首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacokinetics and biotransformation of the antiretroviral agent nevirapine (NVP) after autoinduction were characterized in eight healthy male volunteers. Subjects received 200-mg NVP tablets once daily for 2 weeks, followed by 200 mg twice daily for 2 weeks. Then they received a single oral dose (solution) of 50 mg containing 100 microCi of [(14)C]NVP. Biological fluids were analyzed for total radioactivity, parent compound (HPLC/UV), and metabolites (electrospray liquid chromatography/mass spectroscopy and liquid chromatography/tandem mass spectroscopy). Mean recovery of radioactivity was 91.4%, with 81.3% excreted in urine and 10.1% recovered in the feces over a period of 10 days. Circulating radioactivity was evenly distributed between whole blood and plasma. At maximum plasma concentration, parent compound accounted for approximately 75% of the circulating radioactivity. Mean plasma elimination half-lives for total radioactivity and NVP were 21.3 and 20.0 h, respectively. Several metabolites were identified in urine including 2-hydroxynevirapine glucuronide (18.6%), 3-hydroxynevirapine glucuronide (25.7%), 12-hydroxynevirapine glucuronide (23.7%), 8-hydroxynevirapine glucuronide (1.3%), 3-hydroxynevirapine (1.2%), 12-hydroxynevirapine (0.6%), and 4-carboxynevirapine (2.4%). Greater than 80% of the radioactivity in urine was made up of glucuronidated conjugates of hydroxylated metabolites of NVP. Thus, cytochrome P-450 metabolism, glucuronide conjugation, and urinary excretion of glucuronidated metabolites represent the primary route of NVP biotransformation and elimination in humans. Only a small fraction of the dose (2.7%) was excreted in urine as parent compound.  相似文献   

2.
The metabolic disposition of recainam, an antiarrhythmic drug, was compared in mice, rats, dogs, rhesus monkeys, and humans. Following oral administration of [14C]recainam-HCl, radioactivity was excreted predominantly in the urine of all species except the rat. Metabolite profiles were determined in excreta by HPLC comparisons with synthetic standards. In rodents and rhesus monkeys, urinary excretion of unchanged recainam accounted for 23-36% of the iv dose and 3-7% of the oral dose. Aside from quantitative differences attributable to presystemic biotransformation, metabolite profiles were qualitatively similar following oral or iv administration to rodents and rhesus monkeys. Recainam was extensively metabolized in all species except humans. In human subjects, 84% of the urinary radioactivity corresponded to parent drug. The major metabolites in mouse and rat urine and rat feces were m- and p-hydroxyrecainam. Desisopropylrecainam and dimethylphenylaminocarboxylamino propionic acid were the predominant metabolites in dog and rhesus monkey urine. Small amounts of desisopropylrecainam and p-hydroxyrecainam were excreted in human urine. Selective enzymatic hydrolysis revealed that the hydroxylated metabolites were conjugated to varying degrees among species. Conjugated metabolites were not present in rat urine or feces, while conjugates were detected in mouse, dog, and monkey urine. Structural confirmation of the dog urinary metabolites was accomplished by mass spectral analysis. The low extent of metabolism of recainam in humans suggests that there will not be wide variations between dose and plasma concentrations.  相似文献   

3.
The metabolism and excretion of [(14)C]sitagliptin, an orally active, potent and selective dipeptidyl peptidase 4 inhibitor, were investigated in humans after a single oral dose of 83 mg/193 muCi. Urine, feces, and plasma were collected at regular intervals for up to 7 days. The primary route of excretion of radioactivity was via the kidneys, with a mean value of 87% of the administered dose recovered in urine. Mean fecal excretion was 13% of the administered dose. Parent drug was the major radioactive component in plasma, urine, and feces, with only 16% of the dose excreted as metabolites (13% in urine and 3% in feces), indicating that sitagliptin was eliminated primarily by renal excretion. Approximately 74% of plasma AUC of total radioactivity was accounted for by parent drug. Six metabolites were detected at trace levels, each representing <1 to 7% of the radioactivity in plasma. These metabolites were the N-sulfate and N-carbamoyl glucuronic acid conjugates of parent drug, a mixture of hydroxylated derivatives, an ether glucuronide of a hydroxylated metabolite, and two metabolites formed by oxidative desaturation of the piperazine ring followed by cyclization. These metabolites were detected also in urine, at low levels. Metabolite profiles in feces were similar to those in urine and plasma, except that the glucuronides were not detected in feces. CYP3A4 was the major cytochrome P450 isozyme responsible for the limited oxidative metabolism of sitagliptin, with some minor contribution from CYP2C8.  相似文献   

4.
The absorption, metabolism, and excretion of [14C]aprepitant, a potent and selective human substance P receptor antagonist for the treatment of chemotherapy-induced nausea and vomiting, was evaluated in rats and dogs. Aprepitant was metabolized extensively and no parent drug was detected in the urine of either species. The elimination of drug-related radioactivity, after i.v. or p.o. administration of [14C]aprepitant, was mainly via biliary excretion in rats and by way of both biliary and urinary excretion in dogs. Aprepitant was the major component in the plasma at the early time points (up to 8 h), and plasma metabolite profiles of aprepitant were qualitatively similar in rats and dogs. Several oxidative metabolites of aprepitant, derived from N-dealkylation, oxidation, and opening of the morpholine ring, were detected in the plasma. Glucuronidation represented an important pathway in the metabolism and excretion of aprepitant in rats and dogs. An acid-labile glucuronide of [14C]aprepitant accounted for approximately 18% of the oral dose in rat bile. The instability of this glucuronide, coupled with its presence in bile but absence in feces, suggested the potential for enterohepatic circulation of aprepitant via this conjugate. In dogs, the glucuronide of [14C]aprepitant, together with four glucuronides derived from phase I metabolites, were present as major metabolites in the bile, accounting collectively for approximately 14% of the radioactive dose over a 4- to 24-h period after i.v. dosing. Two very polar carboxylic acids, namely, 4-fluoro-alpha-hydroxybenzeneacetic acid and 4-fluoro-alpha-oxobenzeneacetic acid, were the predominant drug-related entities in rat and dog urine.  相似文献   

5.
The absorption, metabolism, and excretion of imidafenacin [KRP-197/ONO-8025, 4-(2-methyl-1H-imidazol-1-yl)-2,2-diphenylbutanamide], a new antimuscarinic drug developed for treatment of overactive bladder, were assessed in six healthy male subjects after a single oral administration of 0.25 mg of [(14)C]imidafenacin (approximately 46 microCi). The highest radioactivity in the plasma was observed at 1.5 h after administration. The apparent terminal elimination half-life of the total radioactivity was 72 h. Approximately 65.6 and 29.4% of the administered radioactivity were recovered in the urine and feces, respectively, within 192 h after administration. The metabolite profiling by high-performance liquid chromatography-radiodetector and liquid chromatography/tandem mass spectrometry demonstrated that the main component of radioactivity was unchanged imidafenacin in the 2-h plasma. The N-glucuronide conjugate (M-9) was found as the major metabolite and the oxidized form of the 2-methylimidazole moiety (M-2) and the ring-cleavage form (M-4) were detected as the minor metabolites in the 2-h plasma, but M-4 was found to be the main component in the 12-h plasma. Unchanged imidafenacin, M-9, M-2, and other oxidized metabolites were excreted in the urine, but the unchanged imidafenacin and M-9 were not found in the feces. Two unique metabolites were found in the urine and feces, which were identified as the interchangeable cis- and trans-isomers of 4,5-dihydrodiol forms of the 2-methylimidazole moiety. These findings indicate that imidafenacin is rapidly and well absorbed (at least 65% of dose recovered in urine) after oral administration, circulates in human plasma as the unchanged form, its glucuronide, and other metabolites, and is then excreted in urine and feces as the oxidized metabolites of 2-methylimidazole moiety.  相似文献   

6.
The metabolism and excretion of loratadine (LOR), a long-acting non-sedating antihistamine, have been evaluated in male and female mice, rats and monkeys. Following a single (8 mg kg-1) oral administration of [14C]LOR, radioactivity was predominantly eliminated in the faeces. Profiling and characterization of metabolites in plasma, bile, urine and faeces from male and female mice, rats and monkeys showed LOR to be extensively metabolized with quantitative species and gender differences in the observed metabolites. In all species investigated, the primary biotransformation of LOR involved decarboethoxylation to form desloratadine (DL), subsequent oxidation (hydroxylation and N-oxidation) and glucuronidation. More than 50 metabolites were profiled using liquid chromatography-mass spectrometry (LC-MS) with in-line flow scintillation analysis (FSA) and characterized using LC-MSn techniques. The major circulating metabolite in male rats is a DL derivative in which the piperidine ring was aromatized and oxidized to pyridine-N-oxide. Much lower levels of the pyridine-N-oxide metabolite were observed in female rat plasma. In contrast, the relative amount of DL was notably higher in female than in male rats. The major circulating metabolite in either gender of mouse and male monkey is a glucuronide conjugate of an aliphatic hydroxylated LOR; in the female monkey, the major circulating metabolite is formed through oxidation of the pyridine moiety and subsequent glucuronidation. Qualitatively similar metabolic profiles were observed in the mouse, rat and monkey urine and bile, and the metabolites characterized resulted from biotransformation of LOR to DL, hydroxylation of DL and subsequent glucuronide conjugation. 5-Hydroxy-desloratadine was the major faecal metabolite across all three species irrespective of gender.  相似文献   

7.
Abstract

1. Gemigliptin (formerly known as LC15-0444) is a newly developed dipeptidyl peptidase 4 inhibitor for the treatment of type 2 diabetes. Following oral administration of 50?mg (5.4?MBq) [14C]gemigliptin to healthy male subjects, absorption, metabolism and excretion were investigated.

2. A total of 90.5% of administered dose was recovered over 192?hr postdose, with 63.4% from urine and 27.1% from feces. Based on urinary recovery of radioactivity, a minimum 63.4% absorption from gastrointestinal tract could be confirmed.

3. Twenty-three metabolites were identified in plasma, urine and feces. In plasma, gemigliptin was the most abundant component accounting for 67.2%?~?100% of plasma radioactivity. LC15-0636, a hydroxylated metabolite of gemigliptin, was the only human metabolite with systemic exposure more than 10% of total drug-related exposure. Unchanged gemigliptin accounted for 44.8%?~?67.2% of urinary radioactivity and 27.7%?~?51.8% of fecal radioactivity. The elimination of gemigliptin was balanced between metabolism and excretion through urine and feces. CYP3A4 was identified as the dominant CYP isozyme converting gemigliptin to LC15-0636 in recombinant CYP/FMO enzymes.  相似文献   

8.
A species difference was observed in the excretion pathway of 2-[[5,7-dipropyl-3-(trifluoromethyl)-1,2-benzisoxazol-6-yl]oxy]-2-methylpropanoic acid (MRL-C), an alpha-weighted dual peroxisome proliferator-activated receptor alpha/gamma agonist. After intravenous or oral administration of [14C]MRL-C to rats and dogs, radioactivity was excreted mainly into the bile as the acyl glucuronide metabolite of the parent compound. In contrast, when [14C]MRL-C was administered to monkeys, radioactivity was excreted into both the bile and the urine as the acyl glucuronide metabolite, together with several oxidative metabolites and their ether or acyl glucuronides. Incubations in hepatocytes from rats, dogs, monkeys, and humans showed the formation of the acyl glucuronide of the parent compound as the major metabolite in all species. The acyl glucuronide and several hydroxylated products, some which were glucuronidated at the carboxylic acid moiety, were observed in incubations of MRL-C with NADPH- and uridine 5'-diphosphoglucuronic acid-fortified liver microsomes. However, metabolism was more extensive in the monkey microsomes than in those from the other species. When the acyl glucuronide metabolite of MRL-C was incubated with NADPH-fortified liver microsomes, in the presence of saccharo-1,4-lactone, it underwent extensive oxidative metabolism in the monkey but considerably less in the rat, dog, and human liver microsomes. Collectively, these data suggested that the oxidative metabolism of the acyl glucuronide might have contributed to the observed in vivo species differences in the metabolism and excretion of MRL-C.  相似文献   

9.
  1. The absorption, distribution, metabolism, and excretion of fasiglifam were investigated in rats, dogs, and humans.

  2. The absolute oral bioavailability of fasiglifam was high in all species (>76.0%).

  3. After oral administration of [14C]fasiglifam, the administered radioactivity was quantitatively recovered and the major route of excretion of radioactivity was via feces in all species.

  4. Fasiglifam was a major component in the plasma and feces in all species. Its oxidative metabolite (M-I) was observed as a minor metabolite in rat and human plasma (<10% of plasma radioactivity). In human plasma, hydroxylated fasiglifam (T-1676427), the glucuronide of fasiglifam (fasiglifam-G), and the glucuronide of M-I were detected as additional minor metabolites (<2% of plasma radioactivity). None of these metabolites were specific to humans. Fasiglifam-G was the major component in the rat and dog bile.

  5. In vitro cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) reaction phenotyping indicated that oxidation (to form M-I and T-1676427) and glucuronidation of fasiglifam are mainly mediated by CYP3A4/5 and UGT1A3, respectively.

  6. Fasiglifam and fasiglifam-G are substrates of BCRP and Mrp2/MRP2, respectively.

  7. Glucuronidation of fasiglifam-G was found to be the predominant elimination pathway of fasiglifam in all species tested, including humans.

  相似文献   

10.
Muraglitazar (Pargluva), a dual alpha/gamma peroxisome proliferator-activated receptor (PPAR) activator, has both glucose- and lipid-lowering effects in animal models and in patients with diabetes. This study describes the in vivo and in vitro comparative metabolism of [(14)C]muraglitazar in rats, dogs, monkeys, and humans by quantitative and qualitative metabolite profiling. Metabolite identification and quantification methods used in these studies included liquid chromatography/mass spectrometry (LC/MS), LC/tandem MS, LC/radiodetection, LC/UV, and a newly described mass defect filtering technique in conjunction with high resolution MS. After oral administration of [(14)C]muraglitazar, absorption was rapid in all species, reaching a concentration peak for parent and total radioactivity in plasma within 1 h. The most abundant component in plasma at all times in all species was the parent drug, and no metabolite was present in greater than 2.5% of the muraglitazar concentrations at 1 h postdose in rats, dogs, and humans. All metabolites observed in human plasma were also present in rats, dogs, or monkeys. Urinary excretion of radioactivity was low (<5% of the dose) in all intact species, and the primary route of elimination was via biliary excretion in rats, monkeys, and humans. Based on recovered doses in urine and bile, muraglitazar showed a very good absorption in rats, monkeys, and humans. The major drug-related components in bile of rats, monkeys, and humans were glucuronides of muraglitazar and its oxidative metabolites. The parent compound was a minor component in bile, suggesting extensive metabolism of the drug. In contrast, the parent drug and oxidative metabolites were the major components in feces, and no glucuronide conjugates were found, suggesting that glucuronide metabolites were excreted in bile and hydrolyzed in the gastrointestinal tract. The metabolites of muraglitazar resulted from both glucuronidation and oxidation. The metabolites in general had greatly reduced activity as PPARalpha/gamma activators relative to muraglitazar. In conclusion, muraglitazar was rapidly absorbed, extensively metabolized through glucuronidation and oxidation, and mainly eliminated in the feces via biliary excretion of glucuronide metabolites in all species studied. Disposition and metabolic pathways were qualitatively similar in rats, dogs, monkeys, and humans.  相似文献   

11.
14C-Phenformin hydrochloride was used for investigating the metabolism, plasma or serum levels, and elimination of the drug following 1.5-mg/kg po or iv doses to guinea pigs, rats, and dogs. The amounts of individual metabolites and unchanged drug were assessed in urine as well as in plasma or serum. The glucuronide of 1-(p-hydroxyphenethyl)biguanide was a major metabolite in the blood and urine of all three species. Guinea pig serum and urine contained a sizable quantity of unchanged drug. Dog plasma and urine had significant amounts of nonconjugated 1-(p-hydroxyphenethyl)biguanide and of an unidentified major metabolite. In all three species following intravenous drug administration, unchanged drug contributed significantly to the radioactivity found in blood and urine. The apparent half-lives of phenformin eliminateion were 0.3-0.8 day for guinea pigs and rats and 1-1.5 days for dogs. Urinary excretion data indicate apparent half-lives of approximately 1.3-1.5 days for the elimination of each of the three major metabolites in dogs.  相似文献   

12.
1.?Following oral administration of [14C]TAK-438, the radioactivity was rapidly absorbed in rats and dogs. The apparent absorption of the radioactivity was high in both species.

2.?After oral administration of [14C]TAK-438 to rats, the radioactivity in most tissues reached the maximum at 1-hour post-dose. By 168-hour post-dose, the concentrations of the radioactivity were at very low levels in nearly all the tissues. In addition, TAK-438F was the major component in the stomach, whereas TAK-438F was the minor component in the plasma and other tissues. High accumulation of TAK-438F in the stomach was observed after oral and intravenous administration.

3.?TAK-438F was a minor component in the plasma and excreta in both species. Its oxidative metabolite (M-I) and the glucuronide of a secondary metabolite formed by non-oxidative metabolism of M-I (M-II-G) were the major components in the rat and dog plasma, respectively. The glucuronide of M-I (M-I-G) and M-II-G were the major components in the rat bile and dog urine, respectively, and most components in feces were other unidentified metabolites.

4.?The administered radioactive dose was almost completely recovered. The major route of excretion of the drug-derived radioactivity was via the feces in rats and urine in dogs.  相似文献   

13.
Mass balance and metabolism of formoterol were investigated in six healthy men in an open study. Mean age was 49.7 years (range: 40-63). Simultaneous oral (mean dose 88.6 nmol, 49.3 MBq) and i.v. (mean dose 38.2 nmol, 21.4 MBq) doses of tritium-labeled formoterol were administered. The combination of these two administrations was aimed at simulating the fate of inhaled formoterol. Total radioactivity was monitored for 24 h in blood plasma and for at least 4 days in urine and feces. Formoterol and metabolites were determined using liquid chromatography plus radiodetection, directly after centrifugation in urine and after sample workup in blood plasma and feces. Metabolites were identified in urine, sampled from two subjects, using liquid chromatography-electrospray ionization mass spectrometry. Mean total recovery was 86% of the administered formoterol dose, 62% in urine and 24% in feces. Tritiated water was generated and because its in vivo turnover is slow, the terminal decline of total radioactivity was slow and dose recovery was incomplete during the sampling period. Formoterol was conjugated to inactive glucuronides and a previously unidentified sulfate. The phenol glucuronide of formoterol was the main metabolite in urine. Formoterol was also O-demethylated and deformylated. Plasma exposure to these pharmacologically active metabolites was low. O-demethylated formoterol was seen mainly as inactive glucuronide conjugates and deformylated formoterol only as an inactive sulfate conjugate. Intact formoterol and O-demethylated formoterol dominated recovery in feces. Mean recovery of unidentified metabolites was 7. 0% in urine and 2.0% in feces.  相似文献   

14.
The absorption, distribution, metabolism, and excretion of p-phenylenediamine (PDA) was studied in both sexes of F344 rats and B6C3F1 mice. Absorption of PDA from the gastrointestinal tract was nearly complete in both species, and tissue distribution and excretion were not affected by the route of administration or dose in the range studied. The highest PDA-derived radioactivity was present in muscle, skin, and liver in both species at all time points examined. Both sexes of either species cleared radioactivity from all tissues rapidly, so that in 24 h only 10-15% of the total dose administered was still present in the animal body. Clearance of PDA-derived radioactivity was primarily through urine (68-86%) and secondarily through feces (10-19%). Over 95% of the radioactivity excreted in urine of both species was in the form of metabolites. The major metabolites in male and female rat urine were qualitatively and quantitatively similar, while major quantitative differences were observed between urinary metabolites of male and female mice. Variability in urinary metabolites was observed between the two species. Supplementary experiments have shown that PDA and/or metabolites do not bind covalently to hepatic DNA. However, PDA-derived radioactivity was found to bind with hepatic protein of both sexes of each species.  相似文献   

15.
The metabolism of zonisamide [3-(sulfamoylmethyl)-1,2-benzisoxazole], a new anticonvulsant, has been studied. In rats dosed with [14C]zonisamide (100 mg/kg, ip) 86.5% of the radioactive dose was excreted in the urine over 72 hr. The remainder of the radioactive dose (13.5%) was excreted in the feces over the same time period. Unchanged drug and eight metabolites were isolated from the urine, and the structures of five metabolites were assigned by physicochemical methods. metabolism of zonisamide primarily involves reductive and conjugative mechanisms, with oxidation of this compound being of minor metabolic significance. The percentage of urinary radioactivity accounted for by unmetabolized zonisamide and metabolites is as follows: unmetabolized zonisamide (metabolite 9), 32.8%; metabolite 8 [N-acetyl-3-(sulfamoylmethyl)-1,2-benzisoxazole], 7.7%; unidentified metabolite 7, 2.4%; metabolite 6 (zonisamide glucuronide), 7.6%; metabolite 5 [3-(carboxy)-1,2-benzisoxazole], 5.4%; unidentified metabolite 4, 13.1%; metabolite 3 [2-(sulfamoylacetyl)-phenol glucuronide], 12.6%; unidentified metabolite 2, 3.8%; and metabolite 1 (2-[1-(amino)sulfamoylethyl]phenol sulfate), 2.3%. A total of 87.7% of the 0-24 hr urinary radioactivity was accounted for by unchanged zonisamide and metabolites.  相似文献   

16.
1. The urinary metabolites of (S)-2-ethyl-7-fluoro-3-oxo-3,4-dihydro-2H-quinoxaline-carboxylic acid isopropylester (GW420867X) have been investigated in samples obtained following oral administration to rabbit, mouse and human. GW420867X underwent extensive biotransformation to form hydroxylated metabolites and glucuronide conjugates on the aromatic ring, and on the ethyl and isopropyl side-chains in all species. In rabbit urine, a minor metabolite was detected and characterized as a cysteine adduct that was not observed in mouse or man. 2. The hydroxylated metabolites and corresponding glucuronide conjugates were isolated by semi-preparative HPLC and characterized using NMR, LC-NMR and LCMS/MS. The relative proportions of fluorine-containing metabolites were determined in animal species by 19F-NMR signal integration. 3. The fluorine atom of the aromatic ring underwent NIH shift rearrangement in the metabolites isolated and characterized in rabbit, mouse and human urine. 4. The characterization of the NIH shift metabolites in urine enabled the detection and confirmation of the presence of these metabolites in human plasma.  相似文献   

17.
The metabolism of bepridil was studied in the Swiss mouse, Sprague-Dawley rat, New Zealand rabbit, rhesus monkey, and healthy human. After oral administration of bepridil-14C-hydrochloride, recoveries of total radioactivity in urine and feces (7 days) were greater than or equal to 80% of the administered dose in all five species. Bepridil and 25 metabolites have been isolated by HPLC and TLC from representative plasma, urine, and fecal extract pools from all species and identified on the basis of TLC, HPLC, and mass spectrometry. The identified metabolites explained 60-99% of the total radioactivity in each sample for rabbit plasma, in which only 17% of the total radioactivity was characterized. Metabolic pathways involving oxidative reactions at seven sites on the bepridil molecule are proposed for each species. Metabolite formation in the five species is described by four interrelated pathways. The metabolic pathway involving aromatic hydroxylation followed by N-dealkylation, N-debenzylation, and N-acetylation was important in all species. Major metabolites produced by this pathway included 4-hydroxy(at N-phenyl)-bepridil (Ia), N-benzyl-4-amino-phenol (IV), and N-acetyl-4-aminophenol (Vy). Metabolite Ia was isolated in significant amounts (greater than or equal to 5% of sample) in all fecal and urine samples except rat urine. Metabolite IV was a major circulating metabolite in all species and a major urinary metabolite in humans. Metabolite Vy was present in significant quantities in urine in all species except rabbit. Other important pathways involved primary reactions such as iso-butyl hydroxylation, pyrrolidine ring oxidation, and N-debenzylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Peak levels of radioactivity in blood occurred 1.0 hr after oral administration of 3H-sulfinalol hydrochloride to rats, dogs, and monkeys. The plasma decay curve for intact sulfinalol in the dog was biphasic, with apparent first-order half-lives of 0.55 and 6.2 hr. Rats excreted 42.5% of the dose in the urine and 31.8% in the feces after 24 hr. Urinary and fecal recovery were 53.8% and 41.2%, respectively, after 10 days for dogs and 57.8% and 38.0%, respectively, after 9 days for monkeys. Free sulfinalol (11.8% of the dose) was the major component in dog feces with lesser amounts of the sulfide and sulfone metabolites, also in the unconjugated form. All metabolites in dog urine were conjugated with glucuronic acid, with sulfinalol (28.5%) and desmethylsulfinalol (8.5%) representing the major constituents, whereas the sulfone and sulfide metabolites were minor ones. Monkey feces contained primarily unconjugated forms of the desmethyl sulfide metabolite (17.0%) and sulfinalol (7.5%); lesser amounts of desmethylsulfinalol and the sulfone metabolite were present. Desmethylsulfinalol (8.7%) and its sulfate (7.0%) and glucuronide (4.0%) conjugates were the major urinary metabolites in the monkey; sulfinalol (1.4%), its glucuronide conjugate (5.1%), the desmethyl sulfide metabolite (and its sulfate conjugate), and the sulfone metabolite were also present.  相似文献   

19.
Abstract

1.?The absorption, distribution, metabolism and excretion of a novel dipeptidyl peptidase IV inhibitor, gemigliptin, were examined following single oral administration of 14C-labeled gemigliptin to rats.

2.?The 14C-labeled gemigliptin was rapidly absorbed after oral administration, and its bioavailability was 95.2% (by total radioactivity). Distribution to specific tissues other than the digestive organs was not observed. Within 7 days after oral administration, 43.6% of the administered dose was excreted via urine and 41.2% was excreted via feces. Biliary excretion of the radioactivity was about 17.7% for the first 24?h. After oral administration of gemigliptin to rats, the in vivo metabolism of gemigliptin was investigated with bile, urine, feces, plasma and liver samples.

3.?The major metabolic pathway was hydroxylation, and the major circulating metabolites were a dehydrated metabolite (LC15-0516) and hydroxylated metabolites (LC15-0635 and LC15-0636).  相似文献   

20.
Assessment of the pharmacokinetics of [14C]2-[3-[3-[(5-ethyl-4'-fluoro-2-hydroxy[1,1'-biphenyl]-4-yl)oxy]propoxy]-2-propylphenoxy-]benzoic acid ([14C]LY293111), an experimental anti-cancer agent, suggested long-lived circulating metabolites in rats. In vivo metabolites of LY293111 were examined in plasma, bile, urine, and feces of Fischer 344 (F344) rats after oral administration of [14C]LY293111. Metabolites were profiled by high-performance liquid chromatography-radiochromatography, and identified by liquid chromatography (LC)/mass spectrometry and LC/NMR. The major in vivo metabolites of LY293111 identified in rats were phenolic (ether), acyl, and bisglucuronides of LY293111. Measurement of radioactivity in rat plasma confirmed that a fraction of LY293111-derived material was irreversibly bound to plasma protein and that this bound fraction increased over time. This was consistent with the observed disparity in half-lives between LY293111 and total radioactivity in rats and monkeys, and is likely due to covalent modification of proteins by the acyl glucuronide. In vitro metabolism of [14C]LY293111 in liver slices from CD-1 mice, F344 rats, rhesus and cynomolgus monkeys, and humans indicates that glucuronidation was the primary metabolic pathway in all species. The acyl glucuronide was the most prevalent radioactive peak (16% of total 14C) produced by F344 rat slices, whereas the ether glucuronide was the major metabolite in all other species (26-36% of total 14C). Several minor hydroxylated metabolites were detected in F344 rat slice extracts but were not observed in other species. The data presented suggest that covalent modification of proteins by LY293111 acyl glucuronide is possible in multiple species, although the relative reactivity of this metabolite appears to be low compared with those known to cause adverse drug reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号