fingertip contact are differentially disrupted suggests posture and the fingertip are controlled in parallel with feedback from the fingertip in this task.  相似文献   

4.
Haptic information is critically important in complex sensory-motor tasks such as manipulating objects. Its comparable importance in spatial orientation is only beginning to be recognized. We have shown that postural sway in humans is significantly reduced by lightly touching a stable surface with a fingertip at contact force levels far below those physically necessary to stabilize the body. To investigate further the functional relationship between contact forces at the hand and postural equilibrium, we had subjects stand in the tandem Romberg stance while being allowed physically supportive (force contact) and non-physically supportive (touch contact) amounts of index fingertip force on surfaces with different frictional characteristics. Mean sway amplitude (MSA) was reduced by over 50% with both touch and force contact of the fingertip, compared to standing without fingertip contact. No differences in MSA were observed when touching rough or slippery surfaces. The amplitude of EMG activity in the peroneal muscles and the timing relationships between fingertip forces, body sway and EMG activity suggested that with touch contact of the finger or with force contact on a slippery surface, long-loop reflexes involving postural muscles were stabilizing sway. With force contact of the fingertip on a rough surface, MSA reduction was achieved primarily through physical support of the body. This pattern of results indicates that light touch contact cues from the fingertip in conjunction with proprioceptive signals about arm configuration are providing information about body sway that can be used to reduce MSA through postural muscle activation.  相似文献   

5.
The present study aimed to investigate whether stroke survivals are able to use the additional somatosensory information provided by the light touch to reduce their postural sway during the upright stance. Eight individuals, naturally right-handed pre-stroke, and eight healthy age-matched adults stood as quiet as possible on a force plate during 35 s. Participants performed two trials for each visual condition (eyes open and closed) and somatosensory condition (with and without the right or left index fingertip touching an instrumented rigid and fixed bar). When participants touched the bar, they were asked to apply less than 1 N of vertical force. The postural sway was assessed by the center of pressure (COP) displacement area, mean amplitude and velocity. In addition, the mean and standard deviation of the force vertically applied on the bar during the trials with touch were assessed. The averaged values of COP area, amplitude and velocity were greater for stroke individuals compared to healthy adults during all visual and somatosensory conditions. For both groups, the values of all variables increased when participants stood with eyes closed and reduced when they touched the bar regardless of the side of the touch. Overall, the results suggested that, as healthy individuals, persons with post-stroke hemiparesis are able to use the additional somatosensory information provided by the light touch to reduce the postural sway.  相似文献   

6.
Light touch contact between the body and an environmental referent reduces fluctuations of center of pressure (CoP) in quiet standing although the contact forces are insufficient to provide significant forces to stabilize standing balance. Maintenance of upright standing posture (with light touch contact) may include both predictive and reactive components. Recently Dickstein et al. (2003) demonstrated that reaction to temporally unpredictable displacement of the support surface was affected by light touch raising the question whether light touch effects also occur with predictable disturbance to balance. We examined the effects of shoulder light touch on SD of CoP rate (dCoP) during balance perturbations associated with forward sway induced by pulling on (voluntary), or being pulled by (reactive), a hand-held horizontal load. Prior to perturbation, SD dCoP was lower with light touch, corresponding to previous findings. Immediately after perturbation, SD dCoP(AP) was greater with light touch in the case of voluntary pull, whereas no difference was found for reflex pull. However, in the following time course, light touch contact again resulted in a significantly lower SD dCoP and faster stabilization of SD dCoP. We conclude that shoulder light touch contact affects immediate postural responses to voluntary pull but also stabilization after voluntary and reflex perturbation. We suggest that in voluntary perturbation CoP fluctuations are differentially modulated in anterioposterior and mediolateral directions to maintain light touch, which not only provides augmented sensory feedback about body self-motion, but may act as a "constraint" to the postural control system when preparing postural adjustments.  相似文献   

7.
Touch and pressure stimulation of the body surface can strongly influence apparent body orientation, as well as the maintenance of upright posture during quiet stance. In the present study, we investigated the relationship between postural sway and contact forces at the fingertip while subjects touched a rigid metal bar. Subjects were tested in the tandem Romberg stance with eyes open or closed under three conditions of fingertip contact: no contact, touch contact (< 0.98 N of force), and force contact (as much force as desired). Touch contact was as effective as force contact or sight of the surroundings in reducing postural sway when compared to the no contact, eyes closed condition. Body sway and fingertip forces were essentially in phase with force contact, suggesting that fingertip contact forces are physically counteracting body sway. Time delays between body sway and fingertip forces were much larger with light touch contact, suggesting that the fingertip is providing information that allows anticipatory innervation of musculature to reduce body sway. The results are related to observations on precision grip as well as the somatosensory, proprioceptive, and motor mechanisms involved in the reduction of body sway.  相似文献   

8.
Light touch of a fingertip on an external stable surface greatly improves the postural stability of standing subjects. The hypothesis of the present work was that a vibrating surface could increase the effectiveness of fingertip signaling to the central nervous system (e.g., by a stochastic resonance mechanism) and hence improve postural stability beyond that achieved by light touch. Subjects stood quietly over a force plate while touching with their right index fingertip a surface that could be either quiescent or randomly vibrated at two low-level noise intensities. The vibratory noise of the contact surface caused a significant decrease in postural sway, as assessed by center of pressure measures in both time and frequency domains. Complementary experiments were designed to test whether postural control improvements were associated with a stochastic resonance mechanism or whether attentional mechanisms could be contributing. A full curve relating body sway parameters and different levels of vibratory noise resulted in a U-like function, suggesting that the improvement in sway relied on a stochastic resonance mechanism. Additionally, no decrease in postural sway was observed when the vibrating contact surface was attached to the subject’s body, suggesting that no attentional mechanisms were involved. These results indicate that sensory cues obtained from the fingertip need not necessarily be associated with static contact surfaces to cause improvement in postural stability. A low-level noisy vibration applied to the contact surface could lead to a better performance of the postural control system.  相似文献   

9.
Touch and pressure stimulation of the body surface can strongly influence apparent body orientation, as well as the maintenance of upright posture during quiet stance. In the present study, we investigated the relationship between postural sway and contact forces at the fingertip while subjects touched a rigid metal bar. Subjects were tested in the tandem Romberg stance with eyes open or closed under three conditions of fingertip contact: no contact, touch contact (<0.98 N of force), and force contact (as much force as desired). Touch contact was as effective as force contact or sight of the surroundings in reducing postural sway when compared to the no contact, eyes closed condition. Body sway and fingertip forces were essentially in phase with force contact, suggesting that fingertip contact forces are physically counteracting body sway. Time delays between body sway and fingertip forces were much larger with light touch contact, suggesting that the fingertip is providing information that allows anticipatory innervation of musculature to reduce body sway. The results are related to observations on precision grip as well as the somatosensory, proprioceptive, and motor mechanisms involved in the reduction of body sway.  相似文献   

10.
Aim: To examine the effect of unweighting as a possible contributory factor to a reduced calf muscle volume on postural sway during quiet standing, changes in postural sway following bed rest with or without strength training were investigated. Methods: Twelve young men participated in a 20‐day bed‐rest study. Subjects were divided into a non‐training group (BR‐Con) and a strength training group (BR‐Tr). For the BR‐Tr group, training was comprised of dynamic calf‐raise and leg‐press exercises to maintain the muscle volume of the plantar flexors. Before and after bed rest, subjects maintained quiet standing in a barefoot position on a force platform with their eyes open or closed. During the quiet stance, foot centre‐of‐pressure (CoP) and the mean velocity of CoP was calculated. Muscle volume of the plantar flexors was computed using axial magnetic resonance images of the leg. Results: After the bed‐rest period, the muscle volume decreased in the BR‐Con group but not in the BR‐Tr group. The mean velocity of CoP as an assessment of postural sway, however, increased in both groups. These results indicate that the strength training during bed rest cannot counteract the increase in postural sway. Conclusion: We concluded that postural sway increases following 20 days of bed rest despite maintenance of the muscle volume of plantar flexors as the main working muscles for the human postural standing.  相似文献   

11.
Previous studies have looked at co-processing of multiple proprioceptive inputs but few have investigated the effect of separate dynamic and tonic predominantly proprioceptive disruptions applied concurrently at the same segment. The purpose of the present study was to investigate how simultaneous ankle tendon vibration, a tonic stimulus, with a dynamic toes-up (TU) or toes-down (TD) platform perturbation (1) affects postural stability and (2) influences the adaptation process. Sixteen normal subjects (ten male, six female, mean age 26±4.8 years) stood blindfolded on a moving platform with vibrators attached bilaterally over the Achilles tendons. Participants were tested in quiet stance (QS), and with five successive TU and TD tilts. All tests were conducted both with (QS+V, TU+V, TD+V) and without vibration. Centre of pressure (CoP) displacements and pitch angular trunk velocity were recorded. Results for QS+V showed a significant 1.02-cm backward CoP displacement (P<0.01) and a significant increase in trunk velocity (peak-to-peak amplitude, P<0.05; SD of trunk velocity, P<0.05). TU+V resulted in a non-significant increase of maximum backwards CoP displacement when compared to TU alone. In addition, no notable effect of vibration on other measures of CoP (pre-tilt position, SD and area of sway) and trunk velocity (peak-to-peak, SD and area of sway) indicates that TU+V does not introduce significantly greater instability compared to tilt alone. In the TD condition, vibration was found to be a stabilising influence, causing a significant shift of the mean pre-tilt position 0.85 cm backwards (P<0.01) and a substantial decrease in the area of forward CoP displacement (P<0.01). However, maximum forwards CoP displacement and trunk velocity measures were not significantly altered during TD+V. Furthermore, in neither TU nor TD was the time-course or pattern of adaptation disrupted by the additional application of vibration. In conclusion, although vibration significantly affects postural measures when applied in isolation, this finding does not hold when it is applied in combination with a more dynamic stimulus. Instead it seems that once postural stability has been disrupted the central nervous system can rapidly assess information from a weaker tonic input and utilise or suppress it appropriately, depending on its effect towards overall postural control. It can be concluded that postural responses to the concurrent application of different predominantly proprioceptive stimuli are dependent upon the type of stimulus and the ability of the central nervous system to rapidly assess and re-weigh available sensory inputs.  相似文献   

12.
Light touch contact of a fingertip with a stationary surface can provide orientation information that enhances control of upright stance. Slight changes in contact force at the fingertip provide sensory cues about the direction of body sway, allowing attenuation of sway. In the present study, we asked to which extent somatosensory cues are part of the postural control system, that is, which sensory signal supports this coupling? We investigated postural control not only when the contact surface was stationary, but also when it was moving rhythmically (from 0.1 to 0.5 Hz). In doing so, we brought somatosensory cues from the hand into conflict with other parts of the postural control system. Our focus was the temporal relationship between body sway and the contact surface. Postural sway was highly coherent with contact surface motion. Head and body sway assumed the frequency of the moving contact surface at all test frequencies. To account for these results, a simple model was formulated by approximating the postural control system as a second-order linear dynamical system. The influence of the touch stimulus was captured as the difference between the velocity of the contact surface and the velocity of body sway, multiplied by a coupling constant. Comparison of empirical results (relative phase, coherence, and gain) with model predictions supports the hypothesis of coupling between body sway and touch cues through the velocity of the somatosensory stimulus at the fingertip. One subject, who perceived movement of the touch surface, demonstrated weaker coupling than other subjects, suggesting that cognitive mechanisms introduce flexibility into the postural control scheme.  相似文献   

13.
Availability of fingertip touch onto a stable surface reduces body sway for subjects standing with eyes closed. This is largely associated with sensory feedback from the fingertip when mechanical load is limited. Here, it is possible that the central nervous system facilitates cortical sensory processing to augment feedback to control upright stance. To test this, we compared cortical sensory excitability between tasks with and without light finger touch while standing. Subjects stood in tandem on a force plate with eyes closed while lightly touching a stable surface with the index finger. This was, in two different studies, compared to: (1) no haptic contact or (2) light touch on an object not referenced to balance. Throughout testing, the median nerve was stimulated and electroencephalography was used to measure somatosensory evoked potentials (SEPs). As expected, availability of stable light touch reduced medial–lateral COP sway. Peak amplitudes for SEP components revealed reduced P100 (48%), but increased P50 (31%), N140 (80%), and P200 (20%) during stable touch versus no touch. The modulation of P50 and N140 was no longer present when comparing stable to control (touch), which suggested that attending to touch on either surface, regardless of stability reference, accounted for these changes. Conversely, P200 was increased (19%) when touching the stable surface. Our data show SEP modulation during a standing balance task related to hand contact. Facilitation of P200 in particular may indicate task-specific regulation of the cortical representation of fingertip afferent input when it is relevant to providing stable cues for static balance control.  相似文献   

14.
In this study, we compared the ability of young (n=10, 19–32 years) and older subjects (n=35, 60–86 years) to use fingertip contact as a balance aid during quiet stance under various conditions to determine whether aging would influence contact strategies. Experimental trials (duration, 60 s) included two visual conditions (vision; no vision), three fingertip contact conditions (no touch; smooth touch; rough touch) and two support surface conditions (firm; foam). In trials with contact, participants were required to maintain a light contact with their right index fingertip on an instrumented touch-plate. Subjects were not constrained to exert minimal contact force, although they were aware that the touch-plate was not designed for physical support. From displacements of the centre of foot pressure (COP), mean sway amplitude (MSA) was computed in the anterior-posterior (COPAP) and medio-lateral (COPML) directions. Subjective estimates of stability were also obtained by asking participants to rate perceived stability on a visual analog scale in each condition. Mean normal force (F N ) and mean resultant tangential force (F TAN) were computed from contact force data applied on the touch plate. In both age groups, touch conditions had a substantial effect on MSA in the AP direction under both support surface conditions, with reductions averaging between 40–55% when touch was allowed. Reductions in the ML direction, though less important (8–12% on average), were nevertheless highly significant, especially in the older subjects when standing on the foam. In the two groups, vision and texture had only marginal impact on MSA computed on both support surfaces. Contrasting with sway measurements, stability ratings were highly influenced by visual conditions in both age groups. Only in conditions of deficient support (foam surface) and absent vision did the perceived effect of touch exceed that of vision. Age had a major impact, however, on contact forces deployed during trials with touch. While individuals in the young group typically produced forces of <1 N (mean F N , 0.32±0.15 N) to achieve postural stabilization, older subjects tended to use higher, though not too excessive, contact forces (mean F N , 1.21±0.75 N) under the same conditions. From these findings, we conclude that the ability to use contact cues from the fingertip as a source of sensory information to improve postural stability is largely preserved in healthy older adults. The increase in contact force deployed by older individuals to achieve postural stabilization is interpreted as a compensatory strategy to help overcome age-related loss in tactile sensation, an issue that will be further addressed in a companion paper.  相似文献   

15.
The purpose of this experiment was to determine the interaction between visual and vestibular information during the transition from quiet standing to the completion of a forward step. Six subjects were asked to take one step forward at the sound of an audio tone, with their eyes open or closed, and terminate the step in a standing position. During stimulation trials, galvanic vestibular stimulation (GVS) was delivered 1500 ms before the auditory cue. GVS was delivered at an intensity three-fold that of each subject's quiet stance threshold with either stimulus right, left or no stimulation. Force data were collected from three forceplates for the calculation of centre of pressure (CoP), and kinematic data were used to calculate centre of mass (CoM) and body trajectories. In quiet stance all subjects responded to the GVS perturbation by demonstrating upper body segment roll and whole body sway towards the anode electrode. Unexpectedly, in the presence of vision during quiet stance, the upper body roll response was not attenuated, even though the CoP sway patterns were reduced when vision was available. During the initiation phase of the step, despite ongoing GVS stimulation, there were no significant effects seen in CoM, CoP or upper body roll responses. During step execution, however, both CoM displacement and upper body roll demonstrated significant effects and both responses were significantly reduced when subjects' eyes were open. Analysis of the medio-lateral CoP integrals also indicated a strong stimulation effect between conditions late in the execution phase, which were largely attenuated with vision. The results suggest that the importance of visual and vestibular information varies depending on the phase of the task. In addition, the different integration between visual and vestibular input during quiet standing suggests a dual role for vestibular information. We propose that vestibular information in quiet standing has a role in maintaining whole body postural stability, as well as playing an integral role in the alignment of the body segments in preparation for proper movement execution. Vision was demonstrated to differentially attenuate these responses based on the phase of the task. Thus, visual and vestibular information appear to be integrated differently across the different phases of a forward-stepping task.  相似文献   

16.
Touch of the hand with a stationary surface at nonmechanically supportive force levels (<1 N) greatly attenuates postural sway during quiet stance. We predicted such haptic contact would also suppress the postural destabilization caused by vibrating the right peroneus brevis and longus muscles of subjects standing heel-to-toe with eyes closed. In experiment 1, ten subjects were tested under four conditions: no-vibration, no-touch; no-vibration, touch; vibration, no-touch; and vibration, touch. A hand-held physiotherapy vibrator (120 Hz) was applied approximately 5 cm above the malleolous to stimulate the peroneus longus and brevis tendons. Touch conditions involved contact of the right index finger with a laterally positioned surface (<1 N of force) at waist height. Vibration in the absence of finger contact greatly increased the mean sway amplitude of the center of pressure and of the head relative to the no-vibration, no-touch control condition (P < 0.001). The touch, no-vibration and touch-vibration conditions were not significantly different (P > 0.05) from each other and both had significantly less mean sway amplitude of head and of center of pressure than the other conditions (P < 0.01). In experiment 2, eight subjects stood heel-to-toe under touch and no-touch conditions involving 40-s duration trials of peroneus tendon vibration at different duty cycles: 1-, 2-, 3-, and 4-s ON and OFF periods. The vibrator was attached to the subject's leg and remotely activated. In the no-touch conditions, subjects showed periodic postural disruptions contingent on the duty cycle and mirror image rebounds with the offset of vibration. In the touch conditions, subjects were much less disrupted and showed compensations occurring within 500 ms of vibration onset and mirror image rebounds with vibration offset. Subjects were able to suppress almost completely the destabilizing influence of the vibration in the 3- and 4-s duty cycle trials. These experiments show that haptic contact of the hand with a stable surface can suppress abnormal proprioceptive and motor signals in leg muscles.  相似文献   

17.
The present paper introduces an original biofeedback system for improving human balance control, whose underlying principle consists in providing additional sensory information related to foot sole pressure distribution to the user through a tongue-placed tactile output device. To assess the effect of this biofeedback system on postural control during quiet standing, ten young healthy adults were asked to stand as immobile as possible with their eyes closed in two conditions of No-biofeedback and Biofeedback. Centre of foot pressure (CoP) displacements were recorded using a force platform. Results showed reduced CoP displacements in the Biofeedback relative to the No-biofeedback condition. The present findings evidenced the ability of the central nervous system to efficiently integrate an artificial plantar-based, tongue-placed tactile biofeedback for controlling control posture during quiet standing.  相似文献   

18.
Postural control is an important factor for early motor development; however, compared with adults, little is known about how infants control their unperturbed upright posture. This lack of knowledge, particularly with respect to spatial and temporal characteristics of infants’ unperturbed independent standing, represents a significant gap in the understanding of human postural control and its development. Therefore, our first analysis offers a thorough longitudinal characterization of infants’ quiet stance through the 9 months following the onset of independent walking. Second, we examined the influence of sensory-mechanical context, light touch contact, on infants’ postural control. Nine typically developing infants were tested monthly as they stood on a small pedestal either independently or with the right hand lightly touching a stationary contact surface. In addition to the longitudinal study design, an age-constant sample was analyzed to verify the influence of walking experience in infant postural development without the confounding effect of chronological age. Center of pressure excursions were recorded and characterized by distance-related, velocity, and frequency domain measures. The results indicated that, with increasing experience in the upright, as indexed by walk age, infants’ postural sway exhibited shifts in rate-related characteristics toward lower frequency and slower, less variable velocity oscillations without changing the spatial characteristics of sway. Additional touch contact stabilized infants’ postural sway as revealed by decrease in sway position variance, amplitude, and area as well as lower frequency and velocity. These results were confirmed by the age-constant analysis. Taken together, our findings suggest that instead of progressively reducing the sway magnitude, infants sway differently with increasing upright experience or with additional somatosensory information. These differences suggest that early development of upright stance, particularly as it relates to increasing postural and locomotor experience, involves a refinement of sensorimotor dynamics that enhances estimation of self-motion for controlling upright stance.  相似文献   

19.
Contact of the hand with a stationary surface attenuates postural sway in normal individuals even when the level of force applied is mechanically inadequate to dampen body motion. We studied whether subjects without vestibular function would be able to substitute contact cues from the hand for their lost labyrinthine function and be able to balance as well as normal subjects in the dark without finger contact. We also studied the relative contribution of sight of the test chamber to the two groups. Subjects attempted to maintain a tandem Romberg stance for 25 s under three levels of fingertip contact: no contact; light-touch contact, up to 1 N (approximately 100 g) force; and unrestricted contact force. Both eyes open and eyes closed conditions were evaluated. Without contact, none of the vestibular loss subjects could stand for more than a few seconds in the dark without falling; all the normals could. The vestibular loss subjects were significantly more stable in the dark with light touch of the index finger than the normal subjects in the dark without touch. They also swayed less in the dark with light touch than when permitted sight of the test chamber without touch, and less with sight and touch than just sight. The normal subjects swayed less in the dark with touch than without, and less with sight and touch than sight alone. These findings show that during quiet stance light touch of the index finger with a stationary surface can be as effective or even more so than vestibular function for minimizing postural sway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号