首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND CONTEXT: Extrapedicular screws are placed more laterally than intrapedicular screws and pass through the transverse process or rib head before entering the vertebral body. These screws are sometimes placed to salvage failed pedicle screws, but the change in pullout resistance of extrapedicular screws after salvage has not been quantified. PURPOSE: To quantify the pullout resistance of thoracic extrapedicular screws compared with intrapedicular screws and the pullout resistance of newly inserted screws compared with extrapedicular screws used as salvage for failed intrapedicular screws. STUDY DESIGN: In vitro paired comparison of screw pullout resistance in isolated thoracic vertebrae. METHODS: Tapered monoaxial pedicle screws were inserted in the left or right pedicle of 11 human cadaveric thoracic vertebrae. An extrapedicular screw was inserted on the contralateral side. Both screws were pulled out axially at 0.5 mm/s using a servohydraulic test frame while applied load was recorded. Then a fresh extrapedicular screw was inserted as a salvage screw on the intrapedicular screw side and pulled out. RESULTS: In uncompromised vertebrae, the pullout strength of extrapedicular screws was 80+/-32% of that of intrapedicular screws (p=.073, repeated-measures one-way analysis of variance/Tukey). Salvage screws restored pullout strength to 65+/-30% of that of intrapedicular screws (p=.003). CONCLUSIONS: Extrapedicular screws provided comparable but slightly lower pullout resistance to intrapedicular screws in uncompromised vertebrae. They are therefore a feasible salvage technique when a compromised pedicle precludes reinsertion of an intrapedicular screw, but the salvage screw is significantly weaker than the original screw.  相似文献   

2.
目的 比较胸椎椎弓根螺钉椎弓根入路,椎弓根外入路置钉以及置钉失败后椎弓根入路,椎弓根外入路补救置钉的抗拔出力。方法 4具书本脊柱标本(T6-11)分解为单椎体(附双侧肋骨)24个。根据配对随机分组的原则进行标本分组,测试各组的抗拔出力,将椎弓根入路置钉组成的抗拔出力结果作为对照组数据。结果 椎弓根入路补救组抗拔出力和椎弓根入路组,椎弓根外入路组差异无显著性(P〉0.05)。结论椎弓根螺钉穿破内侧壁导致的胸椎椎弓根螺钉固定失败,可选择椎弓根外入路的方式进行补救。  相似文献   

3.
Improving the pullout strength of pedicle screws by screw coupling   总被引:5,自引:0,他引:5  
The objective of this study was to determine the effect of pedicle screw coupling on the pullout strength of pedicle screws in the osteoporotic spine. The vertebral bone mineral density (BMD) of 33 cadaveric lumbar vertebrae were measured by quantitative computed tomography. Pedicle screws were inserted into each pedicle. The pullout strength and displacement of the screws, without coupling and with single or double couplers, were studied, and the relationship between pullout strength and BMD was analyzed. The average pullout strength of the pedicle screws without screw coupling was 909.3 +/- 188.6 N (n = 9), that coupled with a single coupler was 1,409.0 +/- 469.1 N (n = 9), and that with double couplers was 1,494.0 +/- 691.6 N (n = 9). The pullout strength of the screws coupled with single or double couplers was significantly greater than that of screws without couplers (p < 0.01); however, there was no significant difference between the groups of single and double couplers. The improvement of pullout strength by screw coupling was significant in a test group with BMD of more than 90 mg/ml (p < 0.01), but was not in the group with BMD less than 90 mg/ml (p = 0.55). These results suggest that the coupling of pedicle screws improves pullout strength; however, the effect tends to be less significant in severely osteoporotic spines.  相似文献   

4.
AIM: Aim of the study was to compare pullout resistance of pedicle screws after conventional and fluoroscopic computer-assisted implantation in the cadaveric thoracic and lumbar spine. METHODS: Pedicle screws were inserted in a total of 10 vertebrae of different human specimens: 10 screws were placed using conventional technique (group 1) and 10 screws were inserted with fluoroscopic computer-assisted system contralaterally (group 2). Then pedicle screws were evaluated for biomechanical axial pullout resistance. RESULTS: Mean pullout force was 232 N (range 60-600 N) in group 1 and 353 N (range 112-625 N) in group 2. The difference was significant (p=0,0425). CONCLUSION: Fluoroscopic navigated implantation of pedicle screws increases the pullout strength in thoracic and lumbar cadaveric spines as compared with conventional methods.  相似文献   

5.

Background:

The objective of this cadaveric study was to analyze the effects of iatrogenic pedicle perforations from screw misplacement on the mean pullout strength of lower thoracic and lumbar pedicle screws. We also investigated the effect of bone mineral density (BMD), diameter of pedicle screws, and the region of spine on the pullout strength of pedicle screws.

Materials and Methods:

Sixty fresh human cadaveric vertebrae (D10–L2) were harvested. Dual-energy X-ray absorptiometry (DEXA) scan of vertebrae was done for BMD. Titanium pedicle screws of different diameters (5.2 and 6.2 mm) were inserted in the thoracic and lumbar segments after dividing the specimens into three groups: a) standard pedicle screw (no cortical perforation); b) screw with medial cortical perforation; and c) screw with lateral cortical perforation. Finally, pullout load of pedicle screws was recorded using INSTRON Universal Testing Machine.

Results:

Compared with standard placement, medially misplaced screws had 9.4% greater mean pullout strength and laterally misplaced screws had 47.3% lesser mean pullout strength. The pullout strength of the 6.2 mm pedicle screws was 33% greater than that of the 5.2 mm pedicle screws. The pullout load of pedicle screws in lumbar vertebra was 13.9% greater than that in the thoracic vertebra (P = 0.105), but it was not statistically significant. There was no significant difference between pullout loads of vertebra with different BMD (P = 0.901).

Conclusion:

The mean pullout strength was less with lateral misplaced pedicle screws while medial misplaced pedicle screw had more pullout strength. The pullout load of 6.2 mm screws was greater than that of 5.2 mm pedicle screws. No significant correlation was found between bone mineral densities and the pullout strength of vertebra. Similarly, the pullout load of screw placed in thoracic and lumbar vertebrae was not significantly different.  相似文献   

6.
Heller JG  Shuster JK  Hutton WC 《Spine》1999,24(7):654-658
STUDY DESIGN: An In vitro biomechanical load-to-failure test. OBJECTIVES: To determine the comparative axial pullout strengths of pedicle screw versus transverse process screws in the upper thoracic spine (T1-T4), and to compare their failure loads with bone density as seen on computed tomography. SUMMARY OF THE BACKGROUND DATA: The morphology of the upper thoracic spine presents technical challenges for rigid segmental fixation. Though data are available for failure characteristics of cervical-lateral mass screws, analogous data are wanting in regard to screw fixation of the upper thoracic spine. METHODS: Ten fresh-frozen human spines (T1-T4) were quantitatively scanned using computed tomography to determine trabecular bone density at each level. The vertebrae were drilled and tapped for the insertion of a 3.5-mill meter-diameter cortical bone screw in either the pedicle or the transverse process position. A uniaxial load to failure was applied. RESULTS: The mean ultimate load to failure for the pedicle screws (658 N) was statistically greater than that of the transverse process screws (361 N; P < 0.001). The T1 pedicle screw sustained the highest load to failure (775 N). No significant difference was found between load to failure for the pedicle and transverse process screws at T1. A trend toward decreasing load to failure was seen for both screw positions with descending thoracic level. Neither pedicle dimensions nor screw working length correlated with load to failure. CONCLUSIONS: Upper thoracic pedicle screws have superior axial loading characteristics compared with bicortical transverse process screws, except at T1. Load behavior of either of these screws was not predictable based on anatomic parameters.  相似文献   

7.
Background contextThe biomechanical fixation strength afforded by pedicle screws has been strongly correlated with bone mineral density. It has been postulated that “hubbing” the head of the pedicle screw against the dorsal laminar cortex provides a load-sharing effect, thereby limiting cephalocaudad toggling and improving the pullout resistance of the pedicle screw.PurposeTo evaluate the pullout strength (POS) of monoaxial hubbed pedicle screws versus standard fixation in the thoracic spine.Study designBiomechanical investigation.MethodsTwenty-two human cadaveric thoracic vertebrae were acquired and dual-energy X-ray absorptiometry scanned. Osteoporotic (n=16) and normal (n=6) specimens were instrumented with a 5.0×35-mm pedicle screw on one side in a standard fashion. In the contralateral pedicle, 5.0×30-mm screw was inserted with hubbing of the screw into the dorsal lamina. A difference in screw length was used to achieve equivalent depth of insertion. After 2,000 cycles of cephalocaudad toggling, screws were pulled out with the tensile force oriented to the midline of the spine and peak POS measured in newtons (N). Four additional specimens were subjected to microcomputed tomography (micro-CT) analysis to evaluate internal pedicle architecture after screw insertion.ResultsHubbed screws resulted in significantly lower POS (290.5±142.4 N) compared with standard pedicle screws (511.5±242.8 N; p=.00). This finding was evident in both normal and osteoporotic vertebrae based on independent subgroup post hoc analyses (p<.05). As a result of hubbing, half of the specimens fractured through the lamina or superior articular facet (SAF). No fractures occurred on the control side. There was no difference in mean POS for hubbed screws with and without fracture; however, further micro-CT analysis revealed the presence of internal fracture propagation for those specimens that did not have any external signs of failure.ConclusionsHubbing pedicle screws results in significantly decreased POS compared with conventional pedicle screws. Hubbing predisposes toward iatrogenic fracture of the dorsal lamina, transverse process, or SAF during insertion.  相似文献   

8.
While the biomechanical properties of pedicle screws have proven to be superior in the lumbar spine, little is known concerning pullout strength of pedicle screws in comparison to hooks in the thoracic spine. In vitro biomechanical pullout testing was performed to evaluate the axial pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine with regard to surgical correction techniques in scoliosis. Nine human cadaveric thoracic spines were harvested and disarticulated. To simulate a typical posterior segmental scoliosis instrumentation, standard pedicle hooks were used between T4 and T8 and supralaminar hooks between T9 and T12 and tested against pedicle screws. The pedicle screws were loaded strictly longitudinal to their axis; the hooks were loaded perpendicular to the intended rod direction. In total, 90 pullout tests were performed. Average pullout strength of the pedicle screws was significantly higher than in the hook group (T4-T8: 531 N versus 321 N, T9-T12: 807 N versus 600 N, p < 0.05). Both screw diameter and the bone mineral density (BMD) had significant influence on the pullout strength in the screw group. For scoliosis correction, pedicle screws might be beneficial, especially for rigid thoracic curves, since they are significantly more resistant to axial pullout than both pedicle and laminar hooks.  相似文献   

9.
BACKGROUND CONTEXT: Pedicle screws have been shown to be superior to hooks in the lumbar spine, but few studies have addressed their use in the thoracic spine. PURPOSE: The objective of this study was to biomechanically evaluate the pullout strength of pedicle screws in the thoracic spine and compare them to laminar hooks. STUDY DESING/SETTING: Twelve vertebrae (T1-T12) were harvested from each of five embalmed human cadavers (n=60). The age of the donors averaged 83+8.5 years. After bone mineral density had been measured in the vertebrae (mean=0.47 g/cm(3)), spines were disarticulated. Some pedicles were damaged during disarticulation or preparation for testing, so that 100 out of a possible 120 pullout tests were performed. METHODS: Each vertebra was secured using a custom-made jig, and a posteriorly directed force was applied to either the screw or the claw. Constructs were ramped to failure at 3 mm/min using a Mini Bionix II materials testing machine (MTS, Eden Prairie, MN). RESULTS: Pedicle claws had an average pullout strength of 577 N, whereas the pullout strength of pedicle screws averaged 309 N. Hooks installed using the claw method in the thoracic spine had an overwhelming advantage in pullout strength versus pedicle screws. Even in extremely osteoporotic bone, the claw withstood 88% greater pullout load. CONCLUSION: The results of this study indicate that hooks should be considered when supplemental instrumentation is required in thoracic vertebrae, especially in osteoporotic bone.  相似文献   

10.
Kowalski JM  Ludwig SC  Hutton WC  Heller JG 《Spine》2000,25(22):2865-2867
STUDY DESIGN: Biomechanical testing of the pullout strengths of pedicle screws placed by two different techniques in adult human cadaveric cervical spines. OBJECTIVES: To determine whether there is a significant difference in screw purchase of two commonly proposed methods of cervical pedicle screw insertion. SUMMARY OF BACKGROUND DATA: Wiring techniques remain the gold standard for posterior cervical fixation. However, absent or deficient posterior elements may dictate the use of alternative fixation techniques. Cervical pedicle screws have been shown to have significantly higher pullout strength than lateral mass screws. METHODS: Fifty fresh disarticulated human vertebrae (C3-C7) were evaluated with computed tomography for anatomic disease and pedicle morphometry. The right and left pedicles were randomly assigned to either a standard method or the Abumi insertion method. In the latter technique the cortex and cancellous bone of lateral mass are removed with a high-speed burr, which provides a direct view of the pedicle introitus. The pedicle is then probed and tapped and a 3.5-mm cortical screw inserted. Each screw was subjected to a uniaxial load to failure. RESULTS: There was no significant difference in the mean pullout resistance between the Abumi (696 N) and standard (636.5 N) insertion techniques (P = 0.41). There was no difference in pullout resistance between vertebral levels or within vertebral levels. Two (4%) minor pedicle wall violations were observed. CONCLUSION: In selected circumstances pedicle screw instrumentation of the cervical spine may be used to manage complex deformities and patterns of instability. Surgeons need not be concerned about reduced screw purchase when deciding between the Abumi method and its alternatives.  相似文献   

11.
In vivo accuracy of thoracic pedicle screws.   总被引:14,自引:0,他引:14  
P J Belmont  W R Klemme  A Dhawan  D W Polly 《Spine》2001,26(21):2340-2346
STUDY DESIGN: A retrospective observational study of 279 transpedicular thoracic screws using postoperative computed tomography (CT). OBJECTIVE: To determine the accuracy of transpedicular thoracic screws. SUMMARY OF BACKGROUND DATA: Previous studies have reported the importance of properly placed transpedicular thoracic screws. To our knowledge, the in vivo accuracy of pedicle screw placement throughout the entire thoracic spine by CT is unknown. METHODS: The accuracy of thoracic screw placement within the pedicle and vertebral body and the resultant transverse screw angle (TSA) were assessed by postoperative CT. Cortical perforations of the pedicle were graded in 2-mm increments. Screws were regionally grouped for analysis. RESULTS: Forty consecutive patients underwent instrumented posterior spinal fusion using 279 titanium thoracic pedicle screws of various diameters (4.5-6.5 mm). The regional distribution of the screws was 39 screws at T1-T4, 77 screws at T5-T8, and 163 screws at T9-T12. Fifty-seven percent of screws were totally confined within the pedicle. Although medial perforation of the pedicle wall occurred in 14% of screws, in <1% there was >2 mm of canal intrusion. Lateral pedicular perforation occurred in 68% of perforating screws and was significantly more common than medial perforation (P < 0.0005). Seventeen screws penetrated the anterior vertebral cortex by an average of 1.7 mm. Screws inserted between T1 and T4 had a decreased incidence of full containment within the pedicle (P < 0.0005) and vertebral body (P = 0.039) compared with T9-T12. The mean TSA for screws localized within the pedicle was 14.6 degrees and was significantly different from screws with either medial (mean 18.0 degrees ) or lateral (mean 11.5 degrees ) pedicle perforation (P < 0.0005). Anterior vertebral penetration was associated with a smaller mean TSA of 10.1 degrees (P = 0.01) and with lateral pedicle perforation (P < 0.0005). There were no neurologic or vascular complications. CONCLUSIONS: Ninety-nine percent of screws were fully contained or were inserted with either < or =2 mm of medial cortical perforation or an acceptable lateral breech using the "in-out-in" technique. Anterior cortical penetration occurred significantly more often with lateral pedicle perforation and with a smaller mean TSA. The incidence of fully contained screws was directly correlated with the region of instrumented thoracic spine.  相似文献   

12.
In each of eight thoracolumbar human cadaveric vertebrae, a hole was made through one pedicle into the vertebral body with a drill bit and through the contralateral pedicle with a probe. Identical metal screws were implanted into the holes to equal depths, and maximum pull-out force was determined for each screw. Using a paired Student t test, no significant difference (P = 0.87) was found in pull-out strength between the screws implanted into drilled holes and those implanted into probed holes. In fact, the average pull-out strengths for the two groups differed by less than 2%. The pedicular cortex was broken through during hole preparation in 5 of the 16 pedicles: 3 as a result of drilling and 2 secondary to probing. The average pull-out strength of the screws in these five pedicles was 11.0% less than the average pull-out strength of the screws implanted into the contralateral intact pedicles. Although this does not represent a statistically significant difference (P = 0.15), it suggests that damaging the pedicular cortex may weaken pedicle screw fixation.  相似文献   

13.
OBJECTIVE: The goal of this cadaver study was to compare the stability of pedicle screws after implantation in soft or cured kyphoplasty cement. METHODS: Pedicle screws were inserted in a total of 30 thoracolumbar vertebrae of 10 different human specimens: 10 screws were implanted in nonaugmented vertebrae (group 1), each 10 screws were placed in soft (group 2) and cured (group 3) cement. Pedicle screws were than evaluated for biomechanical axial pullout resistance. RESULTS: Mean axial pullout strength was 232 N (range 60-600 N) in group 1, 452 N (range 60-1125 N) in group 2 and 367 N (range 112-840 N) in group 3. The paired Student t-test demonstrated a significant difference between pullout strength of groups 1 and 2 (P = 0.0300). Between pullout strength of groups 1 and 3 and between groups 2 and 3 no significant difference was seen. CONCLUSION: We achieved a 1.9 times higher pullout strength with kyphoplasty augmentation of osteoporotic vertebrae compared with the pullout strength of nonaugmented vertebrae. Implantation of pedicle screws in cured cement is a sufficient method. With this method we found a 1.6 times higher pullout strength then in nonaugmented vertebrae.  相似文献   

14.
OBJECTIVES: The purpose of this study was to determine whether the depth of insertion through the far cortex of self-tapping screws significantly affects pullout strength. DESIGN: Fifty, Synthes, 3.5-mm, self-tapping screws were inserted into synthetic bone blocks and divided into 5 groups. Group 1 had screws with their tips inserted 1 mm short of the far cortex. Group 2 had screws inserted flush with the far cortex. Groups 3, 4, and 5 had screws inserted 1 mm, 2 mm, and 3 mm past the far cortex respectively. Pullout strength was then tested. SETTING: Institutional research laboratory. MAIN OUTCOME MEASUREMENTS: Pullout strength (peak force) was measured for each group and analyzed using a single factor analysis of variance-balanced incomplete block design. RESULTS: Peak force values presented as mean +/- SD for the 5 groups were as follows: group 1 (1380 +/- 69 N), group 2 (1566 +/- 137 N), group 3 (1956 +/- 137 N), group 4 (2013 +/- 184 N), group 5 (2044 +/- 174 N). With a P < or = 0.05, it was found that groups I and II had statistically different pullout strengths than all other groups. However, there was no significant difference in pullout strength between groups 3, 4, and 5. CONCLUSIONS: Synthes self-tapping screws exhibit their highest pullout strength when inserted 1 mm past the far cortex, and there is no significant increase in pullout strength with deeper insertion depths.  相似文献   

15.
《The spine journal》2021,21(9):1580-1586
OBJECTIVESTo evaluate the differences in the pullout strength and displacement of pedicle screws in cadaveric thoracolumbar vertebrae with or without artificial demineralization.METHODSFive human lumbar and five thoracic vertebrae from one cadaver were divided into two hemivertebrae. The left-side specimens were included in the simulated osteopenic model group and the right-side bones in a control group. In the model group, we immersed each specimen in HCl (1 N) solution for 40 minutes. We measured bone mineral density (BMD) using dual-energy X-ray absorptiometry and quantitative computerized tomography. We inserted polyaxial pedicle screws into the 20 pedicles of the cadaveric lumbar and thoracic spine after measuring the BMD of the 2 hemivertebrae of each specimen. We measured the pullout strength and displacement of the screws before failure in each specimen using an Instron system.RESULTSThe average pullout strength of the simulated osteopenic model group was 76% that of the control group. In the control and model groups, the pullout strength was 1678.87±358.96 N and 1283.83±341.97 N, respectively, and the displacement was 2.07±0.34 mm and 2.65±0.50 mm, respectively (p<.05). We detected positive correlations between pullout strength and BMD in the control group and observed a negative correlation between displacement and BMD in the model group.CONCLUSIONSBy providing an anatomically symmetric counterpart, the human cadaveric model with or without demineralization can be used as a test bed for pullout tests of the spine. In the simulated osteopenic model group, pullout strength was significantly decreased compared with the untreated control group.CLINICAL SIGNIFICANCEDecreased bone mineral density may significantly reduce the pullout strength of a pedicle screw, even though the range is osteopenic rather than osoteoporotic.  相似文献   

16.
STUDY DESIGN: An in vitro study to investigate the advantages of computer assistance for the purpose of parapedicular screw fixation in the upper and middle thoracic spine. OBJECTIVES: To evaluate the feasibility and application accuracy of parapedicuar screw insertion with the assistance of an optoelectronic navigation system. SUMMARY OF BACKGROUND DATA: Because of anatomic limitations, thoracic pedicle screw insertion in the upper and middle thoracic spine remains a matter of controversy. The technique of parapedicular screw insertion has been described as an alternative, although the exact screw position is difficult to control. With the assistance of computer navigation for the screw placement, it might become possible to overcome these challenges. METHODS: Four human specimens were harvested for this study; 6-mm screws were inserted from T2 to T8 with the assistance of a CT-based optoelectronic navigation system. During surgery virtual images of the screw position were documented and compared with postoperative contact radiographs to determine the application accuracy. The following measurements were obtained: axial and sagittal screw angles as well as the screw distances to the anterior vertebral cortex and the medial pedicle wall. RESULTS: All 54 screws were inserted in a parapedicular technique without violation of the medial pedicle wall or the anterior or lateral vertebral cortex. The mean +/- standard deviation difference between the virtual images and the radiographs was 1.0 +/- 0.94 mm for the distance to the medial pedicle wall and 1.9 +/- 1.44 mm for the distance to the anterior cortex. The angular measurements showed a difference of 1.6 +/- 1.1 degrees for the transverse screw angle and 2.1 +/- 1.6 degrees for the sagittal screw orientation. CONCLUSION: With the assistance of computer navigation it is possible to achieve a safe and reliable parapedicular screw insertion in the upper and middle thoracic spine in vitro. The application accuracy varies for the linear and angular measurements and is higher in the axial than in the sagittal plane. It is important for the surgeon to understand these limitations when using computer navigation in spinal surgery.  相似文献   

17.
目的 比较颈椎经关节椎弓根螺钉固定和标准椎弓根螺钉固定的拔出强度.方法 取10具新鲜尸体颈椎标本(C_3~T_1),游离成三个颈椎运动节段(C_(3,4),C_(5,6),C_7T_1).在椎体两侧随机进行经关节椎弓根螺钉固定或标准椎弓根螺钉固定,置入直径3.5 mm皮质骨螺钉.经关节椎弓根螺钉固定以上位椎骨侧块外下象限中点为进钉点,在直视椎弓根下,螺钉在冠状面内倾约45°、矢状面尾倾约50°.由上位椎骨下关节突经关节突关节、下位椎骨的椎弓根,进入下位椎骨的椎体内.标准椎弓根螺钉固定以侧块外上象限中点为进钉点,在直视椎弓根下,螺钉方向参考CT测量结果 ,尽量与椎弓根倾斜角度保持一致,在横断面上内倾约45°、矢状面上螺钉指向椎体的上1/3.在生物力学试验机上行拔出强度试验,比较两种螺钉固定的最大轴向拔出力.结果 颈椎经关节椎弓根螺钉固定平均最大轴向拨出力为(694±42)N,标准椎弓根螺钉固定为(670±36)N,两者比较差异有统计学意义(P<0.05).结论 颈椎后路经关节椎弓根螺钉固定的拔出强度大干标准椎弓根螺钉固定,从生物力学强度方面考虑经关节椎弓根螺钉固定可以作为标准椎弓根螺钉固定的一种补充方法.  相似文献   

18.
B Bai  F J Kummer  J Spivak 《Spine》2001,26(24):2679-2683
STUDY DESIGN: A biomechanical study to evaluate the effects of a biodegradable calcium phosphate (Ca-P) bone substitute on the fixation strength and bending rigidity of vertebral body screws. OBJECTIVES: To determine if an injectable, biodegradable Ca-P bone substitute provides significant augmentation of anterior vertebral screw fixation in the osteoporotic spine. SUMMARY OF BACKGROUND DATA: Polymethylmethacrylate (PMMA) augmented screws have been used clinically; however, there is concern about thermal damage to the neural elements during polymerization of the PMMA as well as its negative effects on bone remodeling. Injectable, biodegradable Ca-P bone substitutes have shown enhanced fixation of pedicle screws. METHODS: Sixteen fresh cadaveric thoracolumbar vertebrae were randomly divided into two groups: control (no augmentation) (n = 8) and Ca-P bone substitute augmentation (n = 8) groups. Bone-screw fixation rigidity in bending was determined initially and after 10(5) cycles, followed by pullout testing of the screw to failure to determine pullout strength and stiffness. RESULTS: The bone-screw bending rigidity for the Ca-P bone substitute group was significantly greater than the control group, initially (58%) and after cyclic loading (125%). The pullout strength for Ca-P bone substitute group (1848 +/- 166 N) was significantly greater than the control group (665 +/- 92 N) (P < 0.01). Stiffness in pullout for the Ca-P bone substitute groups (399 +/- 69 N/mm) was significantly higher than the control group (210 +/- 51 N/mm) (P < 0.01). CONCLUSION: This study demonstrated that augmentation of anterior vertebral body screw fixation with a biodegradable Ca-P bone substitute is a potential alternative to the use of PMMA cement.  相似文献   

19.
Wang HC  Yang YL  Lin WC  Chen WF  Yang TM  Lin YJ  Rau CS  Lee TC 《Surgical neurology》2008,69(6):597-601; discussion 601
BACKGROUND: The objective of the study was to improve the accuracy of computer-assisted pedicle screw installation in the spine. This study evaluates the accuracy of computer-assisted pedicle screw placement with separate spinal reference clamp placement and registration on each instrumented vertebra for thoracolumbar spine fractures. METHODS: Postoperative radiographs and CT scans assessed the accuracy of pedicle screw placement in 21 adult patients on each instrumented vertebra. Screw placements were graded as good if the screws were placed in the central core of the pedicle and the cancellous portion of the body. Screw placements were graded as fair if the screws were placed slightly eccentrically, causing erosion of the pedicular cortex, and with less than a 2-mm perforation of the pedicular cortex. Screw placements were graded as poor if screws were placed eccentrically with a large portion of the screw extending outside the cortical margin of the pedicle and with more than a 2-mm perforation of the pedicular cortex. RESULTS: A total of 140 image-guided pedicle screws were placed in 21 patients: 78 in the thoracic and 62 in the lumbar spine. Of the 140 pedicle screw placements, 96.4% (135/140) were categorized as good; 3.6% (5/140), fair; and 0% were poor. All 5 fair placement screws were placed in the thoracic spine without any mobility. CONCLUSION: Separate registration increases accuracy of screw placement in thoracolumbar pedicle instrumentation. Separate spinal reference clamp placement in the instrumented vertebra provides real-time virtual imaging that decreases the possibility of downward displacement during manual installation of the screw.  相似文献   

20.
Pedicle screw fixation strength: pullout versus insertional torque.   总被引:5,自引:0,他引:5  
BACKGROUND CONTEXT: Researchers studying early pedicle screw designs have suggested that pullout strength and insertional torque are correlated. For surgeons using pedicle screws, insertional torque is widely believed to be a good predictor of pullout strength and initial stability of the screw and construct. How appropriate is this assumption when applied to new screw and thread designs? PURPOSE: This study investigated the correlation between insertional torque and pullout strength of three different pedicle screw designs, with different insertional torque characteristics. We hypothesized that a significant increase in insertional torque would indicate a commensurate increase in pullout strength. STUDY DESIGN: Biomechanical analysis of instrumented vertebral specimens. METHODS: Calf lumbar vertebra were prepared and instrumented with one of three pedicle screws. Pilot hole preparation was standardized and coaxial orientation was confirmed by direct inspection. Screws did not penetrate the pedicle cortex or abut or penetrate the anterior vertebral cortex. Any specimen with pedicle wall breach was discarded. The pedicles were instrumented with one of three screws: 1) 7.5 x 40 mm conical, asymmetric progressive thread (Xia; Stryker Spine, Allendale, NJ), 2) 7.5 x 40 mm conical with traditional V-shaped thread (Osteonics, Stryker Spine, Allendale, NJ)) or 3) 6.5 x 40 mm cylindrical with V thread (Osteonics, cylindrical). Paired testing allowed individual screws to be directly compared with a contralateral "control." Insertional torque and peak torque values were recorded for each rotation up to full insertion. Pullout testing was conducted at a rate of 1 mm/minute. Load-displacement data were recorded at 20 Hz. Stiffness was considered the slope of the most linear part of the curve before the yield point. RESULTS: Peak loads for 7.5 conical Xia screws measured 1,783+/-589.1 N compared with 1,943.0+/-625.8 N for 7.5 conical Osteonics screws and 1,641.0+/-356.7 N for 6.5 cylindrical Osteonics screws. The peak insertional torque values were 6.7+/-1.9 Nm (158% greater than control), 4.5+/-1.1 Nm (73% greater than control) and 2.6+/-0.7 Nm, respectively. Insertional torques for Xia screws were significantly greater than conical (p=.001) and cylindrical Osteonics screws (p<.0001), and insertional torques for Osteonics conical screws were significantly greater than those of cylindrical screws (p<.0001). Although pullout loads for the conical Osteonics screws were consistently higher than either the Xia or Osteonics cylindrical screws, the differences were not significant (p>.05). There was no significant correlation between pullout strength and insertional torque (p>.05). CONCLUSIONS: This unexpected result is best explained by the progressively narrowing flutes of the Xia screw, which compact the trabeculae into a smaller volume as the screw nears full insertion. The trapezoidal threads also increase contact with the cortical surface area and compress trabeculae toward the cortex, thus creating greater friction and higher torque values. This increase in torque did not translate into a commensurate increase in pullout strength, where trabeculae fail in shear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号