首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study is to confirm the speculation which arose in our previous study that the degradation rate of insulin lyophilized with poly(vinylpyrrolidone) is mainly governed by the chemical activational barrier rather than molecular mobility. This speculation was based on the degradation data of insulin lyophilized with poly(vinylpyrrolidone) K-30 (PVP K-30), which was obtained at temperatures well below the glass transition temperature (T(g)). In this study, the degradation rate of insulin at temperatures below and above T(g) was determined using PVP 10k as an excipient, instead of PVP K-30, in order to examine whether or not the temperature dependence of the degradation rate changes around T(g). The relative contributions of molecular mobility and the activational barrier, calculated from the temperature- and T(g)-dependence of the degradation rate, indicated that the contribution of molecular mobility to the degradation rate was negligible. Furthermore, the negligible contribution of molecular mobility was confirmed by the lack of significant change observed in the temperature- and T(g)-dependence of the rate around T(g).  相似文献   

2.
Purpose The purpose of this study was to elucidate whether the degradation rate of insulin in lyophilized formulations is determined by matrix mobility, as reflected in glass transition temperature (Tg), or by β-relaxation, as reflected in rotating-frame spin-lattice relaxation time . Methods The storage stability of insulin lyophilized with dextran was investigated at various relative humidities (RH; 12–60%) and temperatures (40–90°C) and was compared with previously reported data for insulin lyophilized with trehalose. Insulin degradation was monitored by reverse-phase high-performance liquid chromatography. Furthermore, the of the insulin carbonyl carbon in the lyophilized insulin–dextran and insulin–trehalose systems was measured at 25°C by 13C solid-state NMR, and the effect of trehalose and dextran on was compared at various humidities. Results The degradation rate of insulin lyophilized with dextran was not significantly affected by the Tg of the matrix, even at low humidity (12% RH), in contrast to that of insulin lyophilized with trehalose. The insulin–dextran system exhibited a substantially greater degradation rate than the insulin–trehalose system at a given temperature below the Tg. The difference in degradation rate between the insulin–dextran and insulin–trehalose systems observed at 12% RH was eliminated at 43% RH. In addition, the of the insulin carbonyl carbon at low humidity (12% RH) was prolonged by the addition of trehalose, but not by the addition of dextran. This difference was eliminated at 23% RH, at which point the solid remained in the glassy state. These findings suggest that the β-relaxation of insulin is inhibited by trehalose at low humidity, presumably as a result of insulin–trehalose interaction, and thus becomes a rate determinant. In contrast, dextran, whose ability to interact with insulin is thought to be less than that of trehalose, did not inhibit the β-relaxation of insulin, and thus, the chemical activational barrier (activation energy) rather than β-relaxation becomes the major rate determinant. Conclusions β-Relaxation rather than matrix mobility seems to be more important in determining the stability of insulin in the glassy state in lyophilized formulations containing trehalose and dextran.  相似文献   

3.
Purpose. The dependence of the molecular mobility of lyophilized formulations on pharmaceutical polymer excipients was studied. Molecular mobility as determined by NMR relaxation-based critical temperature of molecular mobility (Tmc) and glass transition temperature (Tg) is discussed in relation to the plasticizing effect of water in formulations. Methods. The Tmc and Tg of lyophilized -globulin formulations containing 6 different polymer excipients such as dextran, polyvinylpyrrolidone (PVP) and methylcellulose (MC) was determined by NMR and DSC. The molecular mobility of water in the formulations was determined by proton NMR and dielectric relaxation spectrometry (DRS). Results. Tmc varied with polymer excipients. Tmc increased as the ratio of bound water to mobile water increased and as the molecular mobility of mobile water decreased. The formulation containing MC exhibited a lower Tmc than the formulation containing dextran because of the smaller ratio of bound water and the higher molecular mobility of mobile water. The Tmc of the formulation containing PVP was higher than that expected from the higher T2 values of water because of the lower molecular mobility of mobile water regardless of the higher ratio of mobile water. The Tmc of these lyophilized formulations was higher than their Tg by 23°C to 34°C, indicating that the formulations became a NMR-detected microscopically liquidized state below their Tg. Conclusions. The quantity and the molecular mobility of mobile water in lyophilized formulations can be considered to affect the Tmc of lyophilized formulations, which in turn governs their stability.  相似文献   

4.
Purpose. We studied the temperature dependence of acetyltransfer between aspirin and sulfadiazine, a bimolecular reaction, inlyophilized formulations at temperatures near the glass transitiontemperature (Tg) and NMR relaxation-based critical mobilitytemperature (Tmc), to further understand the effect of molecularmobility on chemical degradation rates in solid pharmaceutical formulations.The temperature dependence of the hydrolysis rates of aspirin andcephalothin in lyophilized formulations was also studied as a model ofbimolecular reactions in which water is a reactant. Methods. Degradation of lyophilized aspirin-sulfadiazineformulations containing dextran and various amounts of water at temperaturesranging from 1°C to 80°C was analyzed by HPLC. The degradation ofcephalothin in lyophilized formulations containing dextran andmethylcellulose was also analyzed at temperatures ranging from 10°C to70°C. Results. Acetyl transfer in lyophilizedasprin—sulfadiazine formulations containing dextran exhibited atemperature dependence with a distinct break around Tmc, whichmay be ascribed to a change in the translational mobility of aspirin andsulfadiazine molecules. The hydrolysis of aspirin and cephalothin inlyophilized formulations, which is also a bimolecular reaction, did not showa distinct break, suggesting that water diffusion is not rate-limiting. Conclusions. The diffusion barrier of water molecules inlyophilized formulations appears to be smaller than the activational barrierof the hydrolysis of aspirin and cephalothin based on the results of thisstudy that the temperature dependence of the hydrolysis rate is almostlinear regardless of Tmc and Tg. On the other hand,the diffusion barrier of aspirin and sulfadiazine molecules appears to becomparable to the activational barrier of the acetyl transfer reactionbetween these com pounds, resulting in nonlinear temperature dependence.  相似文献   

5.
Purpose The purpose of this study is to compare the effects of global mobility, as reflected by glass transition temperature (Tg) and local mobility, as reflected by rotating-frame spin-lattice relaxation time (T) on aggregation during storage of lyophilized β-galactosidase (β-GA). Materials and Methods The storage stability of β-GA lyophilized with sucrose, trehalose or stachyose was investigated at 12% relative humidity and various temperatures (40–90°C). β-GA aggregation was monitored by size exclusion chromatography (SEC). Furthermore, the T of the β-GA carbonyl carbon was measured by 13C solid-state NMR, and Tg was measured by modulated temperature differential scanning calorimetry. Changes in protein structure during freeze drying were measured by solid-state FT-IR. Results The aggregation rate of β-GA in lyophilized formulations exhibited a change in slope at around Tg, indicating the effect of molecular mobility on the aggregation rate. Although the Tg rank order of β-GA formulations was sucrose < trehalose < stachyose, the rank order of β-GA aggregation rate at temperatures below and above Tg was also sucrose < trehalose < stachyose, thus suggesting that β-GA aggregation rate is not related to (T-Tg). The local mobility of β-GA, as determined by the T of the β-GA carbonyl carbon, was more markedly decreased by the addition of sucrose than by the addition of stachyose. The effect of trehalose on T was intermediate when compared to those for sucrose and stachyose. These findings suggest that β-GA aggregation rate is primarily related to local mobility. Significant differences in the second derivative FT-IR spectra were not observed between the excipients, and the differences in β-GA aggregation rate observed between the excipients could not be attributed to differences in protein secondary structure. Conclusions The aggregation rate of β-GA in lyophilized formulations unexpectedly correlated with the local mobility of β-GA, as indicated by T, rather than with (T-Tg). Sucrose exhibited the most intense stabilizing effect due to the most intense ability to inhibit local protein mobility during storage.  相似文献   

6.
The relative influences of chemical activation energy and molecular mobility in determining chemical reactivity were evaluated for insulin lyophilized with alpha,beta-poly(N-hydroxyethyl)-L-aspartamide (PHEA), and compared with that for insulin lyophilized with trehalose, which had been found to have the ability to decrease the molecular mobility of insulin at low humidity. The ratio of the observed rate constant k(obs) to the chemical activation energy-controlled rate constant k(act) (k(obs)/k(act)) at glass transition temperature (T(g)) was estimated to be approximately 0.6 and 0.8 at 6% RH and 12% RH, respectively, indicating that the degradation rate is significantly affected by molecular mobility at lower humidity conditions. However, these k(obs)/k(act) values at T(g) were larger than those for the insulin-trehalose system, and changes in the temperature-dependent slope around T(g) were less obvious than those for the insulin-trehalose system. Thus, the contribution of molecular mobility to the degradation rate in the insulin-PHEA system appeared to be less intense than that in the insulin-trehalose system. The subtle change in the temperature-dependent slope around T(g) observed in the insulin-PHEA system brought about a significant bias in shelf-life estimation when the reaction rate was extrapolated from temperatures above T(g) according to the Arrhenius equation.  相似文献   

7.
The objective of this study was to investigate the impact of heat treatment (annealing) on the molecular mobility and chemical stability of dried sodium ethacrynate (ECA). ECA was lyophilized with sucrose or trehalose, and some samples were held as control while others were annealed at temperatures below Tg. Enthalpy recovery was studied with DSC and free volume was estimated based on density measurements. Global mobility was measured by the thermal activity monitor (TAM), and fast local mobility was studied with neutron backscattering. Formation of ECA dimer was measured by reverse phase HPLC. Maximum enthalpy recovery and minimum fictive temperature were observed at about Tg–15°C for both ECA/saccharide formulations. Annealing ECA in amorphous solids improved chemical stability, as shown by the decrease in degradation rate constant relative to the control. Annealed samples exhibited larger structural relaxation time than the control, and thus annealing decreased global mobility in the system. However, annealing does not significantly impact the local mobility. Chemical stability correlates with structural relaxation time, fictive temperature, and free volume, which suggests that improved stability is mainly a result of the reduced global mobility upon annealing. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:663–682, 2010  相似文献   

8.
Bimolecular reaction rates in lyophilized aspirin-sulfadiazine formulations containing poly(vinylpyrrolidone), dextran, and isomalto-oligomers of different molecular weights were determined in the presence of various water contents, and their temperature- and glass transition temperature (Tg)-dependence was compared with that of structural relaxation time (tau calculated according to the Adam-Gibbs-Vogel equation, in order to understand how chemical degradation rates of drugs in lyophilized formulations are affected by molecular mobility. The rate of acetyl transfer in poly(vinylpyrrolidone) K30 and dextran 40k formulations with a constant Tg, observed at various temperatures, exhibited a temperature dependence similar to that of tau at temperatures below Tg. Furthermore, the rates of acetyl transfer and the Maillard reaction in formulations containing alpha-glucose polymers and oligomers increased, as the Tg of formulations decreased, either associated with decreases in molecular weight of excipient or with increases in water content. The observed Tg dependence was similar to that of tau in the range of Tg higher than the experimental temperature. The results suggest a possibility that bimolecular reaction rate at temperatures below Tg can be predicted from that observed at the Tg on the basis of temperature dependence of structural relaxation time in amorphous systems, if the degradation rate is proportional to the diffusion rate of reacting compounds.  相似文献   

9.
Purpose In order to understand the stabilizing effects of disaccharides on freeze-dried proteins, the enzymatic activity of lactate dehydrogenase (LDH) formulations containing four types of disaccharide (trehalose, sucrose, maltose, and lactose) at two relative humidity (RH) levels (about 0 and 32.8%) was investigated after three processes: freeze-thawing, freeze-drying, and storage at three temperatures (20, 40, and 60°C) above and/or below the glass transition temperature (T g). Materials and Methods The enzymatic activity was determined from the absorbance at 340 nm, and T g of the samples was investigated by differential scanning calorimetry. Results At each RH condition, T g values of sucrose formulations were lower than those of other formulations. Although effects of the disaccharides on the process stability of LDH were comparable, storage stability was dependent on the type of disaccharide. All the formulations were destabilized significantly during storage at temperature above T g. During storage at temperature below T g, the LDH activity decreased with increases in the storage temperature and moisture. Maltose and lactose formulations showed significant destabilization with the change of color to browning. Conclusions Taking the storage stability of freeze-dried proteins under the various conditions (temperature and RH) into consideration, trehalose is better suited as the stabilizer than other disaccharides.  相似文献   

10.
The aim of this work is to determine if a stability testing protocol based on the correlations between crystallization onset and relaxation time above the glass transition temperature (Tg) can be used to predict the crystallization onsets in amorphous pharmaceutical systems well below their Tg. This procedure assumes that the coupling between crystallization onset and molecular mobility is the same above and below Tg. The stability testing protocol has been applied to phenobarbital, phenobarbital/polyvinylpyrrolidone (PVP) (95/5, w/w), and nifedipine/PVP (95/5, w/w). Crystallization onsets have been detected by polarized light microscopy examination of amorphous films; molecular mobility has been determined by dielectric relaxation spectroscopy above Tg and by both isothermal calorimetry and modulated differential scanning calorimetry below Tg. We find that small amounts of PVP significantly retard re-crystallization. This dramatic effect of PVP is not related to mobility, so this approach applies, at best, to extrapolation of high temperature data on a given formulation to low temperatures. Variation in molecular mobility at these concentrations of PVP is not the dominant factor in determining variation in propensity for re-crystallization from glassy systems; we suggest surface interactions between PVP and nuclei and/or small crystals slowing growth control variation in crystallization kinetics between formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3887-3900, 2010  相似文献   

11.
The purpose of this research was to investigate the effect of annealing on the molecular mobility in lyophilized glasses using differential scanning calorimetry (DSC) and isothermal microcalorimetry (IMC) techniques. A second objective that emerged was a systematic study of the unusual pre-T(g) thermal events that were observed during DSC warming scans after annealing. Aspartame lyophilized with three different excipients; sucrose, trehalose and poly vinyl pyrrolidone (PVP) was studied. The aim of this work was to quantify the decrease in mobility in amorphous lyophilized aspartame formulations upon systematic postlyophilization annealing. DSC scans of aspartame:sucrose formulation (T(g) = 73 degrees C) showed the presence of a pre-T(g) endotherm which disappeared upon annealing. Aspartame:trehalose (T(g) = 112 degrees C) and aspartame:PVP (T(g) = 100 degrees C) showed a broad exotherm before T(g) and annealing caused appearance of endothermic peaks before T(g). This work also employed IMC to measure the global molecular mobility represented by structural relaxation time (tau(beta)) in both un-annealed and annealed formulations. The effect of annealing on the enthalpy relaxation of lyophilized glasses, as measured by DSC and IMC, was consistent with the behavior predicted using the Tool-Narayanaswamy-Moynihan (TNM) phenomenology (Luthra et al., 2007, in press). The results show that the systems annealed at T(g) -15 degrees C to T(g) -20 degrees C have the lowest molecular mobility.  相似文献   

12.
Purpose To test the hypothesis that the molecular motions associated with chemical degradation in glassy amorphous systems are governed by the molecular motions associated with structural relaxation. The extent to which a chemical process is linked to the motions associated with structural relaxation will depend on the nature of the chemical process and molecular motion requirements (e.g., translation of a complete molecule, rotational diffusion of a chemical functional group). In this study the chemical degradation and molecular mobility were measured in model systems to assess the degree of coupling between chemical reactivity and structural relaxation. The model systems included pure amorphous cephalosporin drugs, and amorphous molecular mixtures containing a chemically labile drug and an additive expected to moderate molecular mobility.Methods Amorphous drugs and mixtures with additives were prepared by lyophilization from aqueous solution. The physical properties of the model systems were characterized using optical microscopy and differential scanning calorimetry. The chemical degradation of the drugs alone and in mixtures with additives was measured using high-performance liquid chromatography (HPLC). Molecular mobility was measured using isothermal microcalorimetry to measure enthalpy changes associated with structural relaxation below T g.Results A weak correlation between the rates of degradation and structural relaxation times in pure amorphous cephalosporins suggests that reactivity in these systems is coupled to molecular motions in the glassy state. However, when sucrose was added to one of the cephalosporin drugs stability improved even though this addition reduced T g and the relaxation time constant, , suggesting that there was no correlation between reactivity and structural relaxation in the cephalosporin mixtures. In contrast, the rate of ethacrynate sodium dimer formation in mixtures was more strongly coupled to the relaxation time constant, .Conclusions These studies suggest that the extent to which chemical degradation is coupled to structural relaxation in glasses motions is determined by how closely the motions of the rate controlling step in chemical degradation are associated with structural relaxation. Moderate coupling between the rate of dimer formation for ethacrynate sodium in mixtures with sucrose, trehalose and PVP and structural relaxation constants suggests that chemical changes that require more significant molecular motion, and includes at least some translational diffusion, are more strongly coupled to the molecular motions associated with structural relaxation. The observation that sucrose stabilizes cefoxitin sodium even though it lowers T g and reduces the relaxation time constant, is perhaps a result of the importance of other kinds of molecular motions in determining the chemical reactivity in glasses.  相似文献   

13.
Purpose. The purpose of this study is to highlight the importance of knowing the glass transition temperature, Tg, of a lyophilized amorphous solid composed primarily of a sugar and a protein in the interpretation of accelerated stability data. Methods. Glass transition temperatures were measured using DSC and dielectric relaxation spectroscopy. Aggregation of protein in the solid state was monitored using size-exclusion chromatography. Results. Sucrose formulation (Tg ~ 59°C) when stored at 60°C was found to undergo significant aggregation, while the trehalose formulation (Tg ~ 80°C) was stable at 60°C. The instability observed with sucrose formulation at 60°C can be attributed to its Tg (~59°C) being close to the testing temperature. Increase in the protein/sugar ratio was found to increase the Tgs of the formulations containing sucrose or trehalose, but to different degrees. Conclusions. Since the formulations exist in glassy state during their shelf-life, accelerated stability data generated in the glassy state (40°C) is perhaps a better predictor of the relative stability of formulations than the data generated at a higher temperature (60°C) where one formulation is in the glassy state while the other is near or above its Tg.  相似文献   

14.
Purpose To develop a calorimetry-based model for estimating the time-dependence of molecular mobility during the isothermal relaxation of amorphous organic compounds below their glass transition temperature (T g).Methods The time-dependent enthalpy relaxation times of amorphous sorbitol, indomethacin, trehalose and sucrose were estimated based on the nonlinear Adam‐Gibbs equation. Fragility was determined from the scanning rate dependence of T g. Time evolution of the fictive temperature was determined from T g, the heat capacity of the amorphous and crystalline forms, and from the enthalpy relaxation data.Results Relaxation time changes significantly upon annealing for all compounds studied. The magnitude of the increase in relaxation time does not depend on any one parameter but on four parameters: T g, fragility, and the crystal–liquid and glass–liquid heat capacity differences. The obtained mobility data for indomethacin and sucrose, both stored at T g−16 K, correlated much better with their different crystallization tendencies than did the Kohlrausch‐Williams‐Watts (KWW) equation.Conclusions The observed changes in relaxation time help explain and address the limitations of the KWW approach. Due consideration of the time-dependence of molecular mobility upon storage is a key element for improving the understanding necessary for stabilizing amorphous formulations.  相似文献   

15.
The effect of temperature on the chemical stability of an amorphous spray-dried insulin powder formulation (Exubera)® was evaluated in the solid state at constant moisture content. The chemical stability of the powder was assessed using reversed-phase high-performance liquid chromatography (RP-HPLC) and high-performance-size exclusion chromatography (HP-SEC). The major degradants in spray-dried insulin produced during heat stressing were identified as A21-desamidoinsulin (A21) and high molecular weight protein (HMWP). As expected, the rates of formation of A21 and HMWP were observed to increase with temperature. A stretched-time kinetic model (degradation rate is proportional to the square root of time) was applied to the degradant profiles above and below the glass transition temperature (Tg) and apparent reaction rate constants were determined. Below Tg, isothermal enthalpy of relaxation measurements were used to assess the effect of temperature on molecular mobility. The formation of A21 and HMWP was found to follow an Arrhenius temperature dependence above and below the Tg. Comparison of reaction rate constants to those estimated from structural relaxation experiments suggests that the reaction pathways to form A21 and HMWP below the Tg may be coupled with the molecular motions involved in structural relaxation. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3698–3710, 2010  相似文献   

16.
The mechanistic role of water in the deamidation of a model asparagine-containing hexapeptide (Val-Tyr-Pro-Asn-Gly-Ala) in lyophilized formulations containing poly(vinylpyrrolidone) (PVP) and glycerol was investigated. Glycerol was used as a plasticizer to vary formulation glass transition temperature (T(g)) without significantly changing water content or activity. Increases in moisture and glycerol contents increased the rate of peptide deamidation. This increase was strongly correlated with T(g) at constant water content and activity, suggesting that increased matrix mobility facilitates deamidation. In rubbery systems (T > T(g)), deamidation rates appeared to be independent of water content and activity in formulations with similar T(g)s. However, in glassy formulations with similar T(g)s, deamidation increased with water content, suggesting a solvent/medium effect of water on reactivity in this regime. An increase in water content also affected the degradation product distribution; less of the cyclic imide intermediate and more of the hydrolytic products, isoAsp- and Asp-hexapeptides, were observed as water content increased. Thus, residual water appears to facilitate deamidation in these solid PVP formulations both by enhancing molecular mobility and by solvent/medium effects, and also participates as a chemical reactant in the subsequent breakdown of the cyclic imide.  相似文献   

17.
Purpose. The purpose of this work was to investigate the effects of trehalose and trehalose/sodium tetraborate mixtures on the recovery of lactate dehydrogenase (LDH) activity following freeze-thawing and centrifugal vacuum-drying/rehydration. The storage stability of LDH under conditions of either high relative humidity or high temperature was also studied. Methods. LDH was prepared in buffered aqueous formulations containing trehalose alone and trehalose/'borate' mixtures. Enzymatic activity was measured immediately following freeze-thawing and vacuum-drying/rehydration processes, and also after vacuum-dried formulations were stored in either high humidity or high temperature environments. Also, glass transition temperatures (Tg) were measured for both freeze-dried and vacuum-dried formulations. Results. The Tgvalues of freeze-dried trehalose/borate mixtures are considerably higher than that of trehalose alone. Freezing and vacuum-drying LDH in the presence of 300 mM trehalose resulted in the recovery of 80% and 65% of the original activity, respectively. For vacuum-dried mixtures, boron concentrations below 1.2 mole boron/ mole trehalose had no effect on recovered LDH. After several weeks storage in either humid (100% relative humidity) or warm (45°C) environments, vacuum-dried formulations that included trehalose and borate showed greater enzymatic activities than those prepared with trehalose alone. We attribute this stability to the formation of a chemical complex between trehalose and borate. Conclusions. The high Tgvalues of trehalose/borate mixtures offer several advantages over the use of trehalose alone. Most notable is the storage stability under conditions of high temperature and high relative humidity. In these cases, formulations that contain trehalose and borate are superior to those containing trehalose alone. These results have practical implications for long-term storage of biological materials.  相似文献   

18.
Purpose To compare the physical stability of amorphous molecular level solid dispersions of nifedipine and felodipine, in the presence of poly(vinylpyrrolidone) (PVP) and small amounts of moisture. Methods Thin amorphous films of nifedipine and felodipine and amorphous molecular level solid dispersions with PVP were stored at various relative humidities (RH) and the nucleation rate was measured. The amount of water sorbed at each RH was measured using isothermal vapor sorption and glass transition temperatures (T g) were determined using differential scanning calorimetry. The solubility of each compound in methyl pyrrolidone was measured as a function of water content. Results Nifedipine crystallizes more easily than felodipine at any given polymer concentration and in the presence of moisture. The glass transition temperatures of each compound, alone and in the presence of PVP, are statistically equivalent at any given water content. The nifedipine systems are significantly more hygroscopic than the corresponding felodipine systems. Conclusions Variations in the physical stability of the two compounds could not be explained by differences in T g. However, the relative physical stability is consistent with differences in the degree of supersaturation of each drug in the solid dispersion, treating the polymer and water as a co-solvent system for each drug compound.  相似文献   

19.
Purpose. To compare the enthalpy relaxation of amorphous sucrose and co-lyophilized sucrose-additive mixtures near the calorimetric glass transition temperature, so as to measure the effects of additives on the molecular mobility of sucrose. Methods. Amorphous sucrose and sucrose-additive mixtures, containing poly(vinylpyrrolidone) (PVP), poly(vinylpyrrolidone-co-vinyl-acetate) (PVP/VA) dextran or trehalose, were prepared by lyophilization. Differential scanning calorimetry (DSC) was used to determine the area of the enthalpy recovery endotherm following aging times of up to 750 hours for the various systems. This technique was also used to compare the enthalpy relaxation of a physical mixture of amorphous sucrose and PVP. Results. Relative to sucrose alone, the enthalpy relaxation of co-lyophilized sucrose-additive mixtures was reduced when aged for the same length of time at a comparable degree of undercooling in the order: dextran PVP > PVP/VA > trehalose. Calculated estimates of the total enthalpy change required for sucrose and the mixtures to relax to an equilibrium supercooled liquid state (H) were essentially the same and were in agreement with enthalpy changes measured at longer aging times (750 hours). Conclusions. The observed decrease in the enthalpy relaxation of the mixtures relative to sucrose alone indicates that the mobility of sucrose is reduced by the presence of additives having a Tg that is greater than that of sucrose. Comparison with a physically mixed amorphous system revealed no such effects on sucrose. The formation of a molecular dispersion of sucrose with a second component, present at a level as low as 10%, thus reduces the mobility of sucrose below Tg, most likely due to the coupling of the molecular motions of sucrose to those of the additive through molecular interactions.  相似文献   

20.
The characteristics of hydrogen bond formation between trehalose and polyvinylpyrrolidone (PVP) in amorphous mixtures at different hydration states were quantitatively investigated. Amorphous trehalose-PVP mixtures were prepared by freeze-drying and equilibrated at different relative humidities (RH). Infrared (IR) spectra of the trehalose-PVP mixtures were obtained by Fourier transform IR spectroscopy,(FTIR) and the IR band corresponding to C=O groups of PVP was deconvolved into the component bands responsible for C=O groups that were free and restricted by hydrogen bonds, to estimate the degree of the trehalose-PVP interactions. The FTIR analysis indicated that approximately 80% of the C=O groups of PVP formed hydrogen bonds with trehalose in the presence of more than 3 g of trehalose per gramme of PVP, independent of the RH. IR analysis of the O--H stretching vibration of the sugar demonstrated that the presence of PVP lead to an increase in the free hydroxyl groups of trehalose that did not form hydrogen bonds at RH 0%. On the other hand, the water sorption behavior of the trehalose-PVP mixtures suggested that rehumidification diminished the effect of PVP on increasing the free OH groups. Thus a peculiar relationship may exist between Tg, RH and the composition of the mixture: The presence of PVP increased Tg at RHs 0 and above 23% but decreased Tg at 11%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号